高考理科数学数学导数专题复习(1)

高考理科数学数学导数专题复习(1)
高考理科数学数学导数专题复习(1)

高考数学导数专题复习

考试内容

导数的背影.导数的概念.多项式函数的导数.

利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立

考试要求:

(1)了解导数概念的某些实际背景.

(2)理解导数的几何意义.

(3)掌握常用函数导数公式,会求多项式函数的导数.

(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.

(5)会利用导数求某些简单实际问题的最大值和最小值.

(6)会利用导数证明不等式恒成立问题及相关问题

知识要点

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变

量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00

x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)

(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim

0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0

x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:

①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零.

②以知函数

)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意函数的单调性 函数的极值 函数的最值

常见函数的导数 导数的运算法则

2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:

⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续.

事实上,令x x x ?+=0,则0x x →相当于0→?x .

于是)]()()([lim )(lim )(lim 0000000

x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f x

x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??=??||,当x

?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在.

注:

①可导的奇函数函数其导函数为偶函数.

②可导的偶函数函数其导函数为奇函数.

3. 导数的几何意义和物理意义:

(1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-

(2)物理意义:位移的导数是速度,速度的导数是加速度。

4. 求导数的四则运算法则:

''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

注:

①v u ,必须是可导函数.

②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导.

例如:设x x x f 2sin 2)(+=,x x x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.

5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?=

复合函数的求导法则可推广到多个中间变量的情形.

6. 函数单调性:

⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.

⑵常数的判定方法;

如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.

注:

①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.

②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.

7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)

当函数)(x f 在点0x 处连续时:

①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;

②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.

也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此

外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).

①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对

于可导函数,其一点

0x 是极值点的必要条件是若函数在该点可导,则导数值为

零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.

②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.

8. 极值与最值的区别:

极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 注:函数的极值点一定有意义.

9. 几种常见的函数导数:

I.0'=C (C 为常数) x x cos )(sin '= 2'11

)(arcsin x x -=

1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11

)(arccos x x --= II. x x 1)(ln '=

e x

x a a log 1)(log '= 11)(arctan 2'+=x x III. 求导的常见方法: ①常用结论:x

x 1|)|(ln '=.

②形如))...()((21n a x a x a x y ---=或))...()(()

)...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可

转化求代数和形式.

③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为

x x y ln ln =,对两边求导可得x

x x x x y y x y y x x x y

y +=?+=??+=ln ln 1ln '''. 经典例题剖析

考点一:求导公式。

例1. ()f x '是31()213

f x x x =++的导函数,则(1)f '-的值是 。 解析:()2'2+=x x f ,所以()3211'=+=-f

答案:3

考点二:导数的几何意义。

例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122

y x =

+,则(1)(1)f f '+= 。 解析:因为21=

k ,所以()2

11'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2

51=f ,所以()()31'1=+f f 答案:3 例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所

以设切线方程为b x y +-=5,将点(13)-,

带入切线方程可得2=b ,所以,过曲线上点(13)-,

处的切线方程为:025=-+y x 答案:025=-+y x

点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析: 直线过原点,则()000

0≠=x x y k 。由点()00,y x 在曲线C 上,则02

030023x x x y +-=,∴ 2302000+-=x x x y 。又263'2+-=x x y ,∴ 在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴

26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:2

30=

x 或00=x (舍),此时,830-=y ,41-=k 。所以,直线l 的方程为x y 41-=,切点坐标是??

? ??-83,23。 答案:直线l 的方程为x y 41-=,切点坐标是??

? ??-83,23

点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2-+=x ax x f 。对于R x ∈都有()0

'

12360a a ,解得

3-

9. 当3-=a 时,()983131333

23+??? ??--=+-+-=x x x x x f 。 由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

10. 当3->a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a

点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;

(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。 解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则

有(1)0f '=,(2)0f '=.即6630241230a b a b ++=??++=?,.

,解得3a =-,4b =。

(2)由(Ⅰ)可知,32()29128f x x x x c =-++,

2()618126(1)(2)f x x x x x '=-+=--。

当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。因为对于任意的[]03x ∈,,有2()f x c <恒成立,

所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为

(1)(9)-∞-+∞,,。

答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞,,。

点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f ';

②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

考点六:函数的最值。

例7. 已知a 为实数,()()()a x x x f --=42。求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 4423+--=,∴

()423'2--=ax x x f 。 (2)()04231'=-+=-a f ,2

1=∴a 。()()()14343'2+-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3

4=x , 则()x f 和()x f '在区间[]2,2-上随x 的变化情况如下表:

+ 0 — 0 + 0

增函数 极大值 减函数 极小值 增函数 0 ()291=-f ,275034-=??

? ??f 。所以,()x f 在区间[]2,2-上的最大值为275034-=??

? ??f ,最小值为()291=-f 。

答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=??

? ??f ,最小值为()2

91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值;

(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---

∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线

670x y --=的斜率为16

,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.

(2)3()212f x x x =-。 2'()6126(2)(2)f x x x x =-=+-,列表如下:

增函数 极大 减函数 极小 增函数

所以函数()f x 的单调增区间是(,2)-∞-和(2,)+∞,∵(1)10f -=,(2)82f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是(2)82f =-。

答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是(2)82f =-。

点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

导数强化训练

1. 选择题

1. 已知曲线2

4x y =的一条切线的斜率为1

2,则切点的横坐标为( )

A .1

B .2

C .3

D .4

2. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( )

A .43-=x y

B .23+-=x y

C .34+-=x y

D .54-=x y

3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( D )

A .1

B .2

C .3

D .4

4. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( )

A .)1(3)1()(2-+-=x x x f

B .)1(2)(-=x x f

C .2)1(2)(-=x x f

D .1)(-=x x f

5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )

(A )2 (B )3 (C )4 (D )5

6. 函数32()31f x x x =-+是减函数的区间为( )

(A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)

7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( ) 8. 函数231

()23f x x x =-在区间[0,6]上的最大值是( )

A .323

B .16

3 C .12 D .9 9. 函数x x y

33-=的极大值为m ,极小值为n ,则n m +为 ( )

A .0

B .1

C .2

D .4

10. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( )

A . 0>a

B .0

C .1=a

D .31

=a

11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π

的点中,坐标为整数

的点的个数是 ( ) x y o A x y

o

D x y o C x y o B

A .3

B .2

C .1

D .0

12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极

小值点( )

A .1个

B .2个

C .3个

D . 4个

2. 填空题

13. 曲线3x y =在点()1,1处的切线与x

轴、直线2=x 所围成的三角形的面积

为__________。

14. 已知曲线31433

y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________

15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n f x =0,则n 的最少值为 。

16. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.

3. 解答题

17. 已知函数()c bx ax x x f +++=23,当1-=x 时,取得极大值7;当3

=x 时,取得极小值.求这个极小值及c b a ,,的值.

18. 已知函数.93)(23a x x x x f +++-=

(1)求)(x f 的单调减区间;

(2)若)(x f 在区间[-2,2].上的最大值为20,求它在该区间上的最小值.

19. 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。

(1)用t 表示c b a ,,;

(2)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围。

20. 设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。

(1)求b 、c 的值。

(2)求()g x 的单调区间与极值。

21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

22. 已知函数3211()32

f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;

(1) 当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点

A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.

强化训练答案:

1.A

2.B

3.D

4.A

5.D

6.D

7.A

8.A

9.A 10.A 11.D 12.A

4. 填空题 13. 3

8 14. 044=+-x y 15. 7 16. 20 5. 解答题

17. 解:()b ax x x f ++=23'2。

据题意,-1,3是方程0232=++b ax x 的两个根,由韦达定理得

∴9,3-=-=b a

∴()c x x x x f +--=9323

∵()71=-f ,∴2=c

极小值()25239333323-=+?-?-=f

∴极小值为-25,9,3-=-=b a ,2=c 。

18. 解:(1).963)(2++-='x x x f 令0)(<'x f ,解得,31>-

所以函数)(x f 的单调递减区间为).,3(),1,(+∞--∞

(2)因为,218128)2(a a f +=+-+=- ,2218128)2(a a f +=+++-=

所以).2()2(->f f 因为在(-1,3)上0)(>'x f ,所以)(x f 在[-1,2]上单调递增,又由于)(x f 在[-2,-1]上单调递减,因此)2(f 和)1(-f 分别是)(x f 在区间[]2,2-上的最大值和最小值.于是有2022=+a ,解得.2-=a

故.293)(23-++-=x x x x f 因此,72931)1(-=--+=-f

即函数)(x f 在区间[]2,2-上的最小值为-7.

19. 解:(1)因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f , 即03=+at t .因为,0≠t 所以2t a -=. .,0,0)(2ab c c bt t g ==+=所以即

又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '='

而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以 将2t a -=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=

(2)))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.

当0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减.

由0<'y ,若t x t t <<->3,0则;若.3

,0t x t t -<<<则 由题意,函数)()(x g x f y -=在(-1,3)上单调递减,则

).3,()3,1(),3()3,1(t t t t -?--?-或所以.39.33

3≥-≤≥-≥t t t t 或即或 又当39<<-t 时,函数)()(x g x f y -=在(-1,3)上单调递减.

所以t 的取值范围为).,3[]9,(+∞?--∞

20. 解:(1)∵()32f x x bx cx =++,∴()232f x x bx c '=++。从而

322()()()(32)g x f x f x x bx cx x bx c '=-=++-++=32(3)(2)x b x c b x c +-+--是一个奇函数,所以(0)0g =得0c =,由奇函数定义得3b =;

(2)由(Ⅰ)知3()6g x x x =-,从而2()36g x x '=-,由此可知,

(,2)-∞-和(2,)+∞是函数()g x 是单调递增区间;

(2,2)-是函数()g x 是单调递减区间;

()g x 在2x =-时,取得极大值,极大值为42,()g x 在2x =时,取得极小值,极小值为42-。

21. 解:设长方体的宽为x (m ),则长为x 2 (m),高为

??? ?

?-=-=230(m)35.441218<<x x x h . 故长方体的体积为

从而).1(18)35.4(1818)(2x x x x x x V -=--='

令()0'=x V ,解得0=x (舍去)或1=x ,因此1=x .

当10<x V ;当2

31<

1.5 m.

答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为33m 。

22. 解:(1)因为函数3211()32

f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)

-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是

2044a b <-≤,20416a b <-≤,且当11x =-,

23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(2)解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是

(1)(1)(1)y f f x '-=-,即21(1)32

y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32

g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.

而()g x 321121(1)3232

x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.

若11a ≠--,则1x =和1x a =--都是()g x 的极值点.

所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3

f x x x x =--. 解法二:同解法一得21()()[(1)]32

g x f x a b x a =-++-- 2133(1)[(1)(2)]322

a x x x a =-++-+.

因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ????=++-+ ? ??

???,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102

a h =?++=, 所以2a =-,又由248a

b -=,得1b =-,故321()3

f x x x x =--.

北大附中高考数学专题复习导数与微分经点答疑(四)

学科:数学 教学内容:导数与微分经点答疑(四) 11.什么是高阶导数? 我们知道函数2x y =的导数是x 2y ='.而导数x 2y ='仍是可导的,它的导数是()2y =''.这种导数的导数()''y 就称为对y 对x 的二阶导数.一般地我们有: 函数y =f (x )的导数()x f y '='仍是x 的函数,若函数()x f y '='的导数存在,则称 ()x f y '='的导数为y =f (x )的二阶导数.记作即或22dx y d y '' ().dx dy dx d dx y d y y 22??? ??=' '=''或 相应地,把y =f (x )的导数()x f '叫作函数y =f (x )的一阶导数. 同样,若二阶导数()x f y ''=''的导数存在,则称其导数为y =f (x )的三阶导数.记作 ()即或,dx y d x y 33''' ()()()()().dx y d dx d dx y d y y ,x f x f ,y y 22333???? ??=''''''=''''''='''或又记作 …… 一般地,若n -1阶导数()()()x f y 1n 1n --=的导数存在,则称其导数为y =f (x )的n 阶 导数.记作()()即或n n n n dx y d x f ,y ()()()()()()()().dx y d dx d dx y d x f x f ,y y 1n 1n n n n 1n 1n n ??? ? ??==''=----或 这里的n 称为导数()x f n 的阶数.二阶及二阶以上的导数统称为高阶导数. 若y =f (x )具有n 阶导数,也常说成函数f (x )为n 阶可导. 由以上高阶导数的定义可以看出,要求n 阶导数,需要求出n -1阶导数,要求n -1

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

2020高考数学复习-导数部分

-2 2 x y O 1 -1 -1 1 2020高考虽然延迟,但是练习一定要跟上,加油,孩子们! 1、(广东卷)函数32()31f x x x =-+是减函数的区间为(D) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2) 2.(全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(B ) (A )2 (B )3 (C )4 (D )5 3. (湖北卷)在函数x x y 83-=的图象上,其切线的倾斜角小于4 π的 点中,坐标为整数的点的个数是 ( D ) A .3 B .2 C .1 D .0 4.(江西)已知函数()y xf x '=的图象如右图所示(中'()f x 是函数()f x 的导函数)象中()y f x =的图象大致是(C ) 5.(浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A) 18 (B)41 (C) 2 1 (D)1 6. (重庆卷)曲线y x 3在点(1,1)处的切线与x 轴、直线x 2所围成的三角形的面积为______8/3____。 7.(江苏卷)(14)曲线31y x x =++在点(1,3)处的切线方程是41y x =- O -2 2 x y 1 -1 -2 1 2 O x y -2 -2 2 1 -1 1 2 O -2 4 x y 1 -1 -2 1 2 O -2 2 x y -1 2 4 A

8. ( 全国卷III)曲线32y x x =-在点(1,1)处的切线方程为x+y-2=0 9. (北京卷)过原点作曲线y =e x 的切线,则切点的坐标为 (1, e ); ,切线的斜率为e . 10.(全国卷Ⅱ)设a 为实数,函数.)(23a x x x x f +--= (Ⅰ)求)(x f 的极值. (Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点. 解:(I)'()f x =32x -2x -1 若'()f x =0,则x ==-13 ,x =1 当x 变化时,'()f x ,()f x 变化情况如下表: ∴()f x 的极大值是()3 27 f a -= +,极小值是(1)1f a =- (II)函数322()(1)(1)1f x x x x a x x a =--+=-++- 由此可知,取足够大的正数时,有()f x >0,取足够小的负数时有()f x <0,所以曲线y =()f x 与x 轴至少有一个交点 结合()f x 的单调性可知: 当()f x 的极大值 527a +<0,即5 (,)27 a ∈-∞-时,它的极小值也小于0,因此曲线y =()f x 与x 轴仅有一个交点,它在(1,+∞)上。 当()f x 的极小值a -1>0即a ∈(1,+∞)时,它的极大值也大于0,因此曲线y =()f x 与x 轴仅有一个交点,它在(-∞,-13 )上。 ∴当5 (,)27 a ∈-∞- ∪(1, +∞)时,曲线y =()f x 与x 轴仅有一个交点。 11. (全国卷Ⅱ)已知a≥ 0 ,函数f(x) = ( 2x -2ax )x e

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考理科数学数学导数专题复习考试

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义: (1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

人教版高考文科数学专题复习导数训练题及参考答案

高考文科数学专题复习导数训练题(文) (附参考答案) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 二、经典例题剖析 考点一:求导公式 例1)(/ x f 是123 1)(3 ++= x x x f 的导函数,则=-)1(/f . 考点二:导数的几何意义 例2. 已知函数)(x f y =的图象在点))1(,1(f M 处的切线方程是22 1 +=x y ,则=+)1()1(/f f . 考点三:导数的几何意义的应用 例3.已知曲线,23:2 3 x x x y C +-=直线,:kx y l =且直线l 与曲线C 相切于点()(),0,000≠x y x 求 直线l 的方程及切点坐标. 考点四:函数的单调性 例4.设函数c bx ax x x f 8332)(2 3 +++=在1=x 及2=x 时取得极值. (1)求b a ,的值及函数)(x f 的单调区间; (2)若对于任意的[],3,0∈x 都有)(x f <2 c 成立,求c 的取值范围. 考点五:函数的最值 例5.已知a 为实数,).)(4()(2 a x x x f --=(1)求导数)(/ x f ;(2)若,0)1(/ =-f 求)(x f 在区间[]2,2-上的最 值. 考点六:导数的综合性问题 例6. 设函数)0()(3 ≠++=a c bx ax x f 为奇函数,其图象在点())1(,1f 处的切线与直线 076=--y x 垂直,导函数.12|)(min /-=x f (1)求c b a ,,的值; (2)求函数)(x f 的单调递增区间,并求函数)(x f 在[]3,1-上的最大值和最小值. 例7.已知cx bx ax x f ++=2 3 )(在区间[]1,0上是增函数,在区间()()+∞∞-,1,0,上是减函数,又

导数文科高考数学真题

2012-2017导数专题 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线在点处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线在点处的切线平行于轴,则 【答案】-1 8.(2013广东文)若曲线在点处的切线平行于轴,则. 【答案】 1 2 9.(2014广东文)曲线53 x y e =-+在点(0,2) -处的切线方程为. 【答案】5x+y+2=0 10.(2013江西文)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=。 33 y x x =-+() 1,3 ln y kx x =+(1,)k x k= 2ln y ax x =-(1,)a x a=

相关文档
最新文档