测量系统的静态特性指标主要有

测量系统的静态特性指标主要有
测量系统的静态特性指标主要有

一、填空:

1、测量系统的静态特性指标主要有等。

2、光电传感器的理论基础是光电效应。通常把光线照射到物体表面后产生的光电效应分为三类。第一类是利用在光线作用下效应,这类元件有;第二类是利用在光线作用下效应,这类元件有;

第三类是利用在光线作用下效应,这类元件有。

3、传感器是__________________________________,传感器通常由直接响应于被测量的______ 和产生可用信号输出的______ 以及相应的_____ 组成。

4、相对误差是指测量的___________与被测量量真值的比值,通常用百分数表示。

5、半导体应变片在应力作用下电阻率发生变化,这种现象称为___________效应。

6、在光栅传感器中,__________元件接收莫尔条纹信号,并将其转换为电信号。

7、根据电磁场理论,涡流的大小与导体的电阻率、_________、导体厚度,以及线圈与导体之间的距离,线圈的激磁频率等参数有关。

8、在式L=NΦ/I中,L表示__________。

9、已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为r s= 。

10、压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己____________方向,经过的压电陶瓷才具有压电效应。

光纤的核心是由折射率-----------和折射率构成的双层同心圆柱结构。12.光电效应分为和两大类。

13、测量过程中存在着测量误差。绝对误差是指其表达式为;相对误差是指其表达式为;引用误差是指其表达式为

14.光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。如果两个光栅距相等,即W=0.02mm,其夹角θ=0.1°,则莫尔条纹的宽度B= 莫尔条纹的放大倍数K= 。

15、Pt100代表含义_________________,Cu50代表含义_____________________。

16、计量光栅传感器中,当指示光栅不动,主光栅左右移动时,查看_________的移动方向,即可确定主光栅的运动方向。

17、差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为________电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用______________电路。

18、某些电介质当沿一定方向对其施力而变形时内部产生极化现象,同时在它的表面产生符号相反的电荷,当外力去掉后又恢复不带电的状态,这种现象称为;在介质极化方向施加电场时电介质会产生形变,这种效应又称

19、把一导体(或半导体)两端通以控制电流I,在垂直方向施加磁场B,在另外两侧会产生一个与控制电流和磁场成比例的电动势,这种现象称,这个电动势称为。

20、块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内部

会产生一圈圈闭合的电流,利用该原理制作的传感器称;这种传感器只能测量。

21、不同的金属两端分别连在一起构成闭合回路,如果两端温度不同,电路中会产生电动势,这种现象称;若两金属类型相同两端温度不同,加热一端时电路中电动势。

22、金属丝在外力作用下发生机械形变时它的电阻值将发生变化,这种现象称;直线的电阻丝绕成敏感栅后长度相同但应变不同,圆弧部分使灵敏度K下降了,这种现象称为。

23、传感器的输入输出特性指标可分为______和动态指标两大类,线性度和灵敏度是传感器的__ ________指标,而频率响应特性是传感器的指标。

二、选择

1、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(①增大,②减小,③不变)。

2、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。

3. 变气隙式自感法感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)

4. 仪表的精度等级是用仪表的(①相对误差②绝对误差③引用误差)来表示的。

5. 电容传感器的输入被测量与输出被测量间的关系,除(①变面积型②变极距型③变介电常数型)外是线性的。

6、属于传感器静态特性指标的是[]

A.固有频率

B.临界频率

C.阻尼比

D.重复性

7、差动变压器属于[]

A.物性式传感器

B.结构式传感器

C.电阻式传感器

D.电感式传感器

8、以下那一项不属于电路参量式传感器的基本形式的是[]

A.电阻式

B.电感式

C.电容式

D.电压式

9、某自感式传感器线圈的匝数为N,磁路的磁阻为R m,则其自感为[]

A.N/R m

B.N2/R m

C.R m/N

D.N2/R2m

10、莫尔条纹的移动对被测位移量所起的作用是[]

A.调制

B.放大

C.细分

D.降噪

11、涡流式压力传感器利用涡流效应将压力的变化变换成线圈的[]

A.电阻变化

B.电容变化

C.涡流变化

D.阻抗变化

12、要使直流电桥输出电压为零的条件是[]

A.R1R3>R2R4

B. R1R3=R2R4

C.R1R3

D. R1R3>=R2R4

13、电阻式传感器是将被测量的变化转换成[]变化的传感器。

A.电子

B.电压

C.电感

D.电阻

14、电容式传感器是将被测量的变化转换成[]变化一种传感器

A.电容量

B.电感量

C.介电常数

D.距离

15、产生应变片温度误差的主要原因有()

A.电阻丝有温度系数B.试件与电阻丝的线膨胀系数相同

C.电阻丝承受应力方向不同

16、目前,我国生产的铂热电阻,其初始电阻值有()。

A.30ΩB.150ΩC.100ΩD.40Ω

17.可以完成温度测量的是( )

A. 热电偶

B. 光电二极管

C. 光电耦合器

D. 红外传感器

18.当光敏元件加一定电压时,光电流I 与光敏元件上光照度E 之间的关系,称为( )。

A.温度特

B.光照特性

C.光谱特性

D.伏安特性

19.属于传感器动态特性指标的是( )

A .重复性 .线性度 C .灵敏度 D .固有频率

20.压电式传感器可等效为( )

A 、电荷源

B 、压电源

C 、电流源

D 、电容器

21.目前,我国使用的铂热电阻的测量范围是( )。

A .-200~850?C

B .-50~850?

C C .-200~150?C

D .-200~50?C

22.光电管的光电特性是指光电管上阳极电压和入射光频谱不变条件下( )

A .入射光的频谱与光电流的关系

B .入射光的光通量与光电流的关系

C .入射光的频谱与光通量的关系

D .入射光的光通量与光强的关系

23.热电偶中产生热电势的条件是( )

A .两热电极材料相同

B .两热电极材料不同

C .两热电极的两端温度不同

D .两热电极的两端温度相同

三、简答题:

1、简述热电偶的工作原理。

2、以石英晶体为例简术压电效应产生的原理。

3、简述电阻应变片式传感器的工作原理

4.简述压电式传感器分别与电压放大器和电荷放大器相连时各自的特点。

5、简述电容式传感器的优缺点。

6、简要说明涡流效应。

7、什么是霍尔效应?

8、什么是压电效应?

四、计算题:

1、在对量程为10MPa 的压力传感器进行标定时,传感器输出电压值与压力值之间的关系如下表所示,简述最小二乘法准则的几何意义,并讨论下列电压-压力

(5)y=5.00x+0.07

2.检定一个1.5级100mA 的电流表,发现在50mA 处的误差最大,其值为1.4mA,其它刻度处的误差均小于1.4mA,问这块电流表是否合格?(4分)

3、用镍铬-镍硅热电偶测量加热炉温度,已知冷端温度0t =030C ,测得热电动势

0(,)AB e t t 为33.29mV ,求加热炉温度。

( 已知:(30,0)AB e =1.203mV , (829.5,0)AB e =34.493mV )

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

测试系统静态特性校准实验报告

实验一测试系统静态特性校准 一.实验目的 1.1 掌握压力传感器的原理 1.2掌握压力测量系统的组成 1.3掌握压力传感器静态校准实验和静态校准数据处理的一般方法 二.实验设备 本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,5位半数字电压表,直流稳压电源和采样电阻组成。图1-1实验系统方框图如下: 实验设备型号及精度 三.实验原理 在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6%Mpa信号调理器为压力传感器提供恒电源,将压力传感器输出的电压信号放大并转换为电流信号。信号处理器输出为二线制,4~20mA信号电源在250 采样电阻上转换为1~5V电压信号,由5位半数字电压表读出。

四.实验操作 4.1操作步骤 (1)用调整螺钉和水平仪将活塞压力计调至水平。 (2)核对砝码重量及个数,注意轻拿轻放。 (3)将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭。严禁未开油杯针阀时,用手轮抽油,以防破坏传感器。 (4)加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。反复1-2次,以消除压力传感器内部的迟滞。 (5)卸压后,重复(3)并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。 (6)按0.05Mpa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。 (7)加压至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。此后逐级卸载,并在电压表读出相应的电压值。 (8)卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。 (9)稍停1~2分钟,开始第二次循环,从(5)开始操作,共进行5次循环。 4.2 注意事项 保持砝码干燥,轻拿轻放,防止摔碰。 轻旋手轮和针阀,防止用力过猛。 正、反行程中,要求保证压力的单调性,如遇压力不足或压力超值,应重新进行循环。 当活塞压力计测量系统的活塞升起是,请注意杆的标记线与两侧固定支架上的标记对齐,同时,用手轻轻旋动托盘,以保持约30转/分的旋转速度,用此消除静摩擦,此后方可进行读数。 严禁未开油杯针阀时,用手轮抽油,以防破坏传感器;或在电压表输出值不变的情况下,严禁连续转动手轮数圈。 五.数据处理 1、实验数据

【过程控制】PID参数对系统动静态特性的影响(可编辑)

【过程控制】PID参数对系统动静态特性的影响(可编 辑) 主要内容 PID参数对系统动静态特性的影响控制器参数整定: 现场试凑法临界比例度法衰减曲线法采样周期选择 PID参数对系统动静态特性的影响比例度过小,即比例放大系数过大时,比例控制作用很强,系统有可能产生振荡; 积分时间过小时,积分控制作用很强,易引起振荡; 微分时间过大时,微分控制作用过强,易产生振荡。 PID参数对系统动静态特性的影响 比例(P)控制 PID参数对系统动静态特性的影响 比例积分(PI)控制 PID参数对系统动静态特性的影响 比例微分(PD)控制 PID参数对系统动静态特性的影响 比例积分微分(PID)控制控制器参数整定指决定调节器的比例度δ、积分时 间TI和微分时间TD和采样周期Ts的具体数值。整定的实质是通过改变调节器的参数,使其特性和过程特性相匹配,以改善系统的动态和静态指标,取得最佳的控制效果。整定方法整定调节器参数的方法很多,归纳起来可分为两大类,即理论计算整定法和工程整定法: 理论计算整定法有对数频率特性法、根轨迹法等; 工程整定法有经验法、衰减曲线法、监界比例度法和响应曲线法等。工程整定法特点不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定方法简单; 计算简便; 易于掌握。现场凑试法按照先比例(P)、再积分(I)、最后微分(D)的顺序。置调节器积分时间TI=?,微分时间TD=0,在比例度δ按经验设置的初值条件下,将系统投入运行,整定比例度δ。求得满意的4:1过渡过程曲线。引入积分作用(此时应将上述比例度δ加大1.2倍)。将TI由大到小进行整定。若需引入微分作用时,则将TD按经验值或按TD=

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

测试系统的特性 2

测试系统的特性 填空题 1.用一阶系统作测量装置,为了获得最佳的工作性能,其时间常数τ原则上(越小越好)。 2.(时间常数)是一阶系统的动态特性参数。 3.线性度表示标定曲线(偏离其拟合曲线)的程度。 4.若线性系统的输入为某一频率的简谐信号,则其稳态响应必为(同一频率)的简谐信号。 5.(漂移)是在输入不变的条件下,测量系统的输出随时间变化的现象。 6.关于标定曲线不重合的测量系统静态特性有(滞后)和(重复性)。 7.测试装置在稳态下,单位输入变化所引起的输出变化称为该装置的(灵敏度);能够引起输出量可测量变化的最小输入量称为该装置的(分辨力)。 8.相频特性是指(输出较输入滞后角随输入频率)变化的特性。 9.二阶测试装置,其阻尼比ζ为(0.7)左右时,可以获得较好的综合特性。 10.测量系统输出信号的傅里叶变换与输入信号的傅里叶变换之比称为(频率响应函数)。 11.测量系统对单位脉冲输入的响应称为(脉冲响应函数)。 12.测试装置的频率响应函数H(j ω)是装置动态特性的(频)域描述。 简答题 1.说明线性系统的频率保持性在测量中的作用。 在实际测试中,测得的信号常常会受到其他信号或噪声的干扰,依据频率保持性可以认定,测得信号中只有与输入信号相同的频率成分才是真正由输入引起的输出。 在故障诊断中,对于测试信号的主要频率成分,根据频率保持性可知,该频率成分是由相同频率的振动源引起的,找到产生该频率成分的原因,就可以诊断出故障的原因。 2.测试系统不失真测试的条件是什么? 在时域,测试系统的输出y(t)与输入x(t)应满足)()(00t t x A t y -=。在频域,幅频特性曲线是一条平行于频率ω轴的直线,即幅频特性为常数,0)(A A =ω,相频特性曲线是线性曲线ωω?0t -=)(,式中,00,t A 均为常数。 3.在磁电指示机构中,为什么取0.7为最佳阻尼比? 磁电指示机构是二阶系统。当阻尼比取0.7时,从幅频特性的角度,在一定误差范围内,工作频率范围比较宽。从相频特性的角度,特性曲线近似于线性,这样可以在较宽的频率实现不失真测试。 4.对一个测量装置,已知正弦输入信号的频率,如何确定测量结果的幅值和相位的动态误差? 首先确定装置的频率响应函数,得出幅频特性A(ω)和相频特性)(ω?。然后,把输入信号的频率分别代入)0(/)(A A ω和)(ω?,分别得到输出与输入的动态幅

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

压力传感器静态特性与动态特性的对比有什么不同

传感器有很多特性,所谓特性也就是传感器所独有的性质,压力传感器作为传感器中最普遍的一种传感器也有很多特性,压力传感器的特性一般可分为静态特性和动态特性。 压力传感器的静态特性是指对静态的输入信号,压力传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即压力传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征压力传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 所谓动态特性,是指压力传感器在输入变化时,它的输出的特性。在实际工作中,压力传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为压力传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以压力传感器的动态特性也常用阶跃响应和频率响应来表示。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/e97754313.html,/

IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究 IGBT动态参数 IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。RGint:模块内部栅极电阻: 为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。 RGext:外部栅极电阻: 外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。 上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。 用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。

已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。 实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。 如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。 最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。Cge:外部栅极电容: 高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。 IGBT寄生电容参数: IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。

直流锅炉的静态和动态特性以及运行参数的调节特点

1.直流锅炉的静态和动态特性以及运行参数的调节特点 1.1.概述 锅炉正常运行是指单元机组启动后的锅炉运行过程。锅炉是单元机组中的一个重要环节,锅炉与汽轮发电机之间存在着相互联系、相互影响、相互依赖的运行关系。锅炉正常运行内容主要是监视和调整各种状态参数,满足汽轮发电机对蒸汽流量、蒸汽参数的要求,并保持锅炉长期连续安全经济运行。 锅炉各种状态参数之间的运行关系、变化规律称为锅炉运行特性,它有静态特性和动态特性两种。锅炉在各个工况的稳定状态下,各种状态参数都有确定的数值,称为静态特性。例如,不同的燃料量就有相应的蒸汽流量、相应的受热面吸热量、相应的汽温与汽压等,这些都是锅炉的静态特性。 锅炉从一个工况变到另一个工况的过程中,各种状态参数随着时间而变化,最终到达一个新的稳定状态。各种状态参数在变工况中随着时间变化的方向、历程和速度等称为锅炉的动态特性。 锅炉在正常运行中,各种状态参数的变化是绝对的,稳定不变是相对的。因为,锅炉经常受到各种内外干扰,往往在一个动态过程尚未结束时,又来了另一个动态过程。锅炉的静态特性与动态特性表明各种状态参数随时偏离设计值。锅炉正常运行的任务就是要使各种状态参数不论在静态或动态过程都应在允许的安全、经济范围内波动,这必须要通过调节手段才能实现。锅炉正常运行调节可分为自动调节和人工调节两种,高参数大型锅炉广泛采用高度的自动调节,以确保静态与动态过程各种状态参数的偏离在允许范围内。 锅炉正常运行还要注意炉内燃烧稳定,防止受热面结渣、积灰,高低温腐蚀、磨损,防止各级受热面管金属超温。正常运行还要监视给水、锅水与蒸汽品质,并进行正确的锅水处理。 1.2.过热汽温静态特性 直流锅炉各级受热面串联连接,水的加热与汽化、蒸汽的过热三个阶段的分界点在受热面中的位置不固定而随工况变化。由此而形成了直流锅炉不同于汽包锅炉的汽温静态特性。对有再热器的直流锅炉,建立热量平衡式稳定工况下,以给水为基准的过热蒸汽总焓升可按下式计算 式中——锅炉输入热量,kJ/kg; ——锅炉效率%; 、——给水焓、过热器出口焓,kJ/kg; ——再热器相对吸热量,; ——再热器吸热量,kJ/kg。 G——给水流量,等于蒸汽流量,kg/s;

传感器的参数静态特性技术指标

1.线性度(Linearity) 传感器的输出输入关系或多或少地存在非线性。在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示: 式中:y—输出量;x—输入量;a0—零点输出; a1—理论灵敏度;a2、a3、… 、a n—非线性项系数。 各项系数不同,决定了特性曲线的具体形式。 静态特性曲线可实际测试获得。在获得特性曲线之后,可以说问题已经得到解决。但是为了标定和数据处理的方便,希望得到线性关系。这时可采用各种方法,其中也包括硬件或软件补偿,进行线性化处理。 一般来说,这些办法都比较复杂。所以在非线性误差不太大的情况下,总是采用直线拟合的办法来线性化。 在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度。 通常用相对误差 L表示: ΔLmax一最大非线性误差;y FS—满量程输出。 非线性偏差的大小是以一定的拟合直线为基准直线而得出来的。拟合直线不同,非线性误差也不同。所以,选择拟合直线的主要出发点,应是获得最小的非线性误差。另外,还应考虑使用是否方便,计算是否简便。 ①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合;⑥最小包容拟合

2.迟滞(Hysteresis) 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。迟滞特性如图所示,它一般是由实验方法测得。迟滞误差一般以满量程输出的百分数表示,即 式中△ Hmax —正反行程间输出的最大差值。 迟滞误差的另一名称叫回程误差。回程误差常用绝对误差表示。检测回程误差时,可选择几个测试点。对应于每一输入信号,传感器正行程及反行程中输出信号差值的最大者即为回程误差。 3.重复性(Repeatability) 重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。 重复性误差可用正、反行程的最大偏差表示,即 △Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。 重复性误差也常用绝对误差表示。检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列y i1,y i2,y i3,…,y in ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi ,在几个ΔRi 中取出最大值ΔRmax 作为重复性误差。 ()% 100/max ??±=FS R R y δ()%100/)3~2(?±=FS R y σδ

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

晶体管静态特性曲线分析

晶体管静态特性曲线分析 一、仿真目的 以三极管2N2222为例,运用Multisim对三极管的输入输出特性进行分析。 1)参照图一构建用于分析晶体管特性特性曲线的仿真电路。 2)参照图二,以Uce为参变量,通过仿真分析画出输入特性曲线Ube—I b.。3)参照图三,以ib为参变量,通过仿真分析画出输出特性曲线Uce—Ic 二、仿真要求 1)设计出用于分析NPN型晶体管输入输出特性的电路; 2)按要求选择合适的软件工具画出输入输出特性曲线,并对仿真进行总结分析,即:运用Multisim完成性能仿真,再选用自己熟悉的画图工具完成曲线绘制。 探索用Multisim仿真软件中的参数扫描功能,直接获取晶体三极管的特性曲线的方法。若能成功,,这应该是最直接最准确的好方法。 三、仿真电路图 四、仿真过程 静态工作点的设定

由图可知,晶体管处于放大状态,基本符合实验要求。 输入特性曲线: 将c极滑动变阻器调为0时,Uce近似与导线并联,约等于0,此时改变基极滑动变阻器可得到不同的Ube与Ib的值。 如图,令Uce=0V,1V,10V(0V操作简单,忘保存图了) 得到的Ube与Ib的值以及关系曲线分别为:

分析: 输入特性曲线描述了在关押将Uce一定的情况下,基极电流Ib与发射结压降Ube之间的函数关系。Uce=0V时,发射极与集电极短路,发射结与集电结均正偏,实际上时两个二极管并联的正向特性曲线。Uce>1时,Ucb=Uce-Ube>0,集电结进入反偏状态,开始Uce>1V 收集载流子,且基区复合减少,特性曲线将向右稍微移动一点,Ic/Ib增大,但Uce再增加时,曲线右移很不明显。 输出特性曲线: 将基极限流电阻调至很大(例如1M欧)时,基极电流Ib很小,近似约等于0。 令Ib分别=0uA,20uA,40uA,10mA:

传感器动态特性与静态特性的区别

传感器的动态特性 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 db(decibel,分贝)是一个纯计数单位,本意是表示两个量的比值大小,没有单位 对于功率,db=10*lg(a/b)。对于电压或电流,db=20*lg(a/b)。 -3=10*lg(x) x=0.5(8-20hz) 刹那是指一个心念起动的极短时间即为一“念”,20念为一瞬,20瞬为一弹指,20弹指为一罗预,20罗预为一须臾,30须臾为一昼夜,如此算来,一刹那就是0.018秒。 传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/e97754313.html,/

测试实验二测试系统动态特性校准

实验二测试系统动态特性校准 1.1 实验目的 (1)掌握振动加速度测试系统的组成 (2)掌握振动压电、压阻加速度传感器原理和测量方法 (3)掌握振动传感器比较法动态特性校准的实验方法 (4)掌握数据处理的一般方法 1.2 实验系统基本组成 本实验系统由振动控制系统和远程数据采集、处理系统两部分组成。振动控制系统中的振动台产生动态校准、动态测试所需的振动信号。振动控制系统由振动控制仪、功率放大器、振动台和反馈传感器构成,目的是使振动台按照预先设定的参考谱进行振动。标准传感器和被校传感器感受相同的振动,经过相应的变送器或放大器的输出电压信号送入数据采集系统,经服务器发送到学生实验客户端进行后续的动态校准与分析。如图1所示 主要实验设备及性能 压阻放大器

系统灵敏度S=KEs=K×0.328mv/g=2500×K1/500g=…mv/g SLM振动加速度变送器输入输出关系式0.25v/g 图1 图2 1.3 实验原理 实验以压阻式加速度传感器为校准对象,在振动台的家具台商采用背靠背的方式安装标准传感器与被校准传感器,这样保证了他们感受的是相同的振动信号,通过采集两个传感器的输出并将其送到学生实验客户端,通过比较不同的频率下的两个信号的幅值,用标准信号的灵敏度来计算出被校传感器的灵敏度,通过与理论制作比较来得到校准的结果。 1.4 实验操作 1.操作步骤 (1)固定好传感器,连接好相应的仪器与设备。 (2)打开振动台工控机与功率放大器的电源。功率放大器的启动方法如下:1.按下去电源A按钮,这时电源B上的OFF按钮上的灯亮。2.约等数秒后,按下电源B的ON开关,这时只有ON上的灯亮。3.预热约3-5分钟。 (3)打开电荷放大器和变动期的开关,点击工控机桌面的vibration test.exe 图标,选择正弦扫频振动实验。 (4)旋转增益旋钮约至60%,运行自检。 (5)待系统提示自检成功,点击运行开始运行实验,按照本实验要求进行采集数据。 (6)采集完毕后,先将功率放大器的增益旋钮旋至复位,关闭各个软件。功率放大器的关闭方式如下:1.将输出方式站换到低阻 2.按下电源B的OFF按钮,此时ON上指示灯灭,OFF指示灯亮。 3.约等十多秒后按下A按钮,此时只有风扇转动,可能会有短暂的声音,这是正常的。 (7)关断外部供电,实验完毕。 2 注意事项 (1)当由于电源干扰等原因引起的失控或计算机死机发生时,应按如下方式进行:

传感器的静态特性

传感器静态特性的一般知识 传感器作为感受被测量信息的器件,总是希望它能按照一定的规律输出有用信号,因此需要研究其输出――输入的关系及特性,以便用理论指导其设计、制造、校准与使用。理论和技术上表征输出――输入之间的关系通常是以建立数学模型来体现,这也是研究科学问题的基本出发点。由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间而变化的量),理论上应该用带随机变量的非线性微分方程作为数学模型,但这将在数学上造成困难。由于输入信号的状态不同,传感器所表现出来的输出特性也不同,所以实际上,传感器的静、动态特性可以分开来研究。因此,对应于不同性质的输入信号,传感器的数学模型常有动态与静态之分。由于不同性质的传感器有不同的内在参数关系(即有不同的数学模型),它们的静、动态特性也表现出不同的特点。在理论上,为了研究各种传感器的共性,本节根据数学理论提出传感器的静、动态两个数学模型的一般式,然后,根据各种传感器的不同特性再作以具体条件的简化后给予分别讨论。应该指出的是,一个高性能的传感器必须具备有良好的静态和动态特性,这样才能完成无失真的转换。 1. 传感器静态特性的方程表示方法 静态数学模型是指在静态信号作用下(即输入量对时间t 的各阶导数等于零)得到的数学模型。传感器的静态特性是指传感器在静态工作条件下的输入输出特性。所谓静态工作条件是指传感器的输入量恒定或缓慢变化而输出量也达到相应的稳定值的工作状态,这时,输出量为输入量的确定函数。若在不考虑滞后、蠕变的条件下,或者传感器虽然有迟滞及蠕变等但仅考虑其理想的平均特性时,传感器的静态模型的一般式在数学理论上可用n 次方代数方程式来表示,即 2n 012n y a a x a x a x =+++?+ (1-2) 式中 x ――为传感器的输入量,即被测量; y ――为传感器的输出量,即测量值; 0a ――为零位输出; 1a ――为传感器线性灵敏度; 2a ,3a ,…,n a ――为非线性项的待定常数。 0a ,1a ,2a ,3a ,…,n a ――决定了特性曲线的形状和位置,一般通过传感器的校 准试验数据经曲线拟合求出,它们可正可负。 在研究其特性时,可先不考虑零位输出,根据传感器的内在结构参数不同,它们各自可

03 活塞压力计静态校准实验指导书(2015)

测试系统静态特性校准实验?
1、 实验目的 1.1 掌握压力传感器的原理 1.2 掌握压力测量系统的组成 1.3 掌握压力传感器静态校准实验和静态校准数据处理的一般方法 2、 实验设备 本实验系统由活塞式压力计, 硅压阻式压力传感器, 信号调理电路, 4 位半数字电压表, 直流稳压电源盒采样电阻组成。图 1 活塞压力计照片,图 2 为活塞压力计的结构说明,图 3 为实验系统方框图,图 4 为实验电路接线图。
图 1 活塞压力计实物照片
1

1、砝码 2、指标板 3、底座 4、调 调整螺钉 5、连接管部件 件 6、7、8 阀 9、油杯 10、 水平 平仪 11、手摇 摇泵 12、手 手轮 13、测量 量系统 图 2 活塞压力计 计结构?
2

图 3 实验系统框图?
+24V
电源开关
R1 1K
传感器供电+ 传感器供电-
D? LED0
万用表+
R2 250
万用表-
GND
图 4 实验电路接线图 实验设别型号及精度 设备名称 活塞式压力计 压力传感器 信号调理电路 精密电阻 数字电压表 直流稳压电源 设备型号 YS‐6 MPM180 RJ250 1/4W UT61E, VC9806+ DH1718G‐4 精度 0.05% 0.2% 0.2% 0.01%,?5ppm 0.02% 量程 0~0.6MPa 0~0.7MPa 0~157.156mV +24V 数量 1 1 1 1 1 1?
?
3、 实验原理 在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力 0~0.6MPa。信号调 理器为压力传感器提供恒流电源,并将压力传感器输出的电压信号放大并转换为电流信号。 信号调理器输出为二线制,4‐20mA 信号在 250 欧采样电阻上转换为 1‐5V 电压信号,由 4 位 半数字电压表读出。
3

第3章习题 测试系统的基本特性

第3章习题 测试系统的基本特性 一、选择题 1.测试装置传递函数H (s )的分母与( )有关。 A.输入量x (t ) B.输入点的位置 C.装置的结构 2.非线形度是表示定度曲线( )的程度。 A.接近真值 B.偏离其拟合直线 C.正反行程的不重合 3.测试装置的频响函数H (j ω)是装置动态特性在( )中的描述。 A .幅值域 B.时域 C.频率域 D.复数域 4.用常系数微分方程描述的系统称为( )系统。 A.相似 B.物理 C.力学 D.线形 5.下列微分方程中( )是线形系统的数学模型。 A.225d y dy dx t y x dt dt dt ++=+ B. 22d y dx y dt dt += C.22105d y dy y x dt dt -=+ 6.线形系统的叠加原理表明( )。 A.加于线形系统的各个输入量所产生的响应过程互不影响 B.系统的输出响应频率等于输入激励的频率 C.一定倍数的原信号作用于系统所产生的响应,等于原信号的响应乘以该倍 数 7.测试装置能检测输入信号的最小变化能力,称为( )。 A.精度 B.灵敏度 C.精密度 D.分辨率 8.一般来说,测试系统的灵敏度越高,其测量范围( )。 A.越宽 B. 越窄 C.不变 9.测试过程中,量值随时间而变化的量称为( )。 A.准静态量 B.随机变量 C.动态量 10.线形装置的灵敏度是( )。 A.随机变量 B.常数 C.时间的线形函数 11.若测试系统由两个环节串联而成,且环节的传递函数分别为12(),()H s H s ,则该系统总的传递函数为( )。若两个环节并联时,则总的传递函数为( )。

实验一 静态压力校准实验教材

实验一静态压力校准实验 一.实验目的 学习压力仪表静态校准方法 二.实验内容 使用活塞压力计校准弹簧管压力计 三.实验设备 1、YU-60活塞压力计 2、标准表 3、弹簧压力计 四.实验原理 一.压力仪表的静态校准方法 压力检测仪表的静态校准在静态标准条件下(温度20±5℃,湿度≤80%,大气压力为760±80mmHg,且无振动冲击的环境)进行,采用一定标准等级的校准装置,对仪表重复进行不少于三次的全量程逐级加载和卸载测试,并将仪表输出量与输入的标准量做比较,获得各次校准数据或曲线。一般在被校表的测量范围内,均匀的选择至少5个以上的校验点,其中包括量程起始点和终点。 静态校准方法有标准压力法与标准表法两种。标准压力法是将被校表的示值与标准压力值比较,主要用于校验0.25级以上的精密压力表,亦可用于校验各种工业用压力表。标准压力法校准进度高,但比较费力、费时。标准表法则是在相同压力条件下将被校表与标准表的示值进行比较,标准表的允许绝对误差应小于被校表允许绝对误差的1/3~1/5,这样可忽略标准表的误差,将其示值作为真实压力。标准表校验法比较快捷方便,所以实验校验中应用较多。

二.校准数据处理方法即压力仪表静态特性的计算 1.测量范围 每个用于测量的检测仪表都有其确定的测量范围,它是检测仪表按规定的精度对被测变量进行测量的允许的范围。测量范围的最小值和最大值分别为测量上限和测量上限,简称下限和上限。量程可以用来表示其测量范围的大小,用其测量上限值与下限值的代数差来表示,即 量程=|测量上限值-测量下限值| 2.精度等级 工业检测仪表系统常以最大引用误差最为判断精度等级的尺度。 3.灵敏度 灵敏度是指测量系统在静态测量时,输出量的增量与输入量的增量之比,即 对线性测量系统来说,灵敏度为 tan y x m y S K x m θ=== 亦即线性测量系统的灵敏度是常数,可由静态特性曲线(直线)的斜率来求得,如图1-1(a )所示。式中,m y 、m x 为y 轴和x 轴的比 例尺,θ为相应点切线与x 轴间的夹角。非线性测量系统的灵敏度是变化的,如图1-1(b )所示。 图 1-1

第2章测试系统的静态特性与数据处理

北航自动化科学与电气工程学院 检测技术与自动化工程系 闫蓓 yanbei@https://www.360docs.net/doc/e97754313.html, 信号与测试技术 第2章测试系统的 静态特性与数据处理

1、测试系统静态特性的定义及表示方法 2、如何获取测试系统的静态特性 3、主要静态性能指标及其计算 第2章 学习要求

第2章测试系统的静态特性与数据处理Array 2.1 测试系统静态特性的一般描述 2.2 测试系统的静态标定 2.3 测试系统的主要静态性能指标及其计算 2.4 测量过程的精密度、准确度、精确度和不确定度 2.5 可靠性(reliability) 第2章小结1第2章小结2第2章小结 第2章作业

传感器 中间变换测量装置 显示及记录装置 实验结果处理装置 信号转换、分析信息识别 信息提取 激发装置 被测对象 物理量 电量 电量/数字量 电量/数字量 测试系统静动态特性

1、测试系统基本要求 输出信号能够真实反映被测物理量(输入信号)的变化过程,不使信号发生畸变,即实现不失真测试。 系统传递(输出)特性: 系统的输出与输入量之间的变换或运算关系。

2、测试系统传递(输出)特性 ()n i i i y f x a x ===∑01y a a x =+静态特性(Static characteristics ):即输入量和输出量不随时间变化或随时间变化的程度远缓慢于系统的固有最低阶运动模式的变化时,输出与输入之间的关系,可用代数方程表示。 y x y x y x 1y a x =零位补偿 静态标定 静态特性如何获得?i a 式中是与测试装置结构有关的系数。

田口设计方法基本知识

田口设计方法在质量管理中的应用 稳健设计(田口方法)简介 稳健设计(田口方法)由小日本质量工程学家田口玄一博士于20世纪70年代创立的新的优化设计技术,主要用于技术开发,产品开发,工艺开发. 一:基本概念 望目特性: 存在固定目标值,希望质量特性围绕目标值波动,且波动越小越好,这样的质量特性称为望目特性 望小特性: 不取负值,希望质量特性越小越好(理想值为0),且波动越小越好,这样饿质量特性称为望小特性 望大特性: 不取负值,希望质量特性越大越好(理想值为∞),且波动越小越好,这样的质量特性称为望大特性 动态特性: 目标值可变的特性,称为动态特性,与之相对的,望目特性,望小特性,望大特性统称为静态特性 外干扰(外噪声): 由于使用条件及环境条件(如温度,湿度,位置,操作者等)的波动或变化,引起产品质量特性值的波动,称之为外干扰,也称为外噪声.请注意,外噪声并非常说的噪音 内干扰(内噪声): 产品在储存或使用过程中,随着时间的推移,发生材料变质等老化,劣化现象,从而引起产品质量特性值的波动,称之为内干扰,也叫内噪声. 产品间干扰(产品间噪声): 在相同生产条件下,生产制造出来的一批产品,由于机器,材料,加工方法,操作者,测量误差和生产环境(简称5M1E)等生产条件的微笑变化,引起产品质量特性值的波动,称为产品间干扰,也称为产品间噪声. 可控因素: 在试验中水平可以人为加以控制的因素,称为可控因素 标示因素:

在试验中水平可以指定,但使用时不能加以挑选和控制的因素称为标示因素. 误差因素: 引起产品质量特性值拨动的外干扰,内干扰,产品间干扰统称为误差干扰. 稳定因素: 对信噪比有显著影响的可控因素,称为稳定因素. 调整因素: 对信噪比无显著影响,但对灵敏度有显著影响的可控因素,称为调整因素. 次要因素: 对信噪比及灵敏度均无显著影响的可控因素称为次要因素. 信号因素: 在动态特性的稳健设计中,为实现人变动着的意志或赋予不同目标值而选取的因素,称为信号因素. 稳健性: 指质量特性的波动小,抗干扰能力强 信噪比: 稳健设计中用以度量产品质量特性的稳健程度的指标 灵敏度: 稳健设计中用以表征质量特性可调整性的指标 稳健设计: 以信噪比为指标,以优化稳健性为目的的设计方法体系. 内设计: 在稳健设计中,可控因素与标示因素安排在同一正交表内,进行试验方案的设计.相应的正交表称为内表(内侧正交表),所对应的设计称为内设计. 外设计: 在稳健设计中,将误差因素和信号因素安排在一张正交表内,进行试验方案的设计,相应的正交表称为外表(外侧正交表),所对应的设计称为外设计. 稳健设计又叫动静参数设计,是日本著名质量管理专家田口玄一博士在七十年代初从工程观点、技术观点和经济观点对质量管理的理论与方法进行创新研究,创立了"田口方法(Taguchi Methods)。 田口方法可应用于产品设计、工艺设计和技术开发阶段,从而可提高产品设计质量,降低成本,缩短研制开发周期。

相关文档
最新文档