第二章 测量系统基本特性
测试技术基础答案 第二章 测试装置的基本特性

第二章 测试装置的基本特性一、知识要点及要求(1)了解测试装置的基本要求,掌握线性系统的主要性质;(2)掌握测试装置的静态特性,如线性度、灵敏度、回程误差和漂移等;(3)掌握测试装置的动态特性,如传递函数、频率响应函数、单位脉冲响应函数; (4)掌握一、二阶测试装置的动态特性及其测试。
二、重点内容及难点(一) 测试装置的基本要求1、测试装置又称为测试系统,既可指众多环节组成的复杂测试装置,也可指测试装置中的各组成环节。
2、测试装置的基本要求:(1)线性的,即输出与输入成线性关系。
但实际测试装置只能在一定工作范围和一定误差允许范围内满足该要求。
(2)定常的(时不变的),即系统的传输特性是不随时间变化的。
但工程实际中,常把一些时变的线性系统当作时不变的线性系统。
3、线性系统的主要性质 (1)叠加原理:若)()()()(2211t y t x t y t x −→−−→−,则)()()()(2121t y t y t x t x ±−→−±(2)频率保持性:若输入为某一频率的简谐信号,则系统的稳态输出也是同频率的简谐信号。
*符合叠加原理和频率保持性,在测试工作中具有十分重要的作用。
因为,在第一章中已经指出,信号的频域函数实际上是用信号的各频率成分的叠加来描述的。
所以,根据叠加原理和频率保持性这两个性质,在研究复杂输入信号所引起的输出时,就可以转换到频域中去研究。
(二)不失真测试的条件 1、静态不失真条件在静态测量时,理想的定常线性系统Sx x a b y ==0,S 为灵敏度。
2、动态不失真条件在动态测量时,理想的定常线性系统)()(00t t x A t y -=,A 0为灵敏度,t 0为时间延迟。
(三)测试装置的静态特性静态特性:就是在静态测量时描述实际测试装置与理想定常线性系统的接近程度。
(1)线性度:指测试装置输出与输入之间保持线性比例关系的程度。
(2)灵敏度:指测试装置输出与输入之间的比例因子,即测试装置对输入量变化的反应能力。
第二章测试装置的基本特性

输入输出(响应)系统第二章 测试装置的基本特性第一节 概述测试是具有试验性质的测量,是从客观事物取得有关信息的过程。
在此过程中须借助测试装置。
为实现某种量的测量而选择或设计测量装置时,就必须考虑这些测量装置能否准确获取被测量的量值及其变化,即实现准确测量,而能否实现准确测量,则取决于测量装置的特性。
这些特性包括动态特性、静态特性、负载特性、抗干扰性等。
测量装置的特性是统一的,各种特性之间是相互关联的。
1、测试装置的基本要求通常工程测试问题总是处理输入量)(t x 、装置(系统)的传输特性)(t h 和输出量)(t y 三者之间的关系。
图2-1系统、输入和输出1)当输入、输出是可测量的(已知),可以通过它们推断系统的传输特性。
(系统辨识)。
2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。
(反求)。
3)如果输入和系统特性已知,则可以推断和估计系统的输出量。
(预测) 。
测试装置的基本特性主要讨论测试装置及其输入、输出的关系。
理想的测试装置应该具有单值的、确定的输入——输出关系。
即对应于某一输入量,都只有单一的输出量与之对应 。
知道其中的一个量就可以确定另一个量。
以输出和输入成线性关系为最佳。
一般测量装置只能在较小工作范围内和在一定误差允许范围内满足这项要求。
2、测量装置的静态特性测试系统的静态特性就是在静态测量情况下,描述实际测试装置与理想定常线性系统的接近程度。
测量装置的静态特性是通过某种意义的静态标定过程确定的。
静态标定是一个实验过程,这一过程是在只改变测量装置的一个输入量,而其他所有的可能输入严格保持为不变的情况下,测量对应得输出量,由此得到测量装置的输入输出关系。
3、测量装置的动态特性测量装置的动态特性是当被测量即输入量随时间快速变化时,测量输入与响应输出之间的动态关系得数学描述。
研究测量装置动态特性时,认为系统参数不变,并忽略迟滞、游隙等非线性因素,可用常系数线性微分方程描述测量装置输入与输出间的关系。
02热工测试基础知识(热工测试技术)-修改版

热电偶测温系统框图形式
被测 温度T
热电偶温度 计 放大器 记录 仪器
热电偶测温系统框图
T 热电偶温 度计 E 热电势E (输出量)
被测温度 (输入量)
热电偶温度计环节 T
Te 1 Q 2 Te 3 E
热电偶测温系统框图
1环节:表示的是被测物体与热电偶热端之间,由于温差的原因,所引起的 热交换过程,其方程: 1 (2-6) Q (T T ) 式中:Q——被测物体与热电偶之间的热流量 R——被测物体与热电偶之间的传热热阻 2环节:被测物体向热电偶传送热流量Q,引起热端温度的变化
f ( ) A2 ( ) B 2 ( )
B( ) ( ) arctan A( )
3.随机信号
随机信号是连续信号,但又没有一定周 期,不能预测也不能用少数几个参数来 表现其特征。因此,随机函数既不能用 时间函数表示,也不能用有限的参数来 全面说明,随机信号只能用其统计特性 来描述它。
静态特性
(二)测量仪器的重复性
在相同测量条件下,重复测量同一个被测量时测量 仪器示值的一致程度。 重复性可以用示值的分散性来定量表示。要求仪器 示值分散在允许的范围内。 重复性是测量仪器的重要指标,反映了仪器工作的 可信度和有效性。
静态特性
(三)灵敏度
系统输出信号的变化相对于输入信号变化的比值, 反映了仪器对输入量变化的反应能力,是一个基本参 数。 k =dy/dx=f’(x)
输入量 x(t) 系统或环节 H (t ) H (s ) 输出量 y(t)
测量就是把被测的物理量x(t) ,用仪器及装置组 成的测量系统,进行检出和变换,使之成为人们能感 知的量y(t)。 这里对测量系统而言,x(t) 为输入量,示值y(t) 为输出量。为保证测量结果是正确的,要求测量者对 所使用的测量系统,输入和输入间具有怎样的关系, 即测量系统的特性如何,要考察h(t)即系统的传输 或转换特性。
《测试技术》教学课件 2.1 测试系统静态响应特性

二,灵敏度
当测试装置的输入
x 有一增量 X
, 引起输出 y
定义为: 发生相应变化 Y 时,定义为:
Y S= X
y △y △x x
三,回程误差
也称迟滞. 也称迟滞.测试装置在输入量由小增大和由大 减小的测试过程中, 对于同一个输入量所得到的两 减小的测试过程中 , 个数值不同的输出量之间差值最大者为h 个数值不同的输出量之间差值最大者为hmax,则定义 回程误差为: 回程误差为: (hmax/A)×100% /A)×100% y
一,线性度
衡量特性曲线与参考直线偏离程度的参数叫线性 度或直线性. 度或直线性.
max × 100%= 线形误差= =B/A×100% 线形误差= × Ymax Ymin
y
A B
x
线性度参考直线最常用的是最小二乘法回归直线法. 线性度参考直线最常用的是最小二乘法回归直线法. 最小二乘法回归直线法
∫
t 0
x (t ) dt = ∫ y (t ) dt
0
t
5)频率保持性 5)频率保持性 若系统的输入为某一频率的谐波信号, 若系统的输入为某一频率的谐波信号,则系统 的稳态输出将为同一频率的谐波信号, 的稳态输出将为同一频率的谐波信号,即 若 则 x(t)=Acos(ωt+φx) y(t)=Bcos(ωt+φy)
y = a1 x + a 2 x + a 3 x +
2 3
通常,为了简化输出输入关系, 通常,为了简化输出输入关系,总是希望输入输出 之间为线性: 之间为线性:
y = ax
测试系统的静态特性就是在静态测量情况下描述实 际测试装置与理想定常线性系统的接近程度. 际测试装置与理想定常线性系统的接近程度.
第二章 测量系统的动态特性ppt课件

H(s) HA(s) 1HA(s)HB(s)
*测量系统中采用负反馈可以使整个系 统误差减少. ,提高测量精度
1. 测量系统在瞬变参数测量中的动态特性
(1)零阶测量系统的传递函数
H(s) Y(s) b0 X(s) a0
y b0 x kx a0
K,为灵敏度系
n
12 d
最大过冲量 A dy(td)1e(/ 12)
.
2. 测量系统的动态响应
.
2. 测量系统的动态响应
传感器的时域动态性能指标:
① 时间常数τ:一阶传感器输出上升到稳态值的63.2%,所需的 时间,称为时间常数;
② 延迟时间td:传感器输出达到稳态值的50%所需的时间; ③ 上升时间tr:传感器输出达到稳态值的90%所需的时间; ④ 峰值时间tp: 二阶传感器输出响应曲线达到第一个峰值所需的 时间; ⑤ 超调量σ: 二阶传感器输出超过稳态值的最大值; ⑥ 衰减比d:衰减振荡的二阶传感器输出响应曲线第一个峰值与 第二个峰值之比。
动态响应特性:描述在动态测量过程中输 出量与输入量之间的关系
分析控制动态测量时所产生的动态误差
选择合适测量系统与所测参数匹配,使测 量.的动态误差在允许范围
1. 测量系统在瞬变参数测量中的动态特性
测量系统动态特性的数学描述
采用常系数线性常微分方程描述测量系统动态特性,输入量x与 输出量y之间的关系如下:
.
2. 测量系统的动态响应
(1)测量系统的阶跃响应
输入信号
x(t)
0 1
t 0 t 0
x(t)
1
Y (s) H (s) s
0
t
单位阶跃输入信号
第二章 测量系统(1)

18
2.2.2 测量系统的静态特性
测量范围、量程
灵敏度、分辨力
线性度 重复性、稳定性 测量误差 准确度
测量不确定度
19
测量范围与量程
标称示值区间(nominal indication interval),简称标称 区间(nominal interval):当测量仪器或测量系统调节到 特定位置时获得并用于指明该位置的、化整或近似的极限 示值所界定的一组量值。
Motion Phase /°
11
2.1.3 传感器
一种能把特定的信息(物理、化学、生物)按一定规律转 换成某种可用信号输出的器件和装置
加速度传感器 智能式压力变送器 常用的涡流探头+前置器
力传感器
12
2.1.4 信号调理
对(传感器输出的)信号进行变换、隔离、滤波、放大、驱 动等,以便进一步传输和处理
测量区间(measuring interval),又称工作区间(working interval):在规定条件下,由具有一定的测量不确定度的测 量仪器或测量系统能够测量出的一组同类量的量值。
在某些领域,此术语也称“测量范围(measuring range)或工作范围 (working range)”。 测量区间要小于等于标称区间。
但不同的物理系统有不同的系数量纲测量系统的数学模型40串联系统并联系统反馈系统测量系统动态特性的分析测量系统的动态特性一般并不是直接给出其微分方程或传递函数而是通过实验给出一些动态特性指标当输入量跃变时输出量由一个稳态到另一个稳态之间的过渡状态中的误差在实际测量中选定几种最典型最简单标准信号作为输入函数将其代入系统的典型环节中来研究系统的响应特性常用的输入标准信号有阶跃函数正弦函数指数函数及冲击函数等阶跃函数和正弦函数既易于实现又便于求解因此是研究系统动态特性最常用的输入信号41测量系统动态特性的分析以阶跃信号函数作为输入信号研究系统动态特性的方法称为阶跃响应法也叫时域的瞬态响应法采用正弦信号作为输入信号研究系统的动态特性的方法称为频率响应法一般使用幅频特性与相频特性进行描述评价指标为频带宽度简称带宽即系统输出增益变化不超出某一规定分贝值的频率范围42阶跃响应及时域特性单位阶跃函数43一阶环节的阶跃响应二阶环节的阶跃响应时间常数
测试系统的基本特性
测试系统
输出Y(t)
输入:x(t) x0e jt
an
d n y(t) dtn
a n1
d n1 y ( t ) d t n1
a1
dy(t) dt
a0 y(t)
输出:y(t) y0e j(t)
bm
d m x(t) dtm
bm 1
d m 1 x ( t ) d t m 1
含零点温漂和灵敏度温漂是测量系统在温度变化时其特性的变化灵敏度漂移力传感器温度传感器测试单元输入x输出y测试单元输出阻抗输入阻抗负载测试环节相互之间的影响输入阻抗与输出阻抗对于组成测量系统的各环节尤为重要希望前级输出信号无损失地向后级传送必须满足
第三章
测量系统的基本特性
本章内容
1. 测量系统的数学描述 2. 线性定常系统基本特性 3. 测量系统的静态特性 4. 测量系统的动态特性 5. 动态测量误差及补偿
d y(t) dt
t0 x ( t ) d t t0 y ( t ) d t
0
0
初始条件为零
2、线性定常系统的基本特性
2.3同频性:频率不变(频率保持性)
频率相同!
o 若输入为某一频率的简谐(正弦或余弦)信号
x(t) Ax cos( t x)
x(t) x0e jt
o 则系统的输出必是、也只是同频率的简谐信号
多次变动时,其输出值不一致的程度。 y
o 重复性误差定义为(引用误差):
Y
R
rR
.100% A
o ΔR是一种随机误差,根据标准差计算 0
R kˆ / n
△R-最大偏差
o K为置信因子,K=3时置信度为99.73%。 o 重复性误差决定测量结果的可信度。
测试技术 第二章 测试装置的基本特性
四、分辨力
定义: 定义 引起测量装置输出值产生一个可察觉变化的 最小输入量(被测量) 最小输入量(被测量)变化值称为分辨力 表征测量系统的分辨能力 说明: 说明 1、分辨力 --- 是绝对数值,如 0.01mm,0.1g,10ms,…… 、 是绝对数值, , , , 2、分辨率 --- 是相对数值: 、 是相对数值: 能检测的最小被测量的 变换量相对于 满量程的 百分数, 百分数,如: 0.1%, 0.02%
y
(a) 端点连线法 端点连线法: 算法: 检测系统输入输出曲线的两端点连线 算法: 特点: 简单、方便,偏差大, 特点: 简单、方便,偏差大,与测量值有关 (b) 最小二乘法 最小二乘法: 算法: 计算: 算法: 计算:有n个测量数据 (x1,y1), (x2,y2), … , (xn,yn), (n>2) 个测量数据: 个测量数据 , 残差: 残差平方和最小: 残差:∆i = yi – (a + b xi) 残差平方和最小:∑∆2i=min
线性 y 线性 y 非线性y
x
x
x
非线性原因: 非线性原因
外界干扰 温 度 湿 度 压 力 冲 击 振 动 电 磁 场 场
输入 x
检测系统
输入 y = f(x)
摩 擦
间 隙
松 动
迟 蠕 滞 变
变 老 形 化
误差因素
严格的说,很多测试装置是时变的 因为不稳定因素的存 严格的说 很多测试装置是时变的(因为不稳定因素的存 很多测试装置是时变的 但在工程上认为大多数测试装置是时不变线性系统 在),但在工程上认为大多数测试装置是时不变线性系统 但在工程上认为大多数测试装置是 (定常线性系统 该类测试装置的输入与输出的关系可 定常线性系统).该类测试装置的输入与输出的关系可 定常线性系统 用常系数线性微分方程来描述. 用常系数线性微分方程来描述
(2)1测量基本概念-测量系统的基本特性
20
分辨力
定义: 又称“灵敏度阈”,表征测量系统有效辨别输入量最 小变化量的能力。
描述: 1、分辨力 --- 是绝对数值,如 0.01mm,0.1g,1mv,… 2、分辨率 --- 是相对数值: 能检测的最小被测量的变 换量相对于 满量程的百分 数,如: 0.1%, 0.02% 3、阀值 --- 在系统输入零点附近的分辨力。
0
j t
dt
X ( j )
0
x (t )e j t dt
Y ( j ) bm ( j )m bm 1 ( j )m 1 b1 ( j ) b0 H ( j ) X ( j ) an ( j )n an 1 ( j )n 1 a1 ( j ) a0
27
测量系统的动态特性
28
动态特性
定义:测量系统在被测量随时间变化的条件 下输入输出关系。 特征:反映测量系统测量动态信号的能力。
29
研究动态特性的目的
理想情况:输出y(t)与x(t)一致。 实际情况:输出y(t)与x(t)一致程度与信号频率和动态误 差相关。
根据测量信号频率范围及测量动态误差的要求设计测量系 统; 已知测量系统及其动态特性,估算可测量信号的频率范 围与对应的动态误差。
st
Y ( s) y (t )e dt ( s j , 0)
0
X (s)
0
x (t )e st dt
Y (s)(an s n an1s n1 a1s a0 ) X (s)(bm s m bm1s m1 b1s b0 )
24
零位(失调)
定义:又称“零点”,当输入量为零 x=0时,测量 系统的输出量不为零的 数值
第二章测试装置的基本特性
输入输出(响应)系统第二章 测试装置的基本特性第一节 概述测试是具有试验性质的测量,是从客观事物取得有关信息的过程。
在此过程中须借助测试装置。
为实现某种量的测量而选择或设计测量装置时,就必须考虑这些测量装置能否准确获取被测量的量值及其变化,即实现准确测量,而能否实现准确测量,则取决于测量装置的特性。
这些特性包括动态特性、静态特性、负载特性、抗干扰性等。
测量装置的特性是统一的,各种特性之间是相互关联的。
1、测试装置的基本要求通常工程测试问题总是处理输入量)(t x 、装置(系统)的传输特性)(t h 和输出量)(t y 三者之间的关系。
图2-1系统、输入和输出1)当输入、输出是可测量的(已知),可以通过它们推断系统的传输特性。
(系统辨识)。
2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。
(反求)。
3)如果输入和系统特性已知,则可以推断和估计系统的输出量。
(预测) 。
测试装置的基本特性主要讨论测试装置及其输入、输出的关系。
理想的测试装置应该具有单值的、确定的输入——输出关系。
即对应于某一输入量,都只有单一的输出量与之对应 。
知道其中的一个量就可以确定另一个量。
以输出和输入成线性关系为最佳。
一般测量装置只能在较小工作范围内和在一定误差允许范围内满足这项要求。
2、测量装置的静态特性测试系统的静态特性就是在静态测量情况下,描述实际测试装置与理想定常线性系统的接近程度。
测量装置的静态特性是通过某种意义的静态标定过程确定的。
静态标定是一个实验过程,这一过程是在只改变测量装置的一个输入量,而其他所有的可能输入严格保持为不变的情况下,测量对应得输出量,由此得到测量装置的输入输出关系。
3、测量装置的动态特性测量装置的动态特性是当被测量即输入量随时间快速变化时,测量输入与响应输出之间的动态关系得数学描述。
研究测量装置动态特性时,认为系统参数不变,并忽略迟滞、游隙等非线性因素,可用常系数线性微分方程描述测量装置输入与输出间的关系。