椭圆离心率高考练习题

椭圆离心率高考练习题
椭圆离心率高考练习题

椭圆的离心率专题训练

一.选择题(共29小题)

1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.

2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()

A.B.C.D.

3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.

4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()

A.B.C.D.

5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()

A.B.C.D.

6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C 的离心率e=()

A.B.C.D.

7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()

A.B. C.D.

8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()

A.B.2﹣C.2(2﹣)D.

9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()

A.B. C.D.或

10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()

A.B.C.D.

11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()

A.(0,)B.(0,)C.D.

12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()

A.B.C.D.

13.(2015?高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()

A.B.C.D.一l

14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()

A.B.C.D.

15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()

A.B.C.D.

16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M 为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()

A.B.C.D.

17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足

||=2||=2||,则椭圆的离心率e=()

A.B.C.D.

18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()

A.(0,)B.(0,)C.(,1)D.(,1)

19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()

A. B. C. D.﹣1

20.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O 的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]

21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆

的离心率的取值范围是()

A.(,) B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,

则e2=()

A.2﹣B.3﹣C.11﹣6 D.9﹣6

23.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且?=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()

A.(0,] B.(0,] C.[,] D.[,1)

24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足?=2c2,则此椭圆离心率的取值范围是()

A.[,] B.(0,] C.[,1)D.[,]

25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()

A.B.C.D.

26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C 以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()

A.B.C. D.

27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)

28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P 作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B.C.D.

29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()

A.B.C.D.

参考答案与试题解析

一.选择题(共29小题)

1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.

解答:解:①当点P与短轴的顶点重合时,

△F1F2P构成以F1F2为底边的等腰三角形,

此种情况有2个满足条件的等腰△F1F2P;

②当△F1F2P构成以F1F2为一腰的等腰三角形时,

以F2P作为等腰三角形的底边为例,

∵F1F2=F1P,

∴点P在以F1为圆心,半径为焦距2c的圆上

因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,

存在2个满足条件的等腰△F1F2P,

在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,

由此得知3c>a.所以离心率e>.

当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠

同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P

这样,总共有6个不同的点P使得△F1F2P为等腰三角形

综上所述,离心率的取值范围是:e∈(,)∪(,1)

2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()

A.B.C.D.

解答:

解:∵表示焦点在x轴上且离心率小于,

∴a>b>0,a<2b

它对应的平面区域如图中阴影部分所示:

则方程表示焦点在x轴上且离心率小于的椭圆的概率为

P==,

故选B.

3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.

解答:

解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,设左焦点为:N

则:连接AF,AN,AF,BF

所以:四边形AFNB为长方形.

根据椭圆的定义:|AF|+|AN|=2a

∠ABF=α,则:∠ANF=α.

所以:2a=2ccosα+2csinα

利用e==

所以:

则:

即:椭圆离心率e的取值范围为[]

故选:A

4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()

A.B.C.D.

解答:解:两个交点横坐标是﹣c,c

所以两个交点分别为(﹣c,﹣c)(c,c)

代入椭圆=1

两边乘2a2b2

则c2(2b2+a2)=2a2b2

∵b2=a2﹣c2

c2(3a2﹣2c2)=2a^4﹣2a2c2

2a^4﹣5a2c2+2c^4=0

(2a2﹣c2)(a2﹣2c2)=0

=2,或

∵0<e<1

所以e==

故选A

5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()

A.B.C.D.

解答:解:设|PF

|=x,

2

∵PF2⊥F1F2,∠PF1F2=30°,

∴|PF1|=2x,|F1F2|=x,

又|PF1|+|PF2|=2a,|F1F2|=2c

∴2a=3x,2c=x,

∴C的离心率为:e==.

故选A.

6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C 的离心率e=()

A.B.C.D.

解答:解:设P(x

,y0),∵G为△F1PF2的重心,

∴G点坐标为 G(,),

∵,∴IG∥x轴,

∴I的纵坐标为,

在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c

∴=?|F1F2|?|y0|

又∵I为△F1PF2的内心,∴I的纵坐标即为内切圆半径,

内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形

∴=(|PF1|+|F1F2|+|PF2|)||

∴?|F1F2|?|y0|=(|PF1|+|F1F2|+|PF2|)||

即×2c?|y0|=(2a+2c)||,

∴2c=a,

∴椭圆C的离心率e==

故选A

7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()

A.B.C.D.

解答:解:设P(m,n ),=(﹣c﹣m,﹣n)?(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.

把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,

把①代入②得m2=≥0,∴a2b2≤2a2c2,

b2≤2c2,a2﹣c2≤2c2,∴≥.

又 m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,

∴≤.

综上,≤≤,

故选:C.

8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()

A.B.2﹣C.2(2﹣)D.

解答:解:如图,

在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c

∴MF2=4c,MF1=2c

MF1+MF2=4c+2c=2a?e==2﹣,

故选B.

9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()

A.B. C. D.或

解答:解:∵椭圆C上的点P满足,∴|PF

|==3c,

1

由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.

利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,

化为.

∴椭圆C的离心率e的取值范围是.

故选:C.

10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()

A.B.C.D.

解答:解:F

(﹣c,0),F2(c,0),c>0,设P(x1,y1),

1

则|PF1|=a+ex1,|PF2|=a﹣ex1.

在△PF1F2中,由余弦定理得cos120°==,解得x12=.

∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1

∴e=≥.

故椭圆离心率的取范围是e∈.

故选A.

11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()

A.(0,)B.(0,)C.D.

解答:解:设P(asinα,bcosα),A

(﹣a,0),A2(a,0);

1

∴,;

∴;

∴;

∴,a,c>0;

∴解得;

∴该椭圆的离心率的范围是().

故选:C.

12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()

A.B.C.D.

解答:

解:设椭圆(a>b>0),

F1(﹣c,0),F2(c,0),

|MF2|=|F1F2|=2c,

由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,

|MF2|+|MF1|=2a,即有2c+4=2a,

即a﹣c=2,①

取MF1的中点K,连接KF2,则KF2⊥MN,

由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,

即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②

由①②解得a=7,c=5,

则离心率e==.

故选:D.

13.椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()

A.B.C.D.一l

解答:

解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则,∴m=,n=c,

代入椭圆方程可得,

化简可得e4﹣8e2+4=0,

∴e=﹣1,

故选:D.

14.已知F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 2

垂直于x 轴.若|F 1F 2|=2|PF 2|,则该椭圆的离心率为( ) A .

B .

C .

D .

解答:

解:F 1,F 2分别为椭圆

+=1(a >b >0)的左、右焦点,

设F 1(﹣c ,0),F 2(c ,0),(c >0),

P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|, 可得2c=2,即ac=b 2

=a 2

﹣c 2

.可得e 2

+e ﹣1=0. 解得e=.

故选:D . 15.已知椭圆

(a >b >0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( ) A .

B .

C .

D .

解答: 解:由题意作图如右图,

l 1,l 2是椭圆的准线,设点Q (x 0,y 0),

∵2|PF 1|=3|QF 1|,

∴点P (﹣c ﹣x 0,﹣y 0); 又∵|PF 1|=|MP|,|QF 1|=|QA|, ∴2|MP|=3|QA|, 又∵|MP|=﹣c ﹣x 0+,|QA|=x 0+

∴3(x 0+

)=2(﹣c ﹣x 0+

),

解得,x 0=﹣,

∵|PF 2|=|F 1F 2|,

∴(c+x0+)=2c;

将x0=﹣代入化简可得,

3a2+5c2﹣8ac=0,

即5﹣8+3=0;

解得,=1(舍去)或=;

故选:A.

16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M 为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()

A.B.C.D.

解答:解:如图所示,

在Rt△AF1F2中,|F1F2|=2|OA|=2c.

又|MF2|=2|OA|,

在Rt△OMF2中,

∴∠AF2F1=60°,

在Rt△AF1F2中,

|AF2|=c,|AF1|=c.

∴2a=c+c,

∴=﹣1.

故选:C.

17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()

A.B.C.D.

解答:解:∵|MF

|=|MO|=|MF2|,

1

由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,

即|MF2|=a,|MF1|=a,

在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,

则cos∠MOF1==,

在△OF2M中,|F2O|=c,|M0|=|F2M|=a,

则cos∠MOF2==,

由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+cos∠MOF2=0,

即为+=0,

整理得:3c2﹣2a2=0,

即=,即e2=,

即有e=.

故选:D.

18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()

A.(0,)B.(0,)C.(,1)D.(,1)

解答:解:由已知P(,y),得F

P的中点Q的坐标为(),

1

∴,

∵,∴y2=2b2﹣,

∴y2=(a2﹣c2)(3﹣)>0,

∴3﹣>0,

∵0<e<1,

∴<e<1.

故选:C.

19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()

A.B.C.D.﹣1

解答:解:如下图所示:

设椭圆的右焦点为F,根据椭圆的对称性,得

直线OP的斜率为k=tan60°=,

∴点P坐标为:(c,c),

代人椭圆的标准方程,得

∴b2c2+3a2c2=4a2b2,

∴e=.

故选:D.

20.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O 的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]

解答:解:如图所示,连接OE,OF,OM,

∵△MEF为正三角形,

∴∠OME=30°,

∴OM=2b,

则2b≤a,

∴,

∴椭圆C的离心率e==.

又e<1.

∴椭圆C的离心率的取值范围是.

故选:C.

21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()

A.(,) B.(,1)C.(,1)D.(0,)

解答:解:如图所示,

设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,

取y=,A.

∵△ABC是锐角三角形,

∴∠BAD<45°,

∴1>,

化为,

解得.

故选:A.

22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()

A.2﹣B.3﹣C.11﹣6 D.9﹣6

椭圆与双曲线综合练习题(培优专题练习)

椭圆与双曲线综合练习题 1.已知椭圆+=1(a >b >0)的离心率是,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为( ) A . B . - C . D . - 2. 若点P 为共焦点的椭圆1C 和双曲线2C 的一个交点,1F 、2F 分别是它们的左右焦点.设椭圆离心率为1e ,双曲线离心率为2e ,若021=?PF PF , ) A.4 B. 3 C. 2 D. 1 4.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A . (0,] B . (0,] C . [,1) D . [,1) 5.已知为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是( ) A. B. C. D. 6.椭圆C :+=1(a >b >0) 的右焦点为F ,椭圆C 与x 轴正半轴交于A 点,与y 轴正半轴交于B (0,2),且·=4+4,则椭圆C 的方程为( )A .+=1 B .+=1 C .+=1 D .+=1 7.过椭圆C :+y 2=1的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于点M ,若 =λ1,=λ2,则λ1+λ2等于( )A . 10 B . 5 C . -5 D . -10 8. 设F 1,F 2分别为双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x +5y =0 C .5x ±4y =0 D .4x ±3y =0 9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +(a >0),则点P 的轨迹是( ) A . 椭圆 B . 线段 C . 不存在 D . 椭圆或线段 10.已知F 1,F 2是椭圆+=1(a >b >0)的左,右焦点,点P 是椭圆上的点,I 是△F 1PF 2内切圆的圆心,直线PI 交x 轴于点M ,则|PI |∶|IM |的值为( ) A . B . C . D . 11.已知双曲线-=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个

椭圆离心率求法总结

椭圆离心率的解法 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF | |PD |② e=|QF ||BF |③e=|AO ||BO |④e=|AF ||BA |⑤e=|FO ||AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,|BO |= a2 c ∴有③。 题目1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、 F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三

角形的两边,则椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。 解:∵|F1F2|=2c |BF1|=c |BF2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正 三角形,求椭圆离心率? 解:连接PF2 ,则|OF2|=|OF1|=|OP |,∠F1PF2 =90°图形如上图,e=3-1 变形2: 椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,AB 为椭圆的顶点,P 是椭圆上一 点,且PF1 ⊥X 轴,PF2 ∥AB,求椭圆离心率?

解:∵|PF1|= b2 a |F2 F1|=2c |OB |= b |OA |=a PF2 ∥AB ∴|PF1| |F2 F1|= b a 又 ∵b= a2-c2 ∴a2=5c2 e= 55 点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。 二、运用正余弦定理解决图形中的三角形 题目2:椭圆x2 a2 +y2 b2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ ABF=90°,求e? 解:|AO |=a |OF |=c |BF |=a |AB |=a2+b2 a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2-ac=0 两边同除以a2 e2+e-1=0 e=-1+ 5 2 e=-1-5 2 (舍去) 变形:椭圆x2 a2 +y2 b2 =1(a>b >0),e=-1+ 5 2, A 是左顶点,F 是右焦点,B 是短轴的一个 顶点,求∠ABF ? 点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。答案:90° 引申:此类e= 5-1 2 的椭圆为优美椭圆。 性质:1、∠ABF=90°2、假设下端点为B1 ,则ABFB1 四点共圆。3、焦点与相应准线之间的

离心率的五种求法专题

离心率的求法 椭圆的离心率10<e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e 已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式a c e = 来解决。 例1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( ) A. 4 3 B. 3 2 C. 2 1 D. 4 1 变式练习:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( ) A. 23 B. 2 6 C. 23 D 2 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。 例2:已知1F 、2F 是双曲线 12 22 2=- b y a x (0,0>>b a ) 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 2 13+ D. 13+ 变式练习1:双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,021120=∠MF F ,则双曲线的离心率为( )A 3 B 2 6 C 3 6 D 3 3 变式练习2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .3 1B . 3 3 C .2 1D . 2 3 变式练习3:设双曲线12 22 2=- b y a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到 直线的距离为 c 4 3,则双曲线的离心率为( )A. 2 B. 3 C. 2 D. 3 32 三、采用离心率的定义以及椭圆的定义求解 例3:设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若21PF F ?为等腰直角三角形,则椭圆的离心率是________。 变式练习1:设1F 、2F 分别是双曲线 12 22 2=- b y a x 的左、 右焦点,若双曲线上存在点A ,使0 2190=∠AF F ,且213AF AF =,则双曲线离心率为( )A 2 5 B 2 10 C 2 15 D 5 四、构建关于e 的不等式,求e 的取值范围 例4:已知双曲线 12 22 2=- b y a x (0,0>>b a )的右焦点为F ,若过点F 且倾斜角为0 60的直线与双曲线 的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A []2,1 B ()2,1 C [)+∞,2 D ()+∞,2 变式练习1.已知点1F ,2F 分别是双曲线 2 2 22 1 (0,0)x y a b a b -=>>的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若2A B F ?是锐角三角形,则该双曲线离心率的取值范围是 .

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

关于椭圆离心率专项练习(1)

关于椭圆离心率的演练 一、直接求出a c ,或求出a 与b 的比值,以求解e 。 在椭圆中,a c e =,222 22221a b a b a a c a c e -=-=== 1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 5.若椭圆)0(,122 22>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥, 则椭圆的离心率为 6..已知)0.0(121>>=+n m n m 则当mn 取得最小值时,椭圆1 22 22=+n y m x 的的离心率为 7.椭圆22 221(0)x y a b a b +=>>的焦点为1F ,2F ,两条准线与x 轴的交点 分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是 8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=e 。 9.P 是椭圆22a x +22 b y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知 ,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 椭圆的离心率为=e 10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 11.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 12.设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1 且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是 。 13.椭圆 12222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F

椭圆离心率求法

椭圆离心率求法

离心率的五种求法 椭圆的离心率10<e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e 已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率 公式a c e =来解决。 例1:已知双曲线1222 =-y a x (0>a )的一条准线与抛物线x y 62 -=的准线重合,则该双曲线的离心率为( ) A. 23 B. 23 C. 26 D. 3 32 解:抛物线 x y 62-=的准线是 2 3 = x ,即双曲线的右准线 2 3122= -==c c c a x ,则0 2322 =--c c ,解得2=c ,3=a ,3 32= =a c e ,故 选D 变式练习1:若椭圆经过原点,且焦点为()0,11 F 、()0,32 F ,则其离心率为( ) A. 43 B. 32 C. 21 D. 4 1 解:由()0,11 F 、()0,32 F 知 132-=c ,∴1=c ,又∵椭圆过原点, ∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C. 变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( ) A. 2 3 B. 26 C. 2 3

D 2 解:由题设2=a ,62=c ,则3=c ,2 3 ==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆 12 2 22=+b y a x (0>>b a )的左 准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( ) A 3 3 B 31 C 2 2 D 2 1 解:由题意知,入射光线为()32 5 1+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则 ?? ???=+-=05532 c c a 解得3=a ,1=c , 则3 3==a c e ,故选A 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。 例2:已知1F 、2 F 是双曲线12 2 22 =-b y a x (0,0>> b a )的两焦点, 以线段21F F 为边作正三角形21F MF ,若边1 MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 21 3+ D. 13+

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

圆锥曲线离心率专题

. . .. . 圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的围是() A.B.C.D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的围是() A. [,1)B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值围是() A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是()A.B.C.D. 6.已知椭圆的接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值围()A.B.C.D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值围是() A.B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值围为(1,2),则该椭圆的离心率的取值围是() A. (0,)B. (,) C. (,) D. (,1) 9.椭圆的接矩形的最大面积的取值围是[3b2,4b2],则该椭圆的离心率e的取值围是()A.B.C.D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值围为() A.[2,+∞)B.(,+∞)C. [,+∞) D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值围是() A.B.C.D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭 圆离心率e的取值围是() A.B.C.D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则 的取值围是() A.B.C.D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值围为()A.B.C.D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离 心率的取值围是() A.B.C.(1,2)D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值围是() A. (1,]B. (1,) C. (2,] D.(,2]

椭圆离心率求法总结

椭圆离心率的解法 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF ||PD |②e=|QF ||BF |③e=|AO | |BO |④ e=|AF ||BA |⑤e=|FO | |AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,| BO |= a2 c ∴有③。 题目1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭 圆恰好平分正三角形的两边,则椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。 解:∵|F1F2|=2c |BF1|=c |BF2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正

三角形,求椭圆离心率? 解:连接PF2 ,则|OF2|=|OF1|=|OP |,∠F1PF2 =90°图形如上图,e=3-1 变形2: 椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,AB 为椭圆的顶点,P 是椭圆上一 点,且PF1 ⊥X 轴,PF2 ∥AB,求椭圆离心率? 解:∵|PF1|= b2 a |F2 F1|=2c |OB |= b |OA |=a PF2 ∥AB ∴|PF1| |F2 F1|= b a 又 ∵b= a2-c2 ∴a2=5c2 e= 55 点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。 二、运用正余弦定理解决图形中的三角形 题目2:椭圆x2 a2 +y2 b2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ ABF=90°,求e?

椭圆双曲线典型例题整理

椭圆典型题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2= 2F 1F 2,求椭圆的标准方程。 2.已知椭圆的两个焦点为 F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。例.求过点(-3,2)且与椭圆x 29+y 24 =1有相同焦点的椭圆的标准方程. 四、与直线相结合的问题,求椭圆的标准方程。 例:已知中心在原点,焦点在x 轴上的椭圆与直线01y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

五、求椭圆的离心率问题。 例一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 例已知椭圆 19 8 2 2 y k x 的离心率2 1e ,求k 的值. 六、由椭圆内的三角形周长、面积有关的问题 例:1.若△ABC 的两个顶点坐标A (-4,0),B (4,0),△ABC 的周长为18,求顶点C 的轨迹方程。 2.已知椭圆的标准方程是x 2a 2+y 2 25 =1(a >5),它的两焦点分别是 F 1,F 2,且F 1F 2=8,弦 AB 过点F 1,求△ABF 2的周长. 3.设F 1、F 2是椭圆x 29+y 2 4 =1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,求 △PF 1F 2的面积.

数学-高中数学求椭圆的离心率习题专题

圆锥曲线的离心率问题的求解 离心率是圆锥曲线的一个重要性质,是描述曲线形状的重要参数. 椭圆的离心率是描述椭圆扁平程度的一个重要数据; 双曲线的离心率是描述双曲线“张口”大小的一个重要数据; 而抛物线的离心率是特征值1. 圆锥曲线的统一定义是按离心率的范围不同,确定圆锥曲线中的椭圆、双曲线和抛物线的类型. 求离心率的关键是列出一个与a,b,c,e 有关的等式或不等关系.在此,要活用圆锥曲线的特征三角形.常用方法: 1.利用曲线定义。圆锥曲线的统一定义是与离心率密不可分的,在题目中挖掘这隐含信息有助于解题. 2.利用曲线变量范围。圆锥曲中变量的变化范围对离心率的影响是直接的,充分利用这一点,可优化解题. 3.利用直线与曲线的位置关系。根据题意找出直线与曲线相对的位置关系,列出相关元素的不等式,可迅速解题. 4.利用点与曲线的位置关系。根据某点在曲线的内部或外部,列出不等式,再求范围,是一个重要的解题途径. 5.联立方程组。如果有两曲线相交,将两个方程联立,解出交点,再利用范围,列出不等式并求其解. 6.三角函数的有界性。用三角知识建立等量关系,再利用三角函数的有界性,列出不等式易解. 7.用根的判别式根据条件建立与a、b、c相关的一元二次方程,再用根的判别式列出不等式,可得简解 8.构造关于e 的方程求解. 9.数形结合法:解析几何和平面几何都是研究图形性质的,只不过平面几何只限于研究直线形和圆。因此,在题设条件中有关圆、直线的问题,或题目中构造出直线形与圆,可以利用平面几何的性质简化计算。 圆锥曲线的离心率练习题 1、已知椭圆的方程 222 2 1(0)x y a b a b +=>>,F 1,F 2是椭圆左右两个焦点,P 是椭圆上的一点 若12PF PF =,求椭圆离心率的取值范围。 2、已知椭圆的方程 222 2 1(0)x y a b a b + =>>,F 1,F 2是椭圆的两个焦点,P 是椭圆上的一点 若123 F PF π ∠= ,求椭圆离心率的取值范围。

椭圆离心率的三种求法、中点弦方程三种求法

椭圆离心率的三种求法: (1)若给定椭圆的方程,则根据焦点位置确定a 2,b 2,求a ,c 的值,利用公式e =c a 或利用22 1a b e -=直接求解. (2)求椭圆的离心率时,若不能直接求得 c a 的值,通常由已知寻求a ,b ,c 的关系式,再与a 2=b 2+c 2组成方程组,消去b 得只含a ,c 的方程,再化成关于e 的方程求解. (3)求离心率时要充分利用题设条件中的几何特征构建方程求解,从而达到简化运算的目的. 涉及椭圆离心率的范围问题要依据题设条件首先构建关于a ,b ,c 的不等式,消去b 后,转化为关于e 的不等式,从而求出e 的取值范围. 1. 若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被点?? ? ??0,2b 分成5∶3的两段,则此椭圆的离心率为( ) A.1617 B.41717 C.45 D.255 解析 依题意,得c +b 2c -b 2=53,∴c =2b ,∴a =b 2+c 2=5b ,∴e =2b 5b =255. 答案D 点评 本题的解法是直接利用题目中的等量关系,列出条件求离心率. 2. 设P 是椭圆x 2a 2+y 2 b 2=1(a >b >0)上的一点,F 1,F 2是其左,右焦点.已知∠F 1PF 2=60°,求椭圆离心率的取值范围. 分析 本题主要考查椭圆离心率取值范围的求法,建立不等关系是解答此类问题的关键. 解 方法一 根据椭圆的定义,有|PF 1|+|PF 2|=2a .① 在△F 1PF 2中,由余弦定理,得 cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12 , 即|PF 1|2+|PF 2|2-4c 2=|PF 1||PF 2|.② ①式平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.③ 由②③,得|PF 1||PF 2|=4b 2 3 .④ 由①和④运用基本不等式,得

椭圆的离心率求法

椭圆3 例7.椭圆22a x +22 b y =1(a >b >0)的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为3,求椭圆的方程. 122x +92 y =1 例8.根据条件,求出椭圆的方程:中心在原点,对称轴为坐标轴,焦点在x 轴上, 短轴的一个顶点B 与两个焦点12,F F 组成的三角形的周长为4+1223F BF π∠=. (2)设长轴为2a ,焦距为2c ,则在2F OB ?中,由23 F OB π∠= 得:2c a =,所以21F BF ? 的周长为2224a c a +==+ 22,1a c b ∴==∴=故得:22 141 x y +=. 四.怎么求椭圆的离心率. 引例. 已知椭圆长轴与短轴的比为2:1,求离心率. 例8、已知椭圆一焦点与短轴两端点连线的夹角为90?,求椭圆的离心率. 解:∵ |FO| = c , |OA| = b , |AF| = a ∴ 在△AOF 中, θcos =a c , θ = 45? ? cos45?=22 ∴ 椭圆的离心率e =22 说明:离心率与角度关系:θcos =e 例9.椭圆x 2 a 2 +y 2 b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ? 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2| . ( ) A. 16x 2+9y 2=1 B. 16x 2+12y 2=1 C. 4x 2+3y 2=1 D. 3x 2 +4 y 2=1 变式:椭圆12222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等于21∣AF ∣,求椭圆的离心率.(3 6) 10.焦点在Y 轴上的椭圆1422=+m y x 的离心率为21,则=m .

人教A版高二数学选修21第二章第二节椭圆经典例题汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2 1= e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ???-≠-<-<-,35,03,05k k k k 得53<

出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围. 解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)4 3,2( ππα∈. 说明:(1)由椭圆的标准方程知 0sin 1>α,0cos 1>-α ,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,α sin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式. 解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点, 即定点()03, -A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点, 半长轴为4,半短轴长为7342 2=-=b 的椭圆的方程:17162 2=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法. 2.焦半径及焦三角的应用 例1 已知椭圆13 42 2=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 解:假设M 存在,设()11y x M ,,由已知条件得 2=a ,3=b ,∴1=c ,2 1= e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:

圆锥曲线离心率专题

圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的范围是() A. B. C. D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是() A. [,1) B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值范围是() A.(﹣∞,0)B.(﹣3,0) C. (﹣12,0)D. (﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是() A. B. C.D. 6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( ) A. B. C. D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是() A. B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是() A. (0,) B. (,) C. (,) D. (,1) 9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围 是() A. B. C. D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为() A. [2,+∞) B.(,+∞)C. [,+∞) D.(,+∞) 11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值范围是() A. B. C. D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离 心率e的取值范围是() A.B. C. D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是( ) A. B. C. D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为() A.B.C. D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是() A. B. C. (1,2) D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是() A. (1,]B. (1,) C. (2,] D.(,2]

专题椭圆的离心率解法大全

专题:椭圆的离心率 一,利用定义求椭圆的离心率(a c e = 或 2 21?? ? ??-=a b e ) 1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e 3 2,椭圆1422=+m y x 的离心率为2 1,则=m [解析]当焦点在x 轴上时, 32124=?=-m m ; 当焦点在y 轴上时,316 214=?=-m m m , 综上3 16 = m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是 5 3 4,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 [解析]由??? ???≠=+=0 222 2mn n m n n m n ?? ?==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(12 1>>=+n m n m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为23 6,设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的 距离,则椭圆的离心率是2 1 。 二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e 1,在?Rt ABC 中,ο 90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ( ) 36-= e 2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο 901=∠BDB , 则椭圆的离心率为( ) [解析] =?=-?-=-?e ac c a c b a b 221)(21 5- 3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13- 变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

椭圆离心率高考练习题

椭圆的离心率专题训练 一.选择题(共29小题) 1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值围是() A. B. C. D. 2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为() A. B. C. D. 3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值围为() A. B. C. D. 4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为() A. B. C. D. 5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为() A. B. C. D. 6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,心I,且有(其中λ为实数),椭圆C的离心率e=() A. B. C. D. 7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值围是() A. B.C.D. 8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为() A. B.2﹣C.2(2﹣) D. 9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值围是() A. B.C.D.或 10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是() A. B. C. D. 11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值围是() A.(0,)B.(0,)C. D. 12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为() A. B. C. D.

相关文档
最新文档