汽轮机冷端系统—空冷系统简介

汽轮机冷端系统—空冷系统简介
汽轮机冷端系统—空冷系统简介

龙源期刊网 https://www.360docs.net/doc/f018118045.html,

汽轮机冷端系统—空冷系统简介

作者:刘东

来源:《中国高新技术企业》2015年第22期

摘要:汽轮机冷端系统是电厂重要的辅助系统,主要作用是冷却在汽轮机中做完功的乏汽,影响到火力发电厂汽轮机安全、稳定、经济运行。从国家的节能减排政策和节约用水两方面考虑,对于冷端系统的运行优化对火力发电厂发展是至关重要的,文章对汽轮机冷端系统—空冷系统进行了介绍。

关键词:汽轮机冷端系统;空冷系统;发电厂;冷却原理;散热器翅片文献标识码:A

中图分类号:TK264 文章编号:1009-2374(2015)21-0072-02 DOI:10.13535/https://www.360docs.net/doc/f018118045.html,ki.11-4406/n.2015.21.036

1 概述

我国南方水资源较丰富,但中西部地区水资源比较匮乏,随着中西部地区经济建设的发展,水资源逐渐成为制约我国中西部地区发展的重要因素。火电机组采用空冷技术后,电厂的耗水量比湿式循环冷却系统耗水量要降低75%~85%,节水效果十分显著。

随着我国中西部地区经济建设的快速发展,意识到节约用水对经济建设和发展的重要性,近年来我国中西部地区许多火电机组采用直接空气冷却系统,发电厂的发电成本和发电用水大幅降低,直接空气冷却系统得到了推广和应用。但目前我国直接空气冷却系统机组在这方面还处于摸索和起步阶段。因此,国内直接空气冷却系统机组设备的制造和研发,需要通过各火力发电厂在安装、调试、实际运行中收集的各项数据和积累的经验,对直接空气冷却系统不断进行技术革新,为火力发电产机组的安全、稳定、经济运行做出贡献。

2 发电厂空冷系统的方式

2.1 直接空气冷却系统

直接空气冷却系统,又称为直接空气冷却凝结系统。汽轮机作完功的乏汽经排汽大管道送至布置在室外的空气凝汽器的空冷散热器中,由冷却风扇将空气送至空冷散热器外流动,冷却管内的排汽,使排汽凝结成水,冷凝的凝结水再由凝结水泵送至热力系统中进行

循环。

2.2 间接空气冷却系统

汽轮机直接空冷应用

汽轮机直接空冷应用 在我国火力发电厂一般采用湿冷系统对机组进行冷却,但随着经济的发展,水资源的紧缺,此种传统的方法受到了限制,近年来随着直接空冷技术的日趋成熟,以及直接空冷技术在大容量机组中运行的实践经验,有着广阔的发展前景,特别对于富煤缺水地区,它的应用更能显示出优越性,它的应用将是未来的发展趋势。 1.空冷技术简介 空冷技术是指采用空气来直接或间接地冷却汽轮机排气的一种技术。当今由于大容量火力发电厂的正常运行需要充足的冷却水源,同时由于湿冷机组耗水量巨大,产生的废热排到江河、湖泊里造成生态平衡的破坏,而在缺水地区兴建大容量火力发电厂,就需要采用新的冷却方式来排除废热。 火力发电厂的排汽冷却技术主要分为两大类:水冷却和空气冷却(简称空冷)。发电厂采用翅片管式的空冷散热器,直接或者间接用环境空气来冷凝汽轮机的排汽,称为发电厂空冷。采用空冷技术的冷却系统称为空冷系统。采用空冷系统的汽轮发电机组称为空冷机组。采用空冷系统的发电厂称为空冷电厂。 发电厂空冷系统也称为干冷系统。它相对于常规发电厂湿冷系统而言的。常规发电厂的湿式冷却塔是把塔内的循环水以“淋雨”方式与空气直接接触进行热交换的。其整个过程处于“湿”的状态,其冷却系统称为湿冷系统。空冷发电厂的空冷塔,其循环水与空气是通过散热器间接进行热交换的,整个冷却过程处于“干”的状态,所以空冷塔又称干式冷却塔。 根据汽轮机排汽凝结方式的不同,发电厂的空冷系统可以分为直接空冷系统和间接空冷系统两大类。 2.直接空冷系统设备结构组成 直接空冷系统,又称空气冷凝系统,汽轮机的排汽直接用空气来冷凝,冷却空气通常用机械通风或自然通风方式供应。空冷凝汽器是由两或三排外表面镀锌的椭圆形钢管外套矩形钢翅片,或由单排扁平形钢管,外焊硅铝合金蛇形翅片的若干个管束组成。这些管束亦称空冷散热器。直接空冷系统的流程汽轮机排汽通过排汽管道送到室外的空冷凝汽器内,机械通风鼓风式轴流冷却风机使空气横向吹向空冷散热器外表面,将排汽冷凝成水,凝结水再经泵送回汽轮机的回热系统。直接空冷系统自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括:(1)汽轮机低压缸排汽管道系统;(2)空冷凝汽器;(3)凝结水系统设备;(4)抽气系统设备;(5)疏水系统设备;(6)通风系统设备;(7)直接空冷支撑结构;(8)自控系统设备;(9)清洗装置设备;(10)空冷汽轮机;(11)空冷散热器;(12)空冷风机。

直接空冷系统介绍

直接空冷凝器器系统介绍 一、系统简介 直接空冷凝汽器系统(英文Air Cooled Condenser System,缩写为ACC)是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换。所需冷却空气,通常由机械通风方式供应。直接空冷的凝汽设备称为空冷凝汽器,这种空冷系统的优点是设备少,系统简单,基建投资较少,占地少,空气量的调节灵活。该系统一般与高背压汽轮机配套。这种系统的缺点是运行时粗大的排汽管道密封困难,维持排汽管内的真空困难,启动时为造成真空需要的时间较长,机组效率低,一次能源消耗大。 二、系统构成概述 1、概述 通常ACCS一般主要由以下几部分构成: ?排汽管道和配汽管道 ?翅片管换热器 ?支撑结构和平台 ?风扇及其驱动装置 ?抽真空系统 ?排水和凝结水系统 ?控制和仪表系统 2、冷凝过程 空气冷却器一般采用屋顶结构(或称A型框架结构)。 来自汽轮机的尾汽通过排汽管道和配汽管道输送到翅片管换热器。配汽管道连接到汽轮机的排汽管道和位于上部的翅片管换热器。蒸汽被直接送入换热器的翅片管道内。蒸汽携带的热能由经过换热器翅片表面的冷却空气带走,冷却空气是由置于管束下面的轴流风机驱动的。 换热器一般采用KD布置方式,即顺流冷凝-反流冷凝的布置方式。

70%到80%的蒸汽在通过由上部的配汽管道到顺流冷凝的换热器中被冷凝成凝结水,凝结水流到底部的蒸汽/凝结水联箱中。顺流管束称为冷凝管束或称K 管束。 其余的蒸汽在成为D管束的反流管束中被冷凝,蒸汽是由蒸汽/凝结水联箱向上流动的,而凝结水由冷凝的位置向下流到蒸汽/凝结水联箱中并被排出。 这种KD形式的布置方式确保了在任何区域内蒸汽都与凝结水有直接接触,因此将保持凝结水的水温与蒸汽温度相同,从而避免了凝结水的过冷、溶氧和冻害。 从汽轮机到凝结水箱的整个系统都是在真空状态下。由于采用全焊接结构,从而保证整个系统的气密性。由于在与汽轮机连接的法兰处不可避免地会有空气漏进冷凝系统中,为了保持系统地真空,在反流管束的上端未冷凝的蒸汽和空气的混合物将被抽出。通过在上端部位的过冷冷却,使不可冷凝蒸汽的汽量被减小了。 反流(D)部分的设计应保证在任何运行条件下,不会在顺流(K)部分造成完全冷凝,以避免过冷和溶氧以及冻害的危险。 在不同热容量和环境温度下,通过调节空气流量的变化来控制汽轮机尾气的排汽压力。 3、换热器 热浸锌翅片管具有从管子到翅片良好的导热性能。这是由于在翅片根部和管子的间隙被充满锌而具有毛细总用。 由于钢制管子和钢制翅片是同种材质,从而避免热应力的产生,而热应力对热传导不利。 由于翅片管束必须承受极大的阻力,它们必须具有很高的强度。钢制翅片可以抵抗典型的机械冲击,比如冰雹、清洗设备的高压水(200bar),或维护工人的体重。在运输和安装过程中不易损坏。由于钢制翅片管束具有较短的深度,因此更能适宜清洗设备的高压水的冲击。 而且,热浸锌翅片管具有良好的防腐性能和长达超过25年的使用寿命。4、支撑结构和平台 根据实际经验,屋顶型结构的空气冷凝器具有可靠的凝结水排水功能并且减少了占地面积。

空冷系统简介

1 空冷系统简介 1.1 空冷技术方案介绍 在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。 1.1.1 直接空冷系统 直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。空冷凝汽器布置在汽机房A列外的高架空冷平台上。 直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。 1.1.2 表凝式间接空冷系统 表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。 表凝式间接空冷与直接空冷相比,其特点是: 冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。 1.1.3 混凝式间接空冷系统 典型的混凝式间接空冷系统组成:主要由混合式(喷射式)凝汽器、全铝制的福哥型冷却三角散热器(带百叶窗)、(预热/尖峰冷却器)、自然通风冷却塔、循环水泵组、循环水管路、回收水能的水轮发电机组、贮水箱、充水泵组、

汽轮机控制系统

汽轮机控制系统 包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。控制系统的内容和复杂程度依机组的用途和容量大小而不同。各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。 调节系统用来保证机组具有高品质的输出,以满足使用的要求。常用的有转速调节、压力调节和流量调节3种。①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。图 1 [液压式调速 器]为两种常用的液压式调速器的

工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速 器])或旋转阻尼(图1b[液压式调速

器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。②压力调节:用于供热式汽轮机。常用的是波纹管调压器(图 2 [波纹管调压 器])。调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。流量信号通常用孔板两侧的压力差(1-2)来测得。图3 [压

差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。 汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。通常采用的是机械式(采用机械和液压元件)调节系统。而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。70年代以前,不论机械式或电液式调节系统,所用信息全是模拟量;后来不少机组开始使用数字量信息,采用数字式电液调节系统。 汽轮机调节系统是一种反馈控制系统,是按自动控制理论进行系统动态分析和设计的。发电用汽轮机的调节工业和居民用电都要求频率恒定,因此发电用汽轮机的调节任务是使汽轮机在任何运行工况下保持转速基本不变。在图 4 [机械式调速系

25MW直接空冷凝汽式汽轮机

Z835.34/02 NZK25-2.5/390型 25MW直接空冷凝汽式汽轮机 热力特性书 北京全四维动力科技有限公司

北京全四维动力科技有限公司代号Z835.34/02 NZK25-2.5/390型代替25MW直接空冷凝汽式汽轮机热力特性书共 22 页第 1 页 编制谷振鹏2011年12月20日 校对李海朋2012年01月29日 审核王琦2012年01月30日 会签 标准审查 审定 批准 标记数量页次文件代号简要说明签名磁盘(带)号底图号旧底图号归档

代号:Z835.34/02 共22 页第2 页 目录 1. 通流计算 1.1 典型工况数据汇总表 (3) 1.2 典型工况热平衡图 (5) 1.3 阀杆汽封系统总图 (13) 1.4 静推力示意图及最大轴向推力 (14) 1.5 蒸汽管道速度计算 (15) 2. 配汽计算 2.1 高压调节阀流量—升程曲线 (16) 3. 汽封、阀杆漏汽汇总表及修正曲线 3.1 夏季工况阀杆及汽封漏汽汇总表 (17) 3.2 额定出力工况阀杆及汽封漏汽汇总表 (18) 3.3 初压修正曲线 (19) 3.4 初温修正曲线 (20) 3.5 背压修正曲线 (21) 3.6 余速损失修正曲线 (22)

代号:Z835.34/02 共22 页第3 页典型工况数据汇总表(一) 工况项目夏季工况 最大连续 出力工况 额定出力 工况 最大进汽量 最高背压工况 主蒸汽压力MPa(a) 2.5 2.5 2.5 2.5主蒸汽温度℃390390390390主蒸汽流量t/h 128128117128背压kPa(a) 30151550排汽温度℃69.154.054.081.3排汽汽量t/h 126.4126.4115.4126.4给水温度℃71.055.956.083.2机组内效率0.8800.8700.8710.871发电机端功率MW 25.127.625.222.7汽耗kg/kW.h 5.10 4.64 4.65 5.65热耗kJ/kW.h 14881.013833.013869.116202.3 kcal/kW.h 3554.33304.03312.63869.9

水冷、空冷与间接空冷汽轮机

§4.3现场试验情况简介 §4.3.1漳山电厂空冷汽轮机试验过程 测量试验于9月12日-17日进行,同时参加试验的单位还有北京中能蓝天节能技术开发有限公司、德国斯图加特大学,以及法国EDF 。 漳山电厂目前有2台300MW 直接空冷汽轮机组,2台600MW 直接空冷机组正在建设中。相对于水冷汽轮机组,直接空冷机组运行的显著特点是背压受气候变化影响大,机组的设计背压范围较大,一般为15-60kpa 。机组背压的变化对低压缸末级出口的湿蒸汽参数有很大的影响。有关文献指出空冷汽轮机低压缸末几级中的主流蒸汽,并不是任何运行工况时都有湿度出现,而是要背压降到一定程度才会出现水蒸汽的凝结。因此在试验过程中,使其背压从60kpa 逐渐降低到15kpa ,有可能实现低压缸排汽参数从过热蒸汽到湿蒸汽的变化过程。通过测量此过程的湿蒸汽参数,可以更好的了解湿蒸汽的凝结过程,并结合异质和均质成核凝结机理,以期更深刻地理解透平中的凝结流动机理,为理论研究、工业设计以及现有的数值模拟计算提供试验依据。 图4.9,4.10是漳山电厂现场试验和探针安装照片。 §4.3.2宣威电厂水冷汽轮机试验过程(这里解释一下,所谓水冷与空冷机组的区别:其实它们都属于凝汽式汽轮机,不是背压式的,所以背压一般接近真空的,一般为50kpa ,水冷是汽机排汽到凝汽器中,凝汽器相当于一个换热器,由冷却水把热量带出,蒸汽变成了凝结水;而空冷又分为直接空冷和间接空冷,间接空冷是汽轮机的排汽进入混合式凝汽器后,与从空气冷却器来的冷却水混合凝结为凝结水,这样的混合水流,一部分作为锅炉的给水,其余大部经循环消耗打入空气冷却器,构成一个封闭型间接空冷凝汽系统) 测量试验于2009年3月4-16日在云南宣威发电有限责任公司7号机组上进行。参加试验的单位有上海理工大学、东方汽轮机厂。 本次试验的7号汽轮机是东方汽轮机厂有限公司制造的300MW 水冷空冷式图4.9 漳山电厂现场试验 图4.10 漳山电厂现场安装探针

直接、间接空冷区别

简介 间接空冷系统,间接空冷系统指混合式凝汽器的间接空冷系统(海勒式间接空冷系统)和具有表面式凝汽器间接空冷系统(哈蒙式间接空冷系统)及其它。 (a)直接空冷系统——系利用机械通风使汽轮机排汽直接在翅片管式空冷凝汽器中凝结,一般由大管径排汽管道、空冷凝汽器、轴流冷却风机和凝结水泵等组成; (b)带表面式凝汽器的间接空冷系统——亦称哈蒙系统,由表面式凝汽器、空冷散热器、循环水泵以及充氮保护系统、循环水补充水系统、散热器清洗等系统与空冷塔构成。该系统与常规的湿冷系统基本相仿,不同之处是用空冷塔代替湿冷塔,用密闭式循环冷却水系统代替敞开式循环冷却水系统,循环水采用除盐水。 2资料 一、机械通风直接空冷系统(ACC) 该系统亦称为ACC系统,它是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换,其工艺流程为汽轮机排汽通过粗大的排气管道至室外的空冷凝汽器内,轴流冷却风机使空气流过冷却器外表面,将排汽冷凝成水,凝结水再经泵送回锅炉。 其优点有: ⑴不需要冷却水等中间介质,初始温差大。 a* |& a ⑵设备少,系统简单,占地面积少,系统的调节较灵活。 其缺点有: ⑴真空系统庞大在系统出现泄漏不易查找漏点,易造成除氧器、凝结水溶氧超标。 ⑵采取强制通风,厂用电量增加。 ⑶采用大直径轴流风机噪声在85分贝左右,噪声大。

⑷受环境风影响大。 二、表面式间接空冷系统 表面式凝汽器间接空冷系统的工艺流程为:循环水进入表面式凝汽器的水侧通过表面换热,冷却凝汽器汽侧的汽轮机排汽,受热后的循环水由循环水泵送至空冷塔,通过空冷散热器与空气进行表面换热,循环水被空气冷却后再返回凝汽器去冷却汽轮机排汽,构成了密闭循环。 带表面式凝汽器的间接空冷系统,与海勒式间接空冷系统所不同的是冷却水与汽轮机排汽不相混合,进行表面换热,这样可以满足大容量机组对锅炉给水水质较高的要求。该系统与常规的湿冷系统基本相同,不同之处是用空冷塔代替湿冷塔,用不锈钢凝汽器代替铜管凝汽器,用除盐水代替循环水,用密闭式循环冷却水系统代替敞开式循环冷却水系统。 其优点有: ⑴设备较少,系统较简单。 ⑵冷却水系统与凝结水系统分开,水质按各自标准处理,冷却系统采用除盐水,且闭式运行,基本杜绝凝汽器管束内结垢堵塞情况,大大提高换热效率。 ⑶循环水系统处于密闭状态,循环水泵扬程低,消耗功率少,厂用电率低。 ⑷冷却水在循环过程中完全为密闭循环运行,基本不产生水的损耗,理论上该系统耗水为零。 其缺点有:. ⑴冷却水必须进行两次热交换,传热效果差。 ⑵占地面积大。 ⑶初投资较直接空冷大。. 三、直接空冷机组与间接空冷机组环境气象条件包括气温,风速及风向性能、厂址海拔标高及厂址处的大气压力、辐射热的对比: 直接空冷与间接空冷在气温、风速及风向性能、厂址海拔标高及厂址处的大气压力、辐射热对比表 气温 风速及风向性能(安全性分析)

600MW级超临界直接空冷凝汽式汽轮机概述

600MW级超临界直接空冷凝汽式汽轮机概述 1.1概述 二期工程2×600MW级超临界直接空冷凝汽式汽轮发电机组,汽轮机设备为东方汽轮机有限公司生产超临界空冷汽轮机,型号为:TC4F-26(24.2MPa/566℃/566℃),型式:超临界、一次中间再热、三缸四排汽、单轴、直接空冷凝汽式汽轮机;该机组额定出力637MW;最大连续出力为662MW,汽轮机采用复合变压运行方式;具有七级非调整回热抽汽。给水系统采用2×50%汽动给水泵,不设备用泵,由于主汽轮机采用直接空冷汽轮机,其背压变化幅度较大,给水泵驱动汽轮机排汽不宜排入主汽轮机的空冷器中,每台给水泵汽轮机各自配置一台水冷凝汽器,给水泵驱动汽轮机排汽凝结水直接排入主汽轮机的排汽装置中,给水泵汽轮机本体疏水排入给水泵汽轮机凝汽系统中。 由于二期汽轮机乏汽采用空冷冷却系统,节省了一期湿冷系统的风吹、蒸发、排污等水量损失,年平均节约水量约1904m3/h。其用水量比一期湿冷系统节水70%。投资上与混凝式间接空冷系统相比,可降低工程投资35.7%;与表凝式间接空冷系统相比,可降低工程投资40.2%。 王曲电厂超临界机组与我厂一期亚临界机组相比汽轮机

组热耗将低约4.5%。超临界机组是指锅炉的新蒸汽的压力大于临界压力(22.115MPa)小于25MPa的锅炉和汽轮机发电机组。在超临界和超超临界状态,水由液态直接成为汽态(由湿蒸汽直接成为过热蒸汽或饱和蒸汽),热效率高。因此,超临界,超超临界发电机组已经成为国外,尤其是发达国家主力机组。由于机组效率提高,污染物的排放也相应减少,经济效益十分明显。 超临界机组是火电机组大家族中的“节能减排新星”。超临界机组和亚临界机组特点比较它具有如下特点: (1) 热效率高、热耗低。可节约燃料,降低能源消耗和大气污染物的排放量。 (2) 超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。 (3) 超临界锅炉水冷壁管道内单相流体阻力比亚临界汽包炉双相流体阻力低。 (4) 超临界压力下工质的导热系数和比热较亚临界压力的高。 (5) 超临界压力工质的比容和流量较亚临界的小,故锅炉水冷壁管内径较细,汽机的叶片可以缩短,汽缸可以变小,降低了重量与成本。

直接空冷系统技术要求规范书

直接空冷系统技术规书 项目名称:。。。。。能源1×75t/h中温中压尾气锅炉+1×12MW汽轮发电机项目 需方:。。。。。热电厂 设计单位: 。。。。。设计工程有限责任公司 使用方: 。。。。。热电厂 投标方: 2017年2月16日

目录 一.总则 二.设备的运行条件 三.设备规 四.技术要求 五.供货围 六.设计、制造、验收标准 七. 监造 八. 技术资料要求 九.技术服务联络方式

一. 总则 1.1 本规书的使用围,仅限于。。。。。能源1×75t/h中温中压尾气锅炉+1× 12MW汽轮发电机项目,本期工程共安装1台中温中压75t/h的炭黑尾气锅炉及1台12MW空冷抽凝式汽轮发电机组,汽轮机排汽冷凝系统采用直接空冷系统。它包括本体、附属部件的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本规书提出的是最低限度的技术要求,并没有对所有技术细节作出规定, 也未具体引述有关标准和规的条文。投标方应保证提供符合本规书和工业标准的优质产品。 1.3 如果需方有除本规书以外的特殊要求,应以书面形式提出,并对每一点 都作详细说明,载于本规书之后。 1.4 如投标方没有以书面对本规书的条文提出异议。那么需方可以认为投标 方提出的产品完全满足本规书的要求。 1.5 本规书为订货合同的附件,与合同正文具有同等法律效力。 二. 设备的运行条件 2.1直接空冷系统的安装位置:主厂房汽机间尾部,架空于道路上,单排室外布置。 2.2设备运行环境条件 大气压力:年平均气压904.8 mbar 相对湿度:年平均52 %

年平均气温:19℃ 绝对最高温度45.5 ℃ 绝对最低温度-19.9 ℃ 风速及风向:年平均风速 2.3 m/s, 主导风向: 年平均降雨量501.6 mm 最大积雪深度150mm 最大冻土深度610 mm 地震烈度:7度 三. 设备规 3.1 设备名称:直接空冷系统岛 3.2数量:1套, 3.3设计和运行条件 汽轮发电机组参数:(由买方提供) 汽轮机排汽背压:15kPa 汽轮发电机组额定功率:12MW 汽轮机排汽量:68t/h 排汽焓:2598kJ/kg 额定排汽温度:54℃ 四、技术要求

空冷汽轮机设计的几个主要问题

空冷汽轮机设计的几个主要问题 摘要:空冷汽轮机设计和湿冷汽轮机设计在设计上存在着较大的差别,这是因为空冷汽轮机具有背压压值高、背压波动范围大和背压变化频繁等特点。本文通过阐述汽轮机设计中空冷方案与湿冷方案的差别,并且就空冷汽轮机空冷方案设计的特点进行分析,最后就空冷汽轮机设计中容易出现的几个主要问题进行研究,旨在为大型空冷汽轮机的设计提供参考意见。 关键词:空冷汽轮机设计;方案;主要问题;参考意见 引言 空冷汽轮机是当前电厂运用较多的汽轮机组,空冷汽轮机与湿冷汽轮机是由于其凝汽式汽轮机的冷却方案不同,两者在结构上有不少类似之处。因此在进行空冷汽轮机设计设计的时候要充分结合湿冷汽轮机的结构特点以及设计要求,制定出科学的措施去解决空冷汽轮机设计中的主要问题,优化空冷汽轮机的设计。 1.空冷方案与湿冷方案的原始差别 对于很多设计方案来说由于共同技术目标都是一致的,因而很多技术方案的大部分内容都是相同的,真正的原始差别往往只有一点而已,但是这一点就导致了技术方案之间的差距。对于汽轮机的设计方案来说,空冷方案与湿冷方案的原始差别主要集中在排热方式上。对于空冷方案采取的是闭合散热方式,而湿冷方案采取的则是开放散热方式,正是因为空冷方案与湿冷方案的散热机理不相同才导致两种方案有着较大的差别。由于空冷汽轮机的散热方式是通过闭合方式通过金属管壁将热量排放到空气中,因此环境压力产生的汽轮机背压与大气干球温度有着直接的关系;而对于湿冷汽轮机来说,通过水循环系统与空气之间进行直接的热量交换,通过水的蒸发吸热将汽轮机中的热量排放出去,这种情况下汽轮机的背压与湿球温度直接相关。因此在相同的内部参数控制以及环境的影响之下,空冷汽轮机组的背压比湿冷汽轮机组要大很多,因此带来的能量损耗也较大。对于空冷汽轮机组没有相应的温度补偿功能,导致其背压变化范围大且变化频繁,当环境温度以及风力发生变化的时候,空冷汽轮机组背压也随之发生变化;而对于湿冷汽轮机组来说其具有湿球温度变化系统,当大气温度发生变化的时候,水蒸气的蒸发量也随之发生变化。湿冷机组背压变化主要受季节影响,因此其背压变化幅度也较小。 2.空冷方案的几个特点 与湿冷方案相比,由于空冷方案采取的是闭合的散热方式而湿冷方案采取的是开放式的散热方式,因此空冷方案主要有以下几个特点。 2.1节约水资源

空冷机组简介

概述 此节简单描述了GEA 公司的机械通风空气冷凝器即通常所称的空气冷凝器或ACC 。 GEA 公司的空气冷凝器由下列部件构成: ? 排气管道 (1) 和 配汽管道 (2) ? 翅片管换热器 (3) ? 支撑结构和平台 (4) ? 风扇及其驱动装置 ? 抽真空系统 (5) ? 排水和凝结水系统 (6) ? 控制系统和仪表 2 3 1 4 4 6 6 6 5 5 冷凝过程 GEA 公司的空气冷凝器将采用屋顶结构(或称A 型框架结构)。 来自汽轮机的尾气通过排汽管道和配汽管道输送到翅片管换热器。配汽管道连接到汽轮机的排汽管道和位于上部的翅片管换热器。蒸汽被直接送入换热器的翅片管道内。蒸汽携带的热能由经过换热器翅片表面的冷却空气带走,冷却空气是由置于管束下面的轴流风机驱动的。 换热器采用GEA 公司发明的KD 布置方式,即顺流冷凝-反流冷凝的布置方式。 70%到80%的蒸汽在通过由上部的配汽管道到顺流冷凝的换热器中被冷凝成凝结水,凝结水流到底部的蒸汽/凝结水联箱中。顺流管束称为冷凝管束或称K 管束。 其余的蒸汽在称为D 管束的反流管束中被冷凝,蒸汽是由蒸汽/凝结水联箱向上流动的,而凝结水由冷凝的位置向下流到蒸汽/凝结水联箱中并被排出。 这种KD 形式的布置方式确保了在任何区域内蒸汽都与凝结水有直接的接触,因此将保持凝结水的水温与蒸汽温度相同,从而避免了凝结水的过冷、溶氧和冻害。 从汽轮机到凝结水箱的整个系统都是在真空状态下。由于采用全焊接结构,从而保证整个系统的气密性。由于在与汽轮机连接的法兰处不可避免地会有空气漏进冷凝系统中,为了保持系统的真空,在反流管束的上端未冷凝的蒸汽和空气的混合物将被抽出。通过在上端部位的过冷冷却,使不可冷凝蒸汽的汽量被减小了。 反流(D )部分的设计应保证在任何运行条件下,不会在顺流(K )部分造成完全冷凝,以避免过冷和溶氧以及冻害的危险。 在不同热容量和环境温度下,通过调节空气流量的变化来控制汽轮机尾气的排汽压力。

火力发电厂的直接空冷系统运行导则

【火力发电厂直接空冷系统运行导则】二次修改稿 目录 1 围 (2) 2 规性引用文件 (2) 3 术语和定义 (3) 4 总则 (5) 5 直接空冷系统的启动与停运................................................................... 错误!未定义书签。 6 直接空冷系统的运行与试验 (6) 7直接空冷系统故障诊断............................................................................. 错误!未定义书签。附录A 600MW空冷机组背压运行限制曲线示例 .. (20) 附录B 汽轮机组空冷系统最小热负荷表 (22) 附录C 蒸汽压力与饱和温度对照表 (23)

(正文) 1 围 1.1本导则规定了火力发电厂直接空冷系统运行的一般性原则及要求。 1.2本导则适用于新建、改(扩)建和运行的直接空冷机组。 2 规性引用文件 下列文件对于本导则的引用是必要的。凡是注日期的引用文件,其仅注日期的版本适用于本导则;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本导则。 GB3095-2012 环境空气质量标准 GB13223-2011 火电厂大气污染物排放标准 GB12348-2008 工业企业厂界环境噪声排放标准 GB 50660-2011 大中型火力发电厂设计规 DL/T552-1995 火力发电厂空冷塔及空冷凝汽器试验方法 DL/T244-2012 直接空冷系统性能试验规程 DL/T245-2012 发电厂直接空冷凝汽器单排管管束 DL/T 932-2005 凝汽器与真空系统运行维护导则 VG DL/T 1052-2007 节能技术监督导则

空冷控制系统

空冷控制系统 1.直接空冷系统构成 电厂直接空冷系统汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽各蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Air cooled condenser)、空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。 蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道向空冷冷凝器分配蒸汽。目前直接空冷凝汽器大多采用矩形翅片椭圆管芯管的双排、三排管各大口径蛇形翅片的单排管。空冷凝汽器由顺流管束各逆流管束两部分组成。顺流管束是冷凝蒸汽的主要部分,可冷凝75%~80%的蒸汽,在顺流管束中,蒸汽和凝结水是同方向移动的。设置逆流管束主要是为了能够比较顺畅地将系统内的空气和不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区、冬季形成冻结的情况,在逆流管束中,气体和凝结水是反方向移动的。 冷凝所需要的冷空所由轴流冷却风机从大所中吸入,并吹抽换热器翅片。风机采用变频控制,系统可通过控制启停风机台数和对风机转速进行调整来控制进风量,能灵活地适应机组变工况运行,产且起很好的防冻作用。 抽真空系统由3X100%水环真空泵组成。泵连接逆注管束的顶部和主排汽管道。在启动的时候,不凝气体在抽真空系统中被压缩,并排到大气中。在部分排派汽支管道上设置蒸汽隔离阀(启动排不设蒸汽隔离阀)当冬季汽轮机低负荷运行或启动时,切断某几个散热端的阀门,将热量集中在剩余的散热端中,增加热负荷达到防冻目的。为防止灰尘附着凝汽器翅片影响系统散热效果,设立冲洗系统,冲洗系统由冲洗水泵以及管道阀门组成。 为减少系统容积,大型机组的空冷凝汽器一般布置在紧靠汽机房A列柱外的平台上。为适应机组变工况运行各维护,空冷凝汽器被分为几组,每组由相同冷却单元组成,每个冷却单元由“人”型的冷却器排架构成,每个冷却单元下面设一台轴流风机。直接空冷机组原则性汽水系统如图1所示。

电厂空冷技术论文

目录 摘要 第一章发电厂空冷系统的方式 1.1 海勒式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 1.2 哈蒙式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 1.3 直接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5 第二章空冷技术在发电厂的应用场合及技术经济特性 2.1 空冷技术的应用‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.2 空冷技术的经济特性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 第三章发电厂空冷技术的应用概况及发展趋势 3.1 发电厂空冷与环境…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 3.2 国内外空冷技术的发展概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11 3.3 空冷技术的发展趋势‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 参考文献

摘要 目前我国火力发电厂多采用水冷技术,面对越来越紧迫的水资源缺乏问题,火力发电行业的发展受到极大挑战,而空气冷却相比普通湿冷塔技术可以节水大约2/3。文章介绍目前在国外许多大型火电机组项目中采用的各种类型的空气冷却技术及我国火力发电行业采用空气冷却技术的历史和发展现状为了推广空冷技术在电厂的应用,特做此设计以供大家参考。

第一章发电厂空冷系统的方式 发电厂空冷技术从提出到现在约有50年的历史,并在国际上有了迅速发展,目前已出现单机容量686MW的空冷机组。在干旱地区,空冷技术发展尤为迅速,并出现了多种类型,如直接空冷、干湿联合冷却机组等。发电厂空冷技术已成为当前发电厂建设中的一个热门课题。 当前用于发电厂的空冷系统主要有三种,即直接空冷、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。直接空冷多采用机械通风方式,20世纪90年代以来,比利时哈蒙—鲁姆斯公司提出采用自然通风,两种间接空冷多采用自然通风。 第一节海勒式间接空冷系统 混合式凝汽器间接空冷系统又称海勒式间接空冷系统,其发电厂如图所示。 1—锅炉; 2—过热器; 3—汽轮机; 4—喷射式凝汽器; 5—凝结水泵;6—凝结水精处理装置; 7—凝结水升压泵; 8—低压加热器; 9—除氧器;10—给水泵; 11—高压加热器; 12—冷却水循环泵; 13—调压水轮机;14—全铝制散热器; 15—空冷塔; 16—旁路节流阀; 17—发电机 该系统由喷射式凝汽器和装有福哥型散热器的空冷塔构成。系统中的冷却水都是高纯度的中性水。中性冷却水进入凝汽器直接与汽轮机排汽混合并将其冷凝。受热后的冷却水绝大部分由冷却水循环泵送至空冷塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。 海勒式间接空冷系统的优点:①以微正压的低压水系统运行,较易掌握,可与中背压汽轮机配套;②冷却系统消耗动力低,厂用电耗少,占地面积中等。缺点是:①铝制空冷散热器耐冲洗,耐抗冻性能差;②空冷散热器在塔外布置易受大风影响其带负荷能力;③设备系统复杂。

空冷型发电机组简介

空冷型发电机组简介 更新日期:2011-09-13 14:19:34 点击:105 1.发电机组空冷系统 1.1 空冷系统的单机容量 目前国内外电站空冷是二大类:一是间接空气冷却系统,二是直接空气冷却系统。其中间接空气冷却系统又分为混合式空气冷却系统和表面式空气冷却系统。世界上第一台1500KW直接空冷发电机组,于1938年在德国一个坑口电站投运,已有60多年的历史,几个典型空冷机组是:1958年意大利空冷电站2X36MW 机组投运、1968年西班牙160MW电站空冷机组投运、1978年美国怀俄明州Wodok 电站365MW空冷机组投运、1987年南非Matimba电站6X665MW直接空冷机组投运。当今采用表面式冷凝器间接空冷系统的最大单机容量为南非肯达尔电站 6X686MW;采用混合式凝汽器间接空冷系统的最大单机容量为300MW级,目前在伊朗投运的325MW(哈尔滨空调股份有限公司供货)运行良好。全世界空冷机组的装机容量中,直接空冷机组的装机容量占60%,间接空冷机组约占40%。 1.2 直接空冷系统的特点 无论是直接空冷,还是间接空冷电厂,经过几十年的运行实践,证明均是可*的。但不排除空冷系统在运行中,存在种种原因引发的问题,如严寒、酷暑、大风、系统设计不够合理、运行管理不当等。 这些问题有的已得到解决,从国内已投运的200MW空冷机组运行实践证明了这一点。 从运行电站空冷系统比较,直接空冷系统具有主要特点: (1)背压高; (2)由于强制通风的风机,使电耗大; (3)强制通风的风机产生噪声大; (4)钢平台占地,要比钢筋混凝土塔为小; (5)效益要比间接冷却系统大30%左右,散热面积要比间冷少30%左右; (6)造价相比经济。||| 2.直接空冷系统的组成和范围 2.1 直接空冷系统的热力系统 直接空冷系统,即汽轮机排汽直接进入空冷凝汽器,其冷凝水由凝结水泵排入汽轮机组的回热系统。 2.2 直接空冷系统的组成和范围 自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括: (1)汽轮机低压缸排汽管道; (2)空冷凝汽器管束; (3)凝结水系统;

汽轮机直接空冷系统概述

汽轮机直接空冷系统概述 直接空冷系统亦称为ACC(Air Cooled Condencer)系统,它是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来将排汽凝结。其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内,布置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面,将排汽冷凝为凝结水,凝结水再经凝结水泵送回汽轮机的回热系统。 直接空冷机组原则性汽水系统 1—锅炉;2—过热器;3—汽轮机;4—空冷凝汽器;5—凝结水泵;6—凝结水精处理装置;8—低压加热器;9—除氧器;10—给水泵;11—高压加热器;12—汽轮机排 汽管道; 13—轴流冷却风机;14—立式电动机;15—凝结水箱;17—

发电机 直接空冷系统的空冷岛部分 直接空冷系统的特点 直接空冷系统是将汽轮机排出的乏汽,由管道引入称之为空冷凝汽器的钢制散热器中,由环境空气直接将其冷却为凝结水,减少了常规二次换热所需要的中间冷却介质,换热温差大,效果好。该系统的主要特点还有: 1、自然界大风的影响比较严重。在夏季,自然气温普遍较高,如在这一时段再受到自然大风的影响,必然对机组的运行产生影响。各电厂在夏季高温段遇到外界大风时,均有不同程度的降负荷现象,特别是山西漳山电厂、大一电厂、

大二电厂在夏季高温时段皆因受到大风的影响,出现过机组跳闸现象。 自然大风影响是一个世界性难题,对直接空冷机组影响是很大的。但是,自然大风的影响又是很难人为克服的。因此,大一电厂在厂房顶部安装了测风装置采集数据,准备在进行相关数据分析的基础上,做出空冷机组应对自然大风的预案,尽量将因大风影响造成的损失降至最低。榆社电厂、漳山电厂也准备采取同样的措施。这种方法是否行之有效,还有待进一步探讨。 2、机组的真空系统严密性是一个普遍存在的问题。特别是有一个奇怪的现象,就是有些电厂在机组刚投运时,空冷系统的严密性较好,但通过运行一年半载后,出现了反常现象。由于空冷机组的真空容积庞大,汽轮机泄漏、安装焊接等原因,都会在很大程度上影响真空系统的严密性,致使机组背压提高,增大了煤耗,降低了机组带负荷的能力。针对上述情况,各电厂都采取了一些措施,如通过查漏检查,找到漏点并补漏;调整汽轮机轴端汽封等措施,尽量减小泄

电厂汽轮机冷端湿冷系统运行优化

电厂汽轮机冷端湿冷系统运行优化 发表时间:2019-09-10T09:04:42.937Z 来源:《基层建设》2019年第18期作者:刘志凯 [导读] 摘要:中国人口基数大,同时,经济的发展也相对较快,所以中国的年资源能源消耗量不断的升高,而且,中国的资源储备量在世界上来看并不算多,资源的消耗量确是高居世界资源消耗量的前位,国内资源的不合理开采和大量需求等问题,给环境的保护造成极大的压力,并且资源的匮乏也会抑制社会经济的发展。所以必须要研究如何才能低排放、低消耗的对资源进行利用。 河北建欣电力建筑安装有限责任公司河北石家庄 050000 摘要:中国人口基数大,同时,经济的发展也相对较快,所以中国的年资源能源消耗量不断的升高,而且,中国的资源储备量在世界上来看并不算多,资源的消耗量确是高居世界资源消耗量的前位,国内资源的不合理开采和大量需求等问题,给环境的保护造成极大的压力,并且资源的匮乏也会抑制社会经济的发展。所以必须要研究如何才能低排放、低消耗的对资源进行利用。 关键词:电厂;汽轮机;冷端系统;运行优化 随着国家的不断发展、社会经济的不断进步,中国对各资源方面的需求也随之增大,尤其是对电力的需求,较之以往,有了很大幅度的增加,庆幸的是这些年来不断涌现出火力发电厂的企业,这些火力发电厂在很大程度上解决了我国的电力需求问题,不过却有另一问题随之而来――火力发电厂的发展给中国的环境造成了极大的污染,而污染的问题,又逐渐成为人们关注的重点,目前各行业都在积极进行环保工作,努力减少和杜绝工作发展的污染因素,因此,火力发电厂的发展和生产也应该注意环保方面的问题,但是人们对于电力的需求又处于上升的状态,不可能为了环保而去少生产或不生产,所以如何提高效率就成为能否良好解决这一问题的关键。火力发电厂的良好运行,需要汽轮机冷端湿冷系统来调节。若是汽轮机冷端系统很好的运行,就能够提高整个机组的工作效率,也就能在一定程度上减少污染,即创造了收益,也保护了环境。汽轮机冷端湿冷的运行优化对机组也同样具有重大意义,运行时做到优化使用,合理分配,不仅可以提高此环节的工作效率,而且对整个机组的运行都有很大程度的提升。 1汽轮机工作原理 常提到的汽轮机工作原理一般分为两个方面,一是汽轮机级的工作原理;另一个就是指整个汽轮机组的工作原理。它的内容基本包括使汽轮机与外界负荷变化相适应的形式、蒸汽的流动还有叶片上作用力的产生和损耗的形成。 1.1级的工作原理 通常把汽轮机的级分成三个种类,根据蒸汽的能量值在汽轮机级内转换为机械功的方式分别是反动级、冲动级、速度级。先说反动级,反动级是蒸汽在静叶和动叶的流道中都发生膨胀,由于存在反动度而使得蒸汽在动叶的流道中加快,与此同时,它的流动性能也有所提高;而后是冲动级,冲动级和反动级原理上基本相反,冲动级是指蒸汽在喷嘴中膨胀,随着喷嘴流道截面积的逐渐变小,蒸汽在其中的速度逐渐加快;最后是速度级,也就是分几次利用蒸汽在喷嘴中膨胀后的动能,通常情况下是有两列动叶。单看理论,可以得出这样的结论:在同样的条件下,双列速度级的工作效率相当于3~4个冲动级或者6~8个反动级。也就是说,在不采用多级汽轮机的情况下,最大效率的设计方案是在蒸汽的等熵焓降大于一般的冲动级或反动级所能有效利用的限度时采用一个速度级。 1.2多级汽轮机原理 由于单级汽轮机所能有效利用的等熵焓降并不是很大,所以,为了能够有效利用较大的等熵焓降,一般会采用多级汽轮机。多级汽轮机的优点是:①各级等熵焓降之和大于整个汽轮机的等熵焓降H0,且两者之间的比值大于1。②在汽轮机工作的过程中,上一级的余速损失在特定的条件下可以在下一级中得到利用。 2优化原理 汽轮机冷端运行方式最直接有效的优化方式就是想办法提高机组的工作效率,而影响机组工作效率的其中一个重要因素就是凝汽器压力,正常情况下凝汽器压力的会有一个适应值,当凝汽器的压力减小时,机组的工作效率就会增大,也就达到了优化的目的。要想改变凝汽器的压力,需要改变微增功率,但是如何在当机组正常运行时,改变微增功率呢?当冷却水温和机组负荷条件不变时,凝汽器压力会随循环水流量的改变而发生改变,循环水流量的变化直接影响着循环水泵的消耗功率。循环水泵流量增加会使消耗的功率增大,但流量的增加,会使机组出力更多,效率得到提升,当水流量增加到一定程度时,机组出力效率增加所获得功率将会等于循环水泵的耗功。而在这之前,其差值会有一个最大值,循环水泵的叶片其角度是可以改变的,改变其叶片角度可以调节进水量。当水泵消耗与功率输出的差值最大时,这时整体输出(产生量-消耗量)也就最大。凝汽器真空压力才最适合。此时,叶片角度所控制的循环水量也就是该机组最优情况下所需的量。 3优化的方法 目前可用的优化的方法基本分为两种,第一种试验法,在现有的设备条件下,设定正常工作时汽轮机冷端系统的冷却水进水温度和机组负荷,然后对循环水泵的最佳叶片安装角、最佳冷却水量、最佳真空这些地方进行单一变量的调试,每次调试后都要记录数据,当所有变量调试完成后,将所得数据进行分析,得出这些变量最合适的数值,依次来确定然后测得数据,分析计算,找到以上几个变量最适合的大小,然后确定最优的运行方式,这样的方式适应度较高,但是过程繁琐。 第二种方法是已经确定汽轮机的热力大小、机组容量,在设计阶段就采取较为经济的手段,并和已知的设备数据进行比较,计算分析得出冷却水量的多少、最佳真空等参数。 3.1凝汽器最佳真空 众所周知,提高凝汽器的真空可以让机组的电功率增大,但凝汽器的真空并不是越高越好,通过大量的计算和实验得出,凝汽器的真空有一个最佳值。水蒸气和循环水在凝汽器中相遇,用以凝结水蒸气。循环水流量的大小可以改变凝汽器的真空,增加循环水泵的流量就会让机组的功率增大,但是这样盲目提高循环水流量的话,机组厂用电消耗会更多,得不偿失。经过不断的实验发现,虽然增加流量会让机组做更多的功,但是当流量增加到一定速度的情况下,机组做功的功率就会等于循环水泵所消耗的功,在达到这个速度之前,两者的差值会有一个最大值,功率输出水泵消耗的差值最大时,这时整体输出也就最大。也就是说,当循环水泵所耗功率的增加值和改变循环水量使机组电功率的增加值之间的差值达到最大时所对应的真空称为最佳真空。 3.2最佳循环水流量确定方法 在计算循环水流量之前,首先要确定两个因素――汽轮机的排气量、循环水入口的温度,首先是温度,虽说循环水入口的温度受到很

相关文档
最新文档