第17章一元二次方程
第17章 一元二次方程-利用一元二次方程解决实际问题拓展 22--23学年沪科版数学八年级下册

利用一元二次方程解决传播问题
例7 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类
的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有
效隔离,经过两轮传染后共有256人感染新冠肺炎,求: (1)每轮传染中平均每个人传染了几个人? (2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多
(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.若围成的面积为180
m2,试求出自行车车棚的长和宽;
19米
A
D
分析 设AB=x,则BC=38﹣2x,则可表示出矩形面积,列方程求解即可,x
根据墙长19m这个限制条件确定正确答案.
B
C
38﹣2x
解答 设AB=x,则BC=38﹣2x;
例4 某钢厂1月份钢产量4万吨,2,3月份产量持续增长,第一季度共生产13.24万吨,求2,3月 份平均每月的增长率.
分析 设平均每月的增长率为x,根据1月份的产量依次求出2月份,3月份的产量,
根据:1月份钢产量+2月份钢产量+ 3月份钢产量= 13.24,列方程求解即可. 解答 解:设2、3月份平均每月的增长率为x,
解答 解:设月平均增长率为x,5月份的营业额为2800×(1+x),6月份的营业额为2800(1+x)2 根据题意列方程得:2800(1+x)2=3388, 解得:x=110 或 x -1201(舍去) 答:月平均增长率为10%.
求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过 两次变化后的数量关系为a(1±x)2=b.其中增长取“+”,降低取“﹣”
(1)设每件衬衫降价x元时,每天可销售__(__2_0_+__2_x_)__件,每件盈利__(__4_0_﹣__x_)___元;
17章一元二次方程的解法专题复习

程用直接开平方法求解
1. 方程4x2-25=0的解为C ( )
A.x= 2
B.x= 5
5
2
C.x=5
2
D.x=2
5
2. 用直接开平方法解下列一元二次方程,其
中无实数解的方程为( C )
A.x2-5=5
B.-3x2=0
C.x2+4=0
D.(x+1)2=0
类型2 当二次项系数为 1 ,且一次 项系数为偶数时,用配方法求解.
解:经验证 x 0不是方程的根,原方程 两边同除以 x2 得6x2 35x 62 35 x
设 y=x+1x,则 x2+x12=y2-2, 原方程可变为 6(y2-2)-35y+62=0. 解得 y1=52,y2=130. 当 x+1x=52时,解得 x1=2,x2=12; 当 x+1x=130时,解得 x3=3,x4=13. 经检验,均符合题意. 原方程的解为 x1=2,x2=12,x3=3,x4=31.
(3)x2 2x 339 0; 配方法
(4)(2x 1)2 3(2x 1). 因式分解法
(5)5x2 17 x 0 因式分解法
(6)(2x 1)2 4(3x 2)2 0 因式分解法
(7)40 x 2
600 x
640
0 化去系数的最大公因 数,再用因式分解法
(8)(x 8)2 16(x 8) 64 0 用整体完全 平方公式
(6) x2 1 0 7
2、若关于x的方程
(m 1)xm21 (m 2)x 3 0
(1)是一元二次方程, 则m的取值范围是什么
(2)是一元一次方程, 则m的取值范围是什么?
一般地,任何一个一元二次方程经过整理,____b_x____c_____0______(其中____≠0 )
第17章 一元二次方程单元测试卷-沪科版八年级数学下册(原卷版+解析版)

第17章一元二次方程单元测试卷(原卷版)【沪科版】考试时间:120分钟;满分:150分题号一二三总分得分第I卷(选择题)一、单选题(共40分)1.(本题4分)(2021·湖北·武汉市第四中学九年级阶段练习)将方程2x2=5x-1化为一元二次方程的一般形式,其中二次项系数为2,则一次项系数、常数项分别是()A.-5、1 B.5、1 C.5、-1 D.-5、-12.(本题4分)(2022·福建泉州·九年级期末)已知实数a是一元二次方程x2+x+8=0的根,则a4+a3-8a﹣1的值为()A.62 B.63 C.64 D.653.(本题4分)(2021·广东南海·九年级阶段练习)根据下列表格的对应值,由此可判断方程2x+12x﹣15=0必有一个解x满足()x ﹣1 1 1.1 1.2x2+12x﹣15 ﹣26 ﹣2 ﹣0.59 0.84A.﹣1<x<1 B.1<x<1.1 C.1.1<x<1.2 D.﹣0.59<x<0.84 4.(本题4分)(2022·重庆潼南·九年级期末)关于x的一元二次方程22+-+--=有一个根为0,则k的值是()(1)230k x x k kA.3 B.1 C.1或3-D.1-或35.(本题4分)(2020·广东·深圳市宝安区和平中英文实验学校九年级阶段练习)对于一元二次方程ax 2+bx +c =0(a ≠0),有下列说法:①当a <0,且b >a +c 时,方程一定有实数根;②若ac <0,则方程有两个不相等的实数根;③若a -b +c =0,则方程一定有一个根为-1;④若方程有两个不相等的实数根,则方程bx 2+ax +c =0一定有两个不相等的实数根. 其中正确的有( )A .①②③B .①②④C .②③D .①②③④ 6.(本题4分)(2020·福建省泉州第一中学九年级阶段练习)已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( ) A .74n ≥- B .74n >- C .2n ≥- D .2n >-7.(本题4分)(2022·重庆黔江·九年级期末)若1x 、2x 是230x bx b +-=的两个根,且22127x x +=,则b 的值是( )A .7-B .1C .1或7-D .7或1-8.(本题4分)(2021·河北赵县·九年级阶段练习)已知(x 2+y 2+1)(x 2+y 2﹣3)=5,则x 2+y 2的值为( )A .0B .4C .4或﹣2D .﹣29.(本题4分)(2021·山西·九年级期中)2021年是中国共产党成立100周年,山西某中学发起了“热爱祖国,感恩共产党”说句心里话征集活动,学校学生会主席要求征集活动在微信朋友圈里进行传递,规则为:将征集活动发在自己的朋友圈,再邀请n 个好友转发征集活动,每个好友转发朋友圈,又分别邀请n 个互不相同的好友转发征集活动,以此类推,已知经过两轮传递后,共有1641人参与了传递活动,则方程列为( )A .()211641n +=B .()()21111641n n ++++= C .21641n n +=D .211641n n ++=10.(本题4分)(2021·陕西·西安市中铁中学八年级期中)如图,在Rt △ABC 中,∠ACB =90°,将线段AB 绕着点A 逆时针旋转45°后其延长线交BC 的延长线于点D ,已知AC =3,BC =1,则点D 到AB 的距离是( )A .10B .4C 3104D 4105第II 卷(非选择题)二、填空题(共20分)11.(本题5分)(2021·吉林朝阳·九年级期末)若关于x 的一元二次方程22350x x +-=的一个根是m ,则2462021m m +-的值为______.12.(本题5分)(2021·四川·成都新津为明学校九年级阶段练习)代数式2524x x -+的最小值是_______.13.(本题5分)(2022·浙江·杭州外国语学校八年级期末)已知关于x 的一元二次方程ax 2+bx +1=0(a ≠0)有两个相等的实数根,那么222(2)4ab a b -+-的值是______. 14.(本题5分)(2021·辽宁沈阳·模拟预测)某公司今年7月的营业额为2500万元,按计划第三季度的总营业额要达到9100万元.设该公司8、9两月的营业额的月平均增长率为x ,根据题意可列方程为_______.三、解答题(共90分)15.(本题8分)(2021·河南·濮阳市华龙区高级中学九年级阶段练习)解下列方程:(1)22470x x --=(公式法)(2)2420x x ++=(配方法)(3)()()23430x x x -+-=(4)()()315x x +-=.16.(本题8分)(2022·广西博白·九年级期末)已知关于x 的方程mx 2-(m +2)x +2=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个根都是正整数,求整数m 的值.17.(本题8分)(2018·山东峄城·九年级期中)化简,再求值:22222232m n m m n m nm n m n mn ++⎛⎫-÷ ⎪---⎝⎭,其中m ,n 是方程22210x x -+=的两根.18.(本题8分)(2021·江苏东台·九年级阶段练习)某品牌童装进价每件120元、售价160元,平均每天可售出50件,为了迎接“国庆”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出5件.(1)商场原来平均每天盈利 元;(2)要想平均每天销售这种童装盈利3000元,那么每件童装应降价多少元?19.(本题10分)(2022·江苏溧水·九年级期末)某单位要修建一个长方形的活动区(图中阴影部分),根据规划活动区的长和宽分别为20m 和16m ,同时要在它四周外围修建宽度相等的小路.已知活动区和小路的总面积为480m 2.(1)求小路的宽度.(2)某公司希望用50万元承包这项工程,该单位认为金额太高需要降价,通过两次协商,最终以32万元达成一致.若两次降价的百分率相同,求每次降价的百分率.20.(本题10分)(2022·山西襄汾·八年级期末)阅读与思考配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.例如:()()()()()2222245422529232351x x x x x x x x x +-=++--=+-=+++-=+- (1)解决问题:运用配方法将下列多项式进行因式分解①234x x+-;②289x x--(2)深入研究:说明多项式2612x x-+的值总是一个正数?(3)拓展运用:已知a、b、c分别是ABC的三边,且2222220a ab b bc c-+-+=,试判断ABC的形状,并说明理由.21.(本题12分)(2022·重庆实验外国语学校九年级开学考试)2019年我校附近某楼盘推出一种面积为100平方米的三室两厅的户型,以每平方米12000元的均价对外销售.我校张老师打算买一套自住,由于购房资金不足,张老师只好“望楼兴叹”,决定等两年再考虑买房.自2019年底出现疫情以来,商品房价格稳中略有下降,房地产开发商为了加快资金周转,决定进行降价促销,自2019年经过连续两年下调后,2021年的均价为每平方米10830元.(1)求这一户型房价平均每年下调的百分率;(2)进入2022年,近日张老师得知该楼盘自己两年前想买的这一户型仍有少量剩余房在售,单价较2021年的均价再次下调10%.张老师认真计算了一下,过去两年,每月固定存入相同数量的资金(存入的资金是100的整数倍),刚好存满2年(24个月),加上原有积蓄40万元,还可以根据个人征信情况向银行贷款50万元,可以凑齐房款,决定马上购买.请问张老师这两年每月至少固定存入多少元?22.(本题12分)(2016·河北·九年级专题练习)李老师布置了两道解方程的作业题:(1)选用合适的方法解方程:(x+1)(x+2)=6;(2)用配方法解方程:2x2+4x-5=0.以下是小明同学的作业:(1)解:由(x+1)(x+2)=6,(2)解:由2x2+4x-5=0,得x+1=2,x+2=3,得2x2+4x=5,所以x1=1,x2=1.x2+2x=5 2,x 2+2x +1=52-1,(x+1)2=32,x +1=±62x 1=-1+62,x 2=-1-62.请你帮小明检查他的作业是否正确,把不正确的改正过来.23.(本题14分)(2021·福建省莆田市中山中学八年级期中)同学们上学期学习分式,整式还有这个学期的二次根式.小明发现像22,m n mnp m n ++如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式. 他还发现像22,(1)(1)m n m n +--等神奇对称式都可以用,mn m n +表示.例如:222()2m n m n mn +=+-,(1)(1)()1m n mn m n --=-++.于是小明把mn 和m n +称为基本神奇对称式.请根据以上材料解决下列问题:(1)代数式mn ②22m n -,③n m ,(0,0,0)xy yz xz x y z ≥≥≥中,属于神奇对称式的是________(填序号);(2)已知2()()x m x n x px q --=-+.①若3,2p q ==-,则神奇对称式11m n+=_________; ②20p q =,求神奇对称式3311m n m n +++的最小值.第17章一元二次方程单元测试卷(解析版)【沪科版】考试时间:120分钟;满分:150分题号一二三总分得分第I卷(选择题)一、单选题(共40分)1.(本题4分)(2021·湖北·武汉市第四中学九年级阶段练习)将方程2x2=5x-1化为一元二次方程的一般形式,其中二次项系数为2,则一次项系数、常数项分别是()A.-5、1 B.5、1 C.5、-1 D.-5、-1【答案】A【解析】【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0),a、b、c分别是二次项系数、一次项系数、常数项.【详解】解:2x2=5x-1化为一元二次方程的一般形式2x2-5x+1=0,一次项系数、常数项分别是-5,1,故选:A.【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.(本题4分)(2022·福建泉州·九年级期末)已知实数a是一元二次方程x2+x+8=0的根,则a4+a3-8a﹣1的值为()A.62 B.63 C.64 D.65【答案】B【解析】【分析】把方程的解代入方程得到关于a的等式,然后利用等式对代数式进行化简求值.【详解】解:∵a是一元二次方程x2+x+8=0的一个根,∴a2+a+8=0∴a2+a=-8,∴a4+a3+8a-1=a2(a2+a)-8a-1=-8a2-8a-1=64-1=63,故选:B.【点睛】本题考查的是一元二次方程的解,把方程的解代入方程,得到关于a的等式,利用等式对代数式进行化简并求出代数式的值.3.(本题4分)(2021·广东南海·九年级阶段练习)根据下列表格的对应值,由此可判断方程2x+12x﹣15=0必有一个解x满足()x ﹣1 1 1.1 1.2x2+12x﹣15 ﹣26 ﹣2 ﹣0.59 0.84A.﹣1<x<1 B.1<x<1.1 C.1.1<x<1.2 D.﹣0.59<x<0.84【答案】C【分析】利用表中数据得到x=1.1时,x 2 +12x ﹣15=-0.59<0,x=1.2时,x 2 +12x ﹣15=0.84>0,则可以判断方程x 2 +12x ﹣15=0时,有一个解x 满足1.1<x <1.2.【详解】∵x=1.1时,x 2 +12x ﹣15=-0.59<0,x=1.2时,x 2 +12x ﹣15=0.84>0,∴ 1.1<x <1.2时,x 2 +12x ﹣15=0即方程x 2 +12x ﹣15=0必有一个解x 满足1.1<x <1.2,故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.(本题4分)(2022·重庆潼南·九年级期末)关于x 的一元二次方程22(1)230k x x k k +-+--=有一个根为0,则k 的值是( )A .3B .1C .1或3-D .1-或3【答案】A【解析】【分析】 把x =0代入原方程得到转化关于k 的方程,然后结合二次项系数不等于0求解即可.【详解】解:∵关于x 的一元二次方程22(1)230k x x k k +-+--=的一个根是0,∴2k -2k -3=0,且k +1≠0,∴k =3.【点睛】本题主要考查了一元二次方程根的定义,一元二次方程的解法,一元二次方程的定义等知识点,熟练掌握一元二次方程根的定义是解题的关键.5.(本题4分)(2020·广东·深圳市宝安区和平中英文实验学校九年级阶段练习)对于一元二次方程ax 2+bx +c =0(a ≠0),有下列说法:①当a <0,且b >a +c 时,方程一定有实数根;②若ac <0,则方程有两个不相等的实数根;③若a -b +c =0,则方程一定有一个根为-1;④若方程有两个不相等的实数根,则方程bx 2+ax +c =0一定有两个不相等的实数根. 其中正确的有( )A .①②③B .①②④C .②③D .①②③④ 【答案】C【解析】【分析】①令3a =-,1b =-,1c =-,由判别式即可判断;②若0ac <,则a 、c 异号,由判别式即可判断;③令1x =-得0a b c -+=,即可判断;④取1a =,0b =,1c =-来进行判断即可.【详解】①由当3a =-,1b =-,1c =-,2(1)4(3)(1)110∆=--⨯-⨯-=-<,方程此时没有实数根,故①错误;②若0ac <,a 、c 异号,则240b ac ∆=->,方程20ax bx c ++=一定有两个不相等的实数根,所以②正确;③令1x =-得0a b c -+=,则方程一定有一个根为1-;③正确;④当1a =,0b =,1c =-时,20ax bx c ++=有两个不相等的根为±1,但方程20bx ax c ++=只有一个根为1,故④错误.故选:C .【点睛】本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键. 6.(本题4分)(2020·福建省泉州第一中学九年级阶段练习)已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( ) A .74n ≥- B .74n >- C .2n ≥- D .2n >-【答案】A【解析】【分析】 由2104m m c -+=变形得214m m c -=-,代入22112124n m m c =-++中得到2134n c c =-+,再进行配方,根据非负数的性质即可得到答案.【详解】2104m m c -+= ∴ 214m m c -=- ∴22111()244m m m -=--≥- 1c ∴≤22222211111121212()12()344444n m m c m m c c c c c ∴=-++=-++=⨯-++=-+ 23()22n c ∴=-- 231()24c -≥74n ∴≥- 故选:A .【点睛】本题主要考查了配方法的应用,涉及非负数的性质、偶次方,熟练运用上述知识是解题的关键.7.(本题4分)(2022·重庆黔江·九年级期末)若1x 、2x 是230x bx b +-=的两个根,且22127x x +=,则b 的值是( )A .7-B .1C .1或7-D .7或1-【答案】B【解析】【分析】 根据根与系数关系得出12123x x b x x b +=-⋅=-,,由22127x x +=配方得()22212121227x x x x x x +=+-=,得出方程()()2237b b --⨯-=,解方程即可. 【详解】解:∵1x 、2x 是230x bx b +-=的两个根,∴12123x x b x x b +=-⋅=-,,∵22127x x +=, ∴()22212121227x x x x x x +=+-=, ∴()()2237b b --⨯-=, 2670b b +-=,解得1217b b ==-,,但b =-7时,方程为27210x x -+=,此时()274210∆=--⨯<,所以原方程无实数根,故选B.【点睛】本题考查根与系数关系,完全平方公式变形,解一元二次方程,掌握根与系数关系,完全平方公式变形,解一元二次方程是解题关键.8.(本题4分)(2021·河北赵县·九年级阶段练习)已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值为()A.0 B.4 C.4或﹣2 D.﹣2【答案】B【解析】【分析】设x2+y2=z,则原方程换元为z2﹣2z﹣8=0,可得z1=4,z2=﹣2,由此即可求解.【详解】解:设x2+y2=z,则原方程换元为(z+1)(z﹣3)=5,整理得:z2﹣2z﹣8=0,∴(z﹣4)(z+2)=0,解得:z1=4,z2=﹣2,即x2+y2=4或x2+y2=﹣2,∵x2+y2≥0,∴x2+y2=﹣2不合题意,舍去,∴x2+y2=4.故选:B.【点睛】本题考查了换元法解一元二次方程,正确掌握换元法是解决本题的关键,注意代数式x2+y2本身的取值范围不能忘.9.(本题4分)(2021·山西·九年级期中)2021年是中国共产党成立100周年,山西某中学发起了“热爱祖国,感恩共产党”说句心里话征集活动,学校学生会主席要求征集活动在微信朋友圈里进行传递,规则为:将征集活动发在自己的朋友圈,再邀请n个好友转发征集活动,每个好友转发朋友圈,又分别邀请n个互不相同的好友转发征集活动,以此类推,已知经过两轮传递后,共有1641人参与了传递活动,则方程列为()A.()211641n+=B.()()21111641n n++++=C.21641n n+=D.211641n n++=【答案】D【解析】【分析】设邀请了n个好友转发朋友圈,第一轮转发了n个人,第二轮转发了n2个人,根据两轮转发后,共有1641人参与列出方程即可.【详解】解:由题意,得n2+n+1=1641,故选:D.【点睛】本题考查了一元二次方程的应用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数,根据两轮总人数为1641人建立方程是关键.10.(本题4分)(2021·陕西·西安市中铁中学八年级期中)如图,在Rt△ABC中,∠ACB=90°,将线段AB绕着点A逆时针旋转45°后其延长线交BC的延长线于点D,已知AC=3,BC=1,则点D到AB的距离是()A.10B.4 C 3104D4105【答案】C【解析】【分析】利用勾股定理求得AB 的长,设DE =x ,用x 表示出CD ,在Rt △ACD 中,利用勾股定理构造方程,求解即可.【详解】解:在Rt △ABC 中,AC =3,BC =1,∴AB=22223110AC BC +=+=,过点D 作DE ⊥AB 于点E ,∵∠BAD =45°,∴AE =DE , 设DE =x ,则AE =DE =x ,AD 2x ,BE 10x ,在Rt △BDE 中,222BE DE BD +=,∴BD ()2210x x -+,则CD ()22101x x -+,在Rt △ACD 中,222CD AC AD +=,即()()2222210132x x x ⎫-++=⎪⎭,()2222210*********x x x x x x -++--++=, ()22101010x x x =-+ 222100************ x x x x -+=-++,281810900x x -+=,即24910450x x -+=,(2249104445900b ac =-=--⨯⨯=>,∴x 91090910310±±= ∴x 1910310310+=(舍去),x 2910310310-= ∴点D 到AB 310, 故选:C .【点睛】本题考查了勾股定理,解一元二次方程,等腰直角三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.第II 卷(非选择题)二、填空题(共20分)11.(本题5分)(2021·吉林朝阳·九年级期末)若关于x 的一元二次方程22350x x +-=的一个根是m ,则2462021m m +-的值为______.【答案】-2011【解析】【分析】由关于x 的一元二次方程22350x x +-=的一个根是m ,可得2235m m +=,再由()224202122320216m m m m -=+-+求解即可.【详解】解:∵关于x 的一元二次方程22350x x +-=的一个根是m ,∴22350m m -=+,∴2235m m +=,∴()2242021223202110202126011m m m m -=+-=-=-+.故答案为:-2011.【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.12.(本题5分)(2021·四川·成都新津为明学校九年级阶段练习)代数式2524x x -+的最小值是_______. 【答案】14##0.25 【解析】【分析】 利用配方法得到:22512(1)44x x x -+=-+.利用非负数的性质作答. 【详解】 解:因为22512(1)44x x x -+=-+≥0, 所以当x =1时,代数式2524x x -+的最小值是14, 故答案是:14. 【点睛】本题主要考查了配方法的应用,非负数的性质.配方法的理论依据是公式a 2±2ab +b 2=(a ±b )2.13.(本题5分)(2022·浙江·杭州外国语学校八年级期末)已知关于x 的一元二次方程ax 2+bx +1=0(a ≠0)有两个相等的实数根,那么222(2)4ab a b -+-的值是______. 【答案】4【解析】【分析】根据一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式的意义得到a ≠0且Δ=0,即b 2-4a =0,即b 2=4a ,最后代入b 2=4a 计算即可.【详解】∵关于x 的一元二次方程ax 2+bx +1=0有两个相等的实数根,∴a ≠0且Δ=0,∴b 2-4a =0,∴b 2=4a ,∴原式=222224444(2)444444a a a a a a a a a a ⋅===-+--++-. 故答案为4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2-4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根. 14.(本题5分)(2021·辽宁沈阳·模拟预测)某公司今年7月的营业额为2500万元,按计划第三季度的总营业额要达到9100万元.设该公司8、9两月的营业额的月平均增长率为x ,根据题意可列方程为_______.【答案】225002500(1)2500(1)9100x x ++++=【解析】【分析】分别表示出8月,9月的营业额进而得出等式即可.【详解】解:设该公司8、9两月的营业额的月平均增长率为x .根据题意列方程得:225002500(1)2500(1)9100x x ++++=.故答案是:225002500(1)2500(1)9100x x ++++=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,解题的关键是正确理解题意,得到等量关系.三、解答题(共90分)15.(本题8分)(2021·河南·濮阳市华龙区高级中学九年级阶段练习)解下列方程:(1)22470x x --=(公式法)(2)2420x x ++=(配方法)(3)()()23430x x x -+-=(4)()()315x x +-=.【答案】(1)1232321122x x =+=- (2)1222,22x x =-=-(3)1233,5x x == (4)124,2=-=x x【解析】【分析】(1)利用公式法,即可求解;(2)利用配方法,即可求解; (3)利用因式分解法,即可求解; (4)利用因式分解法,即可求解.(1)解:∵2,4,7a b c ==-=-, ∴()()2244427720b ac ∆=-=--⨯⨯-=>, ∴472232222x , 即1232321122x x =+=-;(2)解:2420x x ++=,移项得:242x x +=-,配方得:2442x x ++=,即()222x +=, 开方得:22x +=∴1222,22x x =-=-(3)解:()()23430x x x -+-=,分解因式得:()()3340x x x --+=, ∴30x -=或340x x -+=, 解得:1233,5x x ==;(4)()()315x x +-=,整理得:2280x x +-=, ∴()()420x x +-=, 解得:124,2=-=x x . 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并会灵活选用合适的方法解答是解题的关键.16.(本题8分)(2022·广西博白·九年级期末)已知关于x 的方程mx 2-(m +2)x +2=0(m ≠0). (1)求证:方程总有两个实数根;(2)若方程的两个根都是正整数,求整数m 的值. 【答案】(1)见解析 (2)1或2 【解析】 【分析】(1)根据一元二次方程的二次项系数不为0和根的判别式解答即可; (2)利用因式分解法解一元二次方程可得出x 1=1,x 2=2m ,由已知可得出2m为不等于1的整数,结合m 为整数即可求出m 值. (1)由题意可知:m ≠0, ∵Δ=(m +2)2﹣8m =m 2+4m +4﹣8m =m 2﹣4m +4 =(m ﹣2)2, ∴Δ≥0,故不论m 为何值时,方程总有两个实数根; (2)解:由已知,得(x -1)(mx -2)=0, ∴x -1=0或mx -2=0, ∴11x =,22x m=, 当m 为整数1或2时,x 2为正整数, 即方程的两个实数根都是正整数, ∴整数m 的值为1或2 【点睛】本题考查一元二次方程的根与其判别式的关系、解一元二次方程,熟知一元二次方程的根与其判别式的关系是解答的关键.17.(本题8分)(2018·山东峄城·九年级期中)化简,再求值:22222232m nm m n m nm n m n mn ++⎛⎫-÷ ⎪---⎝⎭,其中m ,n 是方程22210x x -+=的两根.【答案】mn m n +2【解析】 【详解】【分析】括号内根据同分母分式加减法法则进行加减运算,然后再与括号外的分式进行乘除法运算,由于m ,n 是方程22210x x -+=的两根,根据一元二次方程根与系数的关系得到m+n 、mn 的值代入分式化简后的结果进行计算即可得.【详解】原式=()()()32mn m n m n m m n m n m n -+-⋅+-+=mnm n+,因为m ,n 是方程22210x x -+=的两根, 所以22m n +=mn=1,所以,原式2 22=.【点睛】本题考查了分式的化简求值、一元二次方程根与系数的关系,熟记一元二次方程根与系数的关系,准确进行分式的混合运算是解题的关键.18.(本题8分)(2021·江苏东台·九年级阶段练习)某品牌童装进价每件120元、售价160元,平均每天可售出50件,为了迎接“国庆”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出5件.(1)商场原来平均每天盈利元;(2)要想平均每天销售这种童装盈利3000元,那么每件童装应降价多少元?(3)用配方法说明:要想盈利最多,每件童装销售价应定为多少元?【答案】(1)2000;(2)20元;【解析】【分析】(1)根据利润等于售价减进行加乘以销售量,即可求得每天盈利;(2)设每件童装应降价x元,根据每件童装降价1元,那么平均每天就可多售出5件,分别表示出降价后的利润与销量,列出方程,求出方程的解即可得到结果;【详解】(1)依题意,()160120502000-⨯=(元),故答案为:2000(2)设每件童装应降价x元,根据题意得:(160-120﹣x)(50+5x)=3000,整理得:x2﹣30x+200=0,即(x﹣20)(x﹣10)=0,解得:x=20或x=10(不合题意,舍去),答:每件童装应降价20元;【点睛】本题考查了配方法的应用,以及一元二次方程的应用,根据题意列出一元二次方程方程是解答本题的关键.19.(本题10分)(2022·江苏溧水·九年级期末)某单位要修建一个长方形的活动区(图中阴影部分),根据规划活动区的长和宽分别为20m和16m,同时要在它四周外围修建宽度相等的小路.已知活动区和小路的总面积为480m2.(1)求小路的宽度.(2)某公司希望用50万元承包这项工程,该单位认为金额太高需要降价,通过两次协商,最终以32万元达成一致.若两次降价的百分率相同,求每次降价的百分率.【答案】(1)小路的宽度是2m;(2)每次降价的百分率为20%【解析】【分析】(1)设小路的宽度为x m,根据总面积为480列方程求解即可;(2)设每次降价的百分率为y,根据等量关系列方程50(1-y)2=32解方程即可求解.(1)解:设小路的宽度为x m,根据题意,得:(20+2x)(16+2x)=480,整理得:x2+18x-40=0,解得:x1=2,x2=-20(舍去),答:小路的宽度为2m ; (2)解:设每次降价的百分率为y ,根据题意, 得:50(1-y )2=32,解得:y 1=0.2,y 2=1.8(舍去), 答:每次降价的百分率为20%. 【点睛】本题考查一元二次方程的应用,理解题意,找准等量关系,正确列出方程是解答的关键. 20.(本题10分)(2022·山西襄汾·八年级期末)阅读与思考配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.例如:()()()()()2222245422529232351x x x x x x x x x +-=++--=+-=+++-=+- (1)解决问题:运用配方法将下列多项式进行因式分解 ①234x x +-; ②289x x --(2)深入研究:说明多项式2612x x -+的值总是一个正数(3)拓展运用:已知a 、b 、c 分别是ABC 的三边,且2222220a ab b bc c -+-+=,试判断ABC 的形状,并说明理由.【答案】(1)①()()41x x +-;②()()19x x +-;(2)见解析;(3)等边三角形,理由见解析 【解析】 【分析】(1)仿照例子运用配方法进行因式分解即可; (2)利用配方法和非负数的性质进行说明即可;(3)展开后利用分组分解法因式分解后利用非负数的性质确定三角形的三边的关系即可. 【详解】解:(1)①222223332534342224x x x x x ⎛⎫⎛⎫⎛⎫+-=++-=+- ⎪ ⎪ ⎪⎭-⎝⎭⎝⎭⎝()()3535412222x x x x ⎛⎫⎛⎫+++-=+- ⎪⎪⎝⎭⎝⎭.②2222898449x x x x --=-+--()()()()()2425454519x x x x x =--=-+--=+-(2)()22261269333x x x x x -+=-++=-+ ∵()230x -≥ ∴()2330x -+>∴多项式2612x x -+的值总是一个正数. (3)ABC 为等边三角形.理由如下:∵2222220a ab b bc c -+-+=∴()()222220a ab b b bc c -++-+=∴()()220a b b c -+-= ∴0a b -=,0b c -= ∴a b c ==∴ABC 为等边三角形. 【点睛】本题考查了因式分解的应用,解题的关键是仔细阅读材料理解配方的方法.21.(本题12分)(2022·重庆实验外国语学校九年级开学考试)2019年我校附近某楼盘推出一种面积为100平方米的三室两厅的户型,以每平方米12000元的均价对外销售.我校张老师打算买一套自住,由于购房资金不足,张老师只好“望楼兴叹”,决定等两年再考虑买房.自2019年底出现疫情以来,商品房价格稳中略有下降,房地产开发商为了加快资金周转,决定进行降价促销,自2019年经过连续两年下调后,2021年的均价为每平方米10830元. (1)求这一户型房价平均每年下调的百分率;(2)进入2022年,近日张老师得知该楼盘自己两年前想买的这一户型仍有少量剩余房在售,单价较2021年的均价再次下调10%.张老师认真计算了一下,过去两年,每月固定存入相同数量的资金(存入的资金是100的整数倍),刚好存满2年(24个月),加上原有积蓄40万元,还可以根据个人征信情况向银行贷款50万元,可以凑齐房款,决定马上购买.请问张老师这两年每月至少固定存入多少元? 【答案】(1)5% (2)3200元 【解析】 【分析】(1)设这一户型房价平均每年下调的百分率为x ,根据“自2019年经过连续两年下调后,2021年的均价为每平方米10830元”,列出方程,即可求解;(2)设张老师这两年每月固定存入y 元,则2年存款为24y 元,根据题意,列出不等式,即可求解. (1)解:设这一户型房价平均每年下调的百分率为x ,根据题意得:()212000110830x -=,解得:10.05x =,2 1.95x =(舍去), ∵0.055%=答:这一户型房价平均每年下调的百分率为5%; (2)解:设张老师这两年每月固定存入y 元,则2年存款为24y 元,2022年的房价为每平方米()10830110%9747⨯-=元,则一套100平方米的总房价为9747100974700⨯=元,根据题意得:24400000500000974700y++≥,解得:3112.5y=,又∵存入的资金是100的整数倍,∴y的最小值为3200,答:张老师这两年每月至少固定存入3200元.【点睛】本题主要考查了一元二次方程的应用,一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.22.(本题12分)(2016·河北·九年级专题练习)李老师布置了两道解方程的作业题:(1)选用合适的方法解方程:(x+1)(x+2)=6;(2)用配方法解方程:2x2+4x-5=0.以下是小明同学的作业:(1)解:由(x+1)(x+2)=6,(2)解:由2x2+4x-5=0,得x+1=2,x+2=3,得2x2+4x=5,所以x1=1,x2=1.x2+2x=5 2,x2+2x+1=52-1,(x+1)2=3 2,x+1=±6 2x1=-1+62,x2=-1-62.请你帮小明检查他的作业是否正确,把不正确的改正过来.【答案】(1) x1=1,x2=-4.(2) x1=-114,x2=-114.【解析】【详解】试题分析:(1)先整理方程,然后进行因式分解,再求解即可;(2)首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.试题解析:(1)(x+1)(x+2)=6,x2+3x+2-6=0,即x2+3x-4=0,∴(x+4)(x-1)=0,∴x1=-4,x2=1;(2)由原方程,得2x2+4x=5,x2+2x=52,(x+1)2=1+52,即(x+1)2=72.x+1=±14∴x1=-114,x2=-114.23.(本题14分)(2021·福建省莆田市中山中学八年级期中)同学们上学期学习分式,整式还有这个学期的二次根式.小明发现像22,m n mnp m n ++如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式. 他还发现像22,(1)(1)m n m n +--等神奇对称式都可以用,mn m n +表示.例如:222()2m n m n mn +=+-,(1)(1)()1m n mn m n --=-++.于是小明把mn 和m n +称为基本神奇对称式.请根据以上材料解决下列问题:(1)代数式mn ②22m n -,③nm,(0,0,0)xy yz xz x y z ≥≥≥中,属于神奇对称式的是________(填序号); (2)已知2()()x m x n x px q --=-+. ①若3,2p q ==-,则神奇对称式11m n+=_________; ②20p q =,求神奇对称式3311m n m n+++的最小值.【答案】(1)①,④;(2)①32-;②3311m n m n+++的最小值为-2.【解析】 【分析】(1)根据题意新定义的神奇对称式任意交换两个字母的位置,式子的值不变来判断 (2)①把11m n+ 通分用mn 与m +n 的形式表示,然后转换成用p 、q 表示的代数式代入即可求出值;②把神奇对称式33+1+1m n m n+转换成用p 、q 表示的代数式,再利用配方利用非负数性质求出最值.(1)解:mn nm= ∴①是神奇对称式,∵()2222m n n m =---,交换字母的位置,式子的值变相反数, ∴②不是神奇对称式, ∵1m n m n=,交换字母的位置,式子的值变倒数,∴③不是神奇对称式, (0,0,0)zx xy yz xy yz zx x y z ≥≥≥交换字母的位置,式子的值不变, ∴④是神奇对称式;①④符合神奇对称式的定义,②③交换字母的位置,式子的值会变故不符合神奇对称式的定义.故答案为①,④;(2)解:①∵()()()22x m x n x m n x mn x px q --=-++=-+,∴p m n q mn =+=,,∵3,2p q ==-,∴32m n mn +=⎧⎨=-⎩, 111132n m n m m n mm +⎛⎫+=+==- ⎪⎝⎭, 故答案应为:32-; ②∵()()()22x m x n x m n x mn x px q --=-++=-+,。
(突破训练)沪科版八年级下册数学第17章 一元二次方程含答案

沪科版八年级下册数学第17章一元二次方程含答案一、单选题(共15题,共计45分)1、若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣12、如图是一张月历表,在此月历表上用一个正方形任意圈出2×2个数(如1,2,8,9),如果圈出的四个数中的最小数与最大数的积为308,那么这四个数的和为()A.68B.72C.74D.763、若x2+bx+c=0的两根中较小的一个根是m(m≠0),则=()A.mB.﹣mC.2mD.﹣2m4、若一元二次方程x2﹣ax+2=0有两个实数根,则a的值可以是()A.0B.1C.2D.35、已知是一元二次方程的一个根,则的值为()A.-2B.2C.-3D.36、若实数范围内定义一种运算“﹡”,使a*b=(a+1)2﹣ab,则方程(x+2)*5=0的解为()A.-2B.﹣2,3C. ,D. ,7、已知关于的一元二次方程有两个实数根,,则实数k的取值范围是()A. B. C. D. 且8、已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>B.m≥C.m>且m≠2D.m≥ 且m≠29、方程x2﹣(k2﹣4)x+k+1=0的两实数根互为相反数,则k的值应为()A.±4B.±2C.2D.﹣210、已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是()A.0< a<1B.0< a<1.5C.1.5< a<2D.2< a<311、已知的两根分别是和则的值是()A.2B.-2C.D.12、一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3B.﹣1C.﹣3D.﹣213、若关于x的方程没有实数根,则直线必不经过()A.第一象限B.第二象限C.第三象限D.第四象限14、若关于x的一元二次方程x2-2x+m=0没有实数根,则实数m的取值是()A.m<1B.m>-1C.m>1D.m<-115、以2和4为根的一元二次方程是()A. x2+6 x+8=0B. x2﹣6 x+8=0C. x2+6 x﹣8=0D. x2﹣6 x﹣8=0二、填空题(共10题,共计30分)16、关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,则m的取值范围是________.17、关于x的方程的解是均为常数,,则方程的解是________.18、m是方程x2﹣x﹣1=0的一个根,则代数式m3﹣2m2+9=________.19、将方程x(x﹣1)=3x+1化为一元二次方程的一般形式________.20、某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若干小分支、支干和主干的总数是73,则每个支干长出________个小分支.21、设x1, x2是一元二次方程x2-3x-2=0的两个实数根,则x12+3x1x2+x22的值为________.22、都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。
沪科版八年级下册数学第17章 一元二次方程 【教案】 公式法

第3课时公式法一、教学目标(1)知识与能力1.理解求根公式的推导过程;2.使学生能熟练地运用公式法求解一元二次方程.(2)过程与方法:1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。
(3)情感、态度与价值观让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.二、教学重、难点(1)教学重点1.掌握公式法解一元二次方程的一般步骤.2.熟练地用求根公式解一元二次方程。
(2)教学的难点:理解求根公式的推导过程。
(3)教学设计要点1.温故知新用配方法解下列一元二次方程(1) x²-4x=0(2) x²-2x-3=0(3) 2x²-12x+10=0上课开始,通过提问让学生回忆配方法解一元二次方程的一般步骤。
利用上节课所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。
然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。
2.教学内容的处理(1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。
(2)总结用公式法解一元二次方程的解题步骤。
3.教学方法合作探究,小组讨论三、教具准备彩色粉笔、幻灯片四、教学过程1.复习导入新课复习配方法的一般步骤,给出三个例题让学生运用配方法解方程:(1) x ²-4x=0(2) x ²-2x-3=0(3) 2x ²-12x+10=0(1)所学“配方法”解一元二次方程,达到“温故而知新”的目的(2)总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备2、呈现问题,层层递进,探索新知你能用配方法解般形式的一元二次方程 ax 2+bx+c=0(a ≠0)吗?让学生在导学案上先做,然后找同学来回答,化简、移项、配方、变形,和学生一起探究完成,提出问题:(1)、公式法和哪几个因素有关?(2)、不是一般形式的一元二次方程能用公式法吗?应该怎么办?(3)、b 2-4ac 对结果有影响吗?(4)、你认为用公式法解题应该有哪几个步骤?让小组交流、讨论达成共识。
沪科版八年级下册数学精品教学课件 第17章 一元二次方程 配方法

一元二次方程配方的方法:
在方程两边都加上一次项系数一半的平方——注意是 在二次项系数为 1 的一般式前提下进行的.
要点ቤተ መጻሕፍቲ ባይዱ纳
配方法解一元二次方程的定义 像这样通过配成完全平方式来解一元二次方程的
方法,叫做配方法.
配方法解一元二次方程的基本思路 把一元二次方程化为 (x + n)2 = p 的形式,通过开
(x 3)2 21. 4 16
x1
3 4
21
,x2
3 4
21
.
x1 = 6,x2 = -2. (4)3x2 + 6x - 9 = 0.
解:x2 + 2x - 3=0,
(x + 1)2 = 4.
x1 = -3,x2 = 1.
5. 如图,在一块长 35 m、宽 26 m 的矩形地面上,修建
同样宽的两条互相垂直的道路,剩余部分栽种花草,要
归纳 利用平方根的定义直接开平方求一元二次方程的 根的方法叫直接开平方法.
典例精析
例1 利用直接开平方法解下列方程:
(1) x2 = 6;
(2) x2 - 900 = 0.
解:直接开平方,得 解:移项,得 x2 = 900.
x 6,
直接开平方,得
x1 6,x2 6.
x = ± 30, ∴ x1 = 30,x2 = -30.
解题归纳
上面的解法中 ,由方程①得到②,实质上是 把一元二次方程“降次”,转化为两个一元一次方 程,这样就把方程①转化为我们会解的方程了.
例2 解下列方程:
(1) (x 1)2 4 0; (2) 12(3 2x)2 3 0.
解:移项,得
解: 移项,得12(3 2x)2 3,
沪科版八年级下册数学第17章 一元二次方程含答案
沪科版八年级下册数学第17章一元二次方程含答案一、单选题(共15题,共计45分)1、为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元B.36元C.64元D.80元2、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1B.k>1C.k=1D.k≥13、已知一元二次方程(x+1)(2x-1)=0的解是()A.-1B.0.5C.-1或-2D.-1或0.54、关于一元二次方程x2﹣2x+1﹣a=0无实根,则a的取值范围是()A.a<0B.a>0C.a<D.a>5、已知方程x2﹣4x+2=0的两根是x1, x2,则代数式的值是()A.2011B.2012C.2013D.20146、将一元二次方程化为一般形式,正确的是()A. B. C. D.7、方程2x(x+6)=5(x+6)的解为()A.x=﹣6B.x=C.x1=﹣6,x2= D.x1=6,x2=﹣8、用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41B.(x﹣3)2=14C.(x+3)2=14D.(x﹣3)2=49、一元二次方程x2﹣3x=﹣2的解是()A.x1=1,x2=2 B.x1=﹣1,x2=2 C.x1=﹣1,x2=﹣2 D.方程无实数解10、下列各式的变形中,正确的是( )A.(-x-y)(-x+y)=x 2-y 2B. -x=C.x 2-4x+3=(x-2) 2+1D.x÷(x 2+x)=+111、使得关于x的一元二次方程x2+3x+k=0无实数根的最小整数k的值为()A.4B.5C.6D.712、一元二次方程4x2-45=31x的二次项系数、一次项系数、常数项分别为()A.4、-45、31B.4、31、-45C.4、-31、-45D.4、-45、-3113、方程3x2-x+ =0的二次项系数与一次项系数及常数项之积为()A.3B.-C.D.-914、把方程x2﹣4x﹣6=0配方,化为(x+m)2=n的形式应为()A.(x﹣4)2=6B.(x﹣2)2=4C.(x﹣2)2=0D.(x﹣2)2=1015、关于x的一元二次方程(a≠0),下列命题:①若a、c异号,则方程必有两个不相等的实数根;②若,则方程有一个根为-2;③若方程的两根互为相反数,则;④若,则方程有两个不相等的实数根.其中真命题为()A.①②④B.①②③C.②③④D.①③④二、填空题(共10题,共计30分)16、设α、β是方程x2-x-2018=0的两根,则α3+2019β-2018的值为________.17、若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是________.18、设x1, x2是方程5x2﹣3x﹣1=0的两个实数根,则的值为________.19、若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.20、已知,方程的两根,那么的值是________.21、某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x元,可列方程为________.22、如果(x-4)2=9,那么________。
难点详解沪科版八年级数学下册第17章 一元二次方程同步练习练习题(精选含解析)
八年级数学下册第17章 一元二次方程同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x ,则x 满足的方程是( )A .()()211011x +-=%B .()()211011x -+=%C .()()110121x -+=%D .()()110121x +-=% 2、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为x 步,根据题意可以列方程为( )A .2608640x x --=B .(60)864x x +=C .2608640x x -+=D .(30)864x x +=3、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为x ,则根据题意可列的方程为( )A .910025002500100%2x -=⨯B .()2910012500x -=C .()2250019100x +=D .()2910012500x += 4、已知m ,n 是方程21010x x -=+的两根,则代数式29m m n -+的值等于( )A .0B .11-C .9D .115、已知关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,且x 12+x 22=5,则k 的值是( )A .﹣2B .2C .﹣1D .16、关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .根据m 的取值范围确定7、一元二次方程2230x x -+=的二次项系数是( )A .0B .1C .-2D .38、一元二次方程210x x --=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9、2021年5月11日,国新办发布我国第七次人口普查结果,全国总人口约14.11亿,与第五次、第六次人口普查数据相比较,我国人口总量持续增长.据查,2000年第五次人口普查全国总人口约12.95亿.若设从第五次到第七次人口普查总人口的平均增长率为x ,则可列方程为( )A .12.95(1)14.11+=xB .212.95(12)14.11+=xC .12.95(12)14.11+=xD .212.95(1)14.11+=x10、若关于x 的不等式组5324x x x a⎧-≤⎪⎨⎪->⎩无解,且关于x 的一元二次方程()21420a x x -++=有两个不相等的实数根,则符合条件的所有整数a 的和为( )A .-1B .0C .1D .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x 人,则可列方程为____________.2、已知x ,那么2263x x +-的值是______.3、己知t 是方程x 2﹣x ﹣2=0的根,则式子2t 2﹣2t +2021的值为_____.4、若m 是一元二次方程2x 2+3x ﹣1=0的一个根,则4m 2+6m ﹣2021=________.5、已知关于x 的一元二次方程20(a 0)++=≠ax bx c 有一个根为1,一个根为1-,则=a b c ++_________,=a b c -+__________.三、解答题(5小题,每小题10分,共计50分)1、求证:无论m 取任何实数,关于x 的方程mx 2﹣(3m ﹣1)x +2m ﹣2=0恒有实数根.2、已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根.(1)求a 的取值范围;(2)若a 为正整数,求方程的根.3、用公式法解方程:2214x x -=4、某公司2月份销售新上市的A 产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司A 产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A 产品每次的增长率;(2)若A 产品每套盈利2万元,则平均每月可售30套.为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A 产品每套每降2万元,公司平均每月可多售出80套;若该公司在5月份要获利70万元,则每套A 产品需降价多少?5、解方程:2144x x -=-.-参考答案-一、单选题1、A【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.【详解】设x为平均每天下跌的百分率,则:(1+10%)•(1-x)2=1;故选:A.【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.2、C【分析】设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【详解】设长为x步,则宽为(60-x)步,依题意得:x(60-x)=864,整理得2608640-+=:.x x故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、C【分析】根据等量关系第10月的营业额×(1+x )2=第12月的营业额列方程即可.【详解】解:根据题意,得:()2250019100x +=,故选:C .【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.4、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得21010m m -+=,10m n += ,从而得到2101m m -=-,再代入,即可求解. 【详解】解:∵m ,n 是方程21010x x -=+的两根,∴21010m m -+=,10m n += ,∴2101m m -=-,∴229101109m m n m m m n -+=-++=-+=.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两个实数根,则12b x x a +=-,12c x x a⋅=是解题的关键. 5、D【分析】用根与系数的关系可用k 表示出已知等式,可求得k 的值.【详解】解:∵关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,∴x 1+x 2=k ,x 1x 2=k ﹣3,∵x 12+x 22=5,∴(x 1+x 2)2﹣2x 1x 2=5,∴k 2﹣2(k ﹣3)=5,整理得出:k 2﹣2k +1=0,解得:k 1=k 2=1,故选:D .【点睛】本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.6、A【分析】根据根的判别式判断即可.【详解】∵22()41(2)(2)40m m m ∆=--⨯⨯-=-+>,∴方程有两个不相等的实数根.【点睛】本题考查一元二次方程根的判别式,当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根,熟记判别式并灵活应用是解题关键.7、B【分析】直接根据一元二次方程的一般形式求得二次项系数即可.【详解】解:∵2230x x -+=∴1a =,即二次项系数为1故选B【点睛】本题考查了一元二次方程的一般形式,掌握一元二次方程的一般形式是解题的关键.一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.8、A【分析】计算出判别式的值,根据判别式的值即可判断方程的根的情况.【详解】∵1a =,1b =-,1c =-,∴224(1)41(1)50b ac =-=--⨯⨯-=>,∴方程有有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.9、D【分析】根据等量关系第五次总人口×(1+x )2=第七次总人口列方程即可.【详解】解:根据题意,得:12.95(1+x )2=14.11,故选:D .【点睛】本题考查一元二次方程的应用,理解题意,找准等量关系列出方程是解答的关键.10、B【分析】由x 的不等式组无解可解得2a ≥-,由x 的一元二次方程有两个不相等的实数根可解得3a <,故23a -≤<中符合条件的所有整数有-2,-1,0,1,2,所有整数a 的和为0.【详解】532x x -≤ 移项得332x ≤解得2x ≤4x a -> 解得4x a >+∵关于x 的不等式组无解解得2a ≥-一元二次方程()21420a x x -++=中a =a -1,b =4,c =2则()22444121688248b ac a a a =-=-⋅-⋅=-+=-△∵x 的一元二次方程()21420a x x -++=有两个不相等的实数根∴240b ac =->即2480a ->解得3a <综上所述符合题意的整数有-2,-1,0,1,2则-2-1+0+1+2=0故选:B .【点睛】一元二次方程根的判别式的应用主要有以下三种情况:不解方程,由根的判别式直接判断根的情况;根据方程根的情况,确定方程中字母系数的取值范围;应用根的判别式证明方程根的情况(无实根、有两个不相等实根、有两个相等实根).已知不等式(组)的解集,求不等式(组)中待定字母的取值范围问题,首先把不等式(组)的解集用含有字母的形式表示出来,然后把它与已知解集联系起来求解,这类问题有时要运用方程知识,有时要用到不等式知识,在求解过程中可以利用数轴进行分析.二、填空题1、()3333192x x x +++=【分析】根据题意可得, 每轮传染中平均一个人传染了x 个人,经过一轮传染之后有33x +人感染流感,两轮感染之后的人数为192人,依此列出二次方程即可.解:设每轮传染中平均一个人传染了x 个人,依题可得:()3333192x x x +++=,故答案为:()3333192x x x +++=.【点睛】本题考查了由实际问题与一元二次方程,关键是得到两轮传染数量关系,从而可列方程求解.2、-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可.【详解】解:∵x =, ∴2263x x +-()2233x x =+-29152342x x ⎛⎫=++- ⎪⎝⎭ 2315222x ⎛⎫=+- ⎪⎝⎭ 21522=-⎝⎭ 21522=⨯-⎝⎭515=-22=-,5故答案为:-5.【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.3、2025【分析】根据一元二次方程的解的定义得到t2-t-2=0,则t2-t=2,然后把2t2-2t+2021化成2(t2-t)+2021,再利用整体代入的方法计算即可.【详解】解:当x=t时,t2-t-2=0,则t2-t=2,所以2t2-2t+2021=2(t2-t)+2021=4+2021=2025.故答案为:2025.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.用了整体代入思想.4、﹣2019【分析】根据方程的根的定义,把x=m代入方程求出2m2+3m的值,然后整体代入代数式进行计算即可得解.【详解】解:∵m是一元二次方程2x2+3x-1=0的一个根,∴2m2+3m-1=0,整理得,2m2+3m=1,∴4m 2+6m -2021=2(2m 2+3m )-2021=2×1-2021=-2019.故答案为:﹣2019.【点睛】本题考查了一元二次方程的解,利用整体思想求出2m 2+3m 的值,然后整体代入是解题的关键. 5、0 0【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:2110a b c ⨯+⨯+=,即0a b c ++=;将﹣1代入方程得:()()2110a b c ⨯-+⨯-+=,即0a b c +=﹣; 故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.三、解答题1、见解析【分析】分两种情况,当m =0时,方程为一元一次方程,有一个实数解;当m ≠0时,方程为一元二次方程,由于b 2-4ac =(m ﹣1)2≥0,则可判断方程有两个实数根.【详解】证明:当m =0时,方程化为x ﹣2=0,解得x =2;当m ≠0时,∵b 2-4ac =(3m ﹣1)2﹣4m (2m ﹣2)=(m ﹣1)2≥0,∴关于x 的一元二次方程mx 2﹣(3m ﹣1)x +2m ﹣2=0有两个实数根,综上所述,无论m 取任何实数,关于x 的方程mx 2﹣(3m ﹣1)x +2m ﹣2=0恒有实数根.【点睛】本题考查了一元一次方程的解,以及一元二次方程根的判别式,分类讨论是解答本题的关键.2、(1)a <518;(2)12x x == 【分析】(1)根据方程的系数结合根的判别式Δ=b 2-4ac >0,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围;(2)由(1)的结论结合a 为正整数,即可得出a =1,将其代入原方程,再利用公式法解一元二次方程,即可求出原方程的解.【详解】解:(1)∵关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根,∴2(3)4(21)a ∆=--->0,解得a <518,∴a 的取值范围为a <518.(2)∵a <518,且a 为正整数,∴1a =,代入23210x x a -+-=,此时,方程为2310x x -+=.∴解得方程的根为12x x ==本题考查了根的判别式以及公式法解一元二次方程,解题的关键是:(1)牢记“当Δ>0时,方程有两个不相等的实数根”;(2)利用因式分解法求出方程的两个根.3、12x x == 【分析】22410x x --=中2,4,1a b c ==-=-;代入24b ac =-△判根,代入x =求解即可. 【详解】解:22410x x --=2,4,1a b c ==-=-()()22Δ44421240b ac ∴=-=--⨯⨯-=>=x ∴=12x ∴== 【点睛】本题考查了公式法解一元二次方程.解题的关键在于找出公式中字母所对应的数值.4、(1)该公司销售A 产品每次的增长率为50%(2)每套A 产品需降价1万元【分析】(1)设该公司销售A 产品每次的增长率为x ,利用增长率表示4约分销售量为20(1+x )2根据4月份销量等量关系列方程即可;(2)设每套A 产品需降价y 万元,则平均每月可售出(30+802y )套,求出每套利润,根据每套利润×销售套数=70万,列方程求解即可.(1)解:设该公司销售A产品每次的增长率为x,依题意,得:20(1+x)2=45,解得:x1=0.5=50%,x2=-2.5(不合题意,舍去).答:该公司销售A产品每次的增长率为50%.(2)解:设每套A产品需降价y万元,则平均每月可售出(30+802y)套,依题意,得:(2-y)(30+802y)=70,整理,得:4y2-5y+1=0,解得:y1=14,y2=1,∵尽量减少库存,∴y=1.答:每套A产品需降价1万元.【点睛】本题考查列一元二次方程解增长率与降价增量问题应用题,掌握列一元二次方程解增长率与降价增量问题应用题方法与步骤,抓住等量关系用增长率表示4月份的销量=45;利用每套利润×销售套数=70列方程是解题关键.5、x1=1,x2=3【分析】利用因式分解法,令两个一次因式都等于0,进而得出结果.【详解】解:2144x x -=-(1)(1)4(1)x x x +-=-(1)(14)0x x -+-=(1)(3)0x x --=(1)0x ∴-=或(3)0x -=解得11x =或23x =11x ∴=或23x =【点睛】本题考察了一元二次方程的求解.解题的关键与难点在于对多项式进行因式分解.。
第17章 一元二次方程【复习课件】八年级数学上册单元复习(沪教版)
针对训练
1.方程5x2-x-3=x2-3+x的二次项系数是 4 项是 0 .
,一次项系数是 -2
,常数
明辨是非
判断下列方程是不是一元二次方程,若不是一元二 次方程,请说明理由?
1、(x-1)2=4
√ 2、x2-2x=8
√
3、x2+ 1 =1
× 4、x2=y+1
×
x
5、x3-2x2=1 × 6、ax2 + bx + c=1 ×
例4 已知关于x的一元二次方程x2-3m=4x有两个不相等的实数
根,则m的取值范围是A( )
A. m 4 B. m<2
3
C. m ≥0
D. m<0
解析 根据方程根的情况可知,此方程的根的判别式 Δ >0,即 42-4×1×(-3m)=16+12m>0,解得m 4 ,故选A.
3
易错提示 应用根的判别式之前务必将方程化为一般形式,这 样能帮助我们正确确定a,b,c的值.
针对训练
2. 一元二次方程x2+px-2=0的一个根为2,则p的值 为 -1 .
考点三 一元二次方程的解法
例3 (1)用配方法解方程x2-2x-5=0时,原方程应变为( A )
A. (x-1)2=6
B.(x+2)2=9 C. (x+1)2=6
D.(x-2)2=9
(2) (易错题)三角形两边长分别为3和6,第三边的长是方程
公式法:a 1,b -4,c -1.
b2 - 4ac= -42 -4 1 -1 =20 0.
方程有两个不相等的实数根
x b
b2 4ac -4
20 2
沪科版八年级下册数学第17章 一元二次方程 因式分解法(2)
2 (中考·沈阳)一元二次方程x2-4x=12的根是( ) A.x1=2,x2=-6B.x1=-2,x2=6 C.x1=-2,x2=-6D.x1=2,x2=6
知2-练
3 (中考·雅安)已知等腰三角形的腰和底的长分别是一 元二次方程x2-4x+3=0的根,则该三角形的周长 可以是( ) A.5B.7C.5或7D.10
则______=0,或______=0. 3.试求下列方程的根 (1)x(x-7)=0; (2)(x+1+2)(x+1-2)=0.
知识点 1 因式分解法的依据
知1-讲
对于 (x-3)(x+3)=0. 我们知道,如果两个因式的积等于0,那么这两 个因式中至少有一个等于0;反过来,如果两个因式 中有一个等于0,那么它们的积就等于0.因此,有 x—3=0或x+3=0.
知1-练
1 (中考·山西)我们解一元二次方程3x2-6x=0时,可 以运用因式分解法,将此方程化为3x(x-2)=0,从 而得到两个一元一次方程3x=0或x-2=0,进而得 到原方程的解为x1=0,x2=2.这种解法体现的数 学思想是( )
A.转化思想B.函数思想 C.数形结合思想D.公理化思想
2 用因式分解法解方程,下列过程正确的是( A.(2x-3)(3x-4)=0化为2x-3=0或3x-4=0 B.(x+3)(x-1)=1化为x+3=0或x-1=1 C.(x-2)(x-3)=2×3化为x-2=2或x-3=3 D.x(x+2)=0化为x+2=0
配方,得(x-1)2=4,x-1=±2,
∴x1=3,x2=-1. (2)2x2-7x-6=0,
∵a=2,b=-7,c=-6,
∴b2-4ac=97>0, ∴x1=x2=7+ 97 ,
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1一元二次方程的概念
1) 一元二次方程的概念:
2) 关于x的方程02)2(2kxxk有一个根是-1,则k=_________
3) 当m _________时,方程052)1(2xxm是一元二次方程。
4) 方程)32(15xxx化为一般式为______________,一次项系数为__________
5) 方程42412xxx的一次项系数是__________
6) 一元二次方程243x的二次项是 ,一次项的系数是 ,常数项是 。
7) 方程xx412)(的二次项系数是 ,一次项是 ,常数项是 。
8) 关于x的方程01)3()9(22xaxa,当a =_________时,方程是一元二次方程;
当a =_________时,方程是一元一次方程。
17.2(1)一元二次方程
解方程:22590x 解方程:22(2)80x
解方程:(2x+3)2-49=0 解方程:22)1-3()1(x
17.2(2)一元二次方程
在实数范围内因式分解:
44
4nm
=_______ __;aa42= ;22232yxyx=
解方程:2360xx 解方程:3230xxx
解方程:1522xx 解方程:
2
(2)5(2)14xx
解方程:(x-1)(x+2)=70 解方程:15)1(2)1(2xx
17.2(3)一元二次方程1
配方:22______)(_______23xxx
解方程:0562xx 解方程:222xx
解方程:01422xx 解方程: 2610xx
17.2(3)一元二次方程2
配方:22______)(_______32xxx
解方程:246xx 解方程:2253xx
解方程:04522xx 解方程: 01642xx
解方程:244310yy
17.2(4)一元二次方程1
一元二次方程根的判别式: =
解方程:222xx 解方程:01322xx
17.2(4)一元二次方程2
解方程:01242xx 解方程:9131xxx
17.2(5)一元二次方程1
用开平方法解方程:0832x 用因式分解法解方程:0202xx
用配方法解方程:0562xx 用公式法解方程:222xx
17.2(5)一元二次方程2
xx3)2(2
32x<x3
2
4210xx
2
2
23xx
17.3一元二次方程1
1) 一元二次方程根与系数的关系:
2) 方程012222xx的根的情况是_________
3) 方程022kxx有两个相等的实数根,则k=_________
4) 方程026232xx的根的判别式△=_________
5) 已知0是关于x的一元二次方程012)1(22mxxm的一个实数根,则m= ;
6) 一元二次方程05)4(102mxxmmm有 的实数根
7) 当k为何值时,关于x的方程1)2(42kxkx有两个相等的实数根?求出这时方程的根。
17.3一元二次方程2
1) 当m取何值时,关于x的一元二次方程0241)2(2mxmmx有两个实数根。
2) 若方程22(22)50xmxm有两个不相等的实数根,
化简:2144mmm
17.3一元二次方程3
1) 求作以)12(),21(为两根的一元二次方程。
2) 已知△ABC的两边是关于x的方程02322kkxx的两根,第三边长为4.当k为何值时,△ABC是等腰
三角形?并求△ABC的周长.
17.4(1)一元二次方程2
在实数范围内分解因式:342aa 2232yxyx
17.4(1)一元二次方程1
在实数范围内分解因式:231xx 2241xx
17.4(2)一元二次方程1
1) 一种电吹风机原价每只200元,由于滞销经两次降价后售价为128元,如果每次降价百分率相同,求这
个降价百分率。
2) 用100cm长的铅丝,弯成一个长方形模型
(1)长方形的面积是4002cm,求长方形的长和宽。
(2)长方形的面积是6252cm,长方形的长和宽是什么关系。
(3)长方形的面积可能是7002cm,为什么?
17.4(2)一元二次方程2
1) 如图,某拆迁工地利用夹角为135°的两面墙,再用总长为24米的铁丝网围成一个 为42平方米的直
角梯形露天仓库(图中为ABCD),求AB,BC的长为多少米?
E
D
C
A
B
135°
2) 近年来我市不断加大对城市绿化的经济投入,使我市绿地面积不断增加,2003年底的绿地面积为300
公顷,到2005年底的绿地面积为363公顷,求2003年到2005年底我市绿地面积的年平均增长率。