完全平方公式变形练习题

完全平方公式变形练习题
完全平方公式变形练习题

完全平方公式变形练习题

1、已知m 2+n 2

-6m+10n+34=0,求m+n 的值

2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

3.已知 2

()16,4,a b ab +==求22

3a b +与2()a b -的值。

4.已知()5,3a b ab -==求2()a b +与223()a b +的值。

5.已知6,4a b a b +=-=求ab 与22a b +的值。

6.已知224,4a b a b +=+=求22a b 与2()a b -的值。

7.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值

8.已知6,4a b ab +==,求22223a b a b ab ++的值。

9.已知222450x y x y +--+=,求21(1)2

x xy --的值。

10.已知16x x -=,求221x x

+的值。 11.0132=++x x ,求(1)221x x +(2)441x

x +

12.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

13.已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形? 如有侵权请联系告知删除,感谢你们的配合!

完全平方公式练习题一

完全平方公式为: 注:1.完全平方公式和平方差公式不同: 形式不同. 结果不同:完全平方公式的结果是三项,即 (a ?b )2=a 2 ?2ab+b 2 ; 平方差公式的结果是两项, 即(a+b )(a?b )=a 2?b 2. 2. 解题过程中要准确确定a 和b ,对照公式原形的两边, 做到不丢项、 不弄错符号、2ab 时不少乘2。 3. 口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。 例1 用完全平方公式计算: (1)(2x ?3)2 ; (2) (4x +5y )2 ; (3) (mn ?a )2 练习: 1、计算:2 )221 (y x - (n +1)2-n 2 (2x 2-3y 2)2 2、下列各式中哪些可以运用完全平方公式计算 (1)()()x y y x +-+ (2)()()a b b a -- (3)()()ab x x ab +--33 (4)()()n m n m +-- 例2.计算: (1)(-1-2x )2 (2)()()n m n m +--22 (3))432)(432(-++-y x y x (4)22)32 1()321(b a b a +-

练习: (1)()2c b a -+ (2) (-2x +1) 2 (3))4)(2)(2(22y x y x y x --+ (4)??? ??+-??? ??-b a b a 32132 1 拓展:1.已知31=+ x x ,则=+221x x ________________ 2. 已知131-=x y ,那么2323122-+-y xy x 的值是________________ 3、已知2216)1(2y xy m x +-+是完全平方公式,则m = 4、若22()12,()16,x y x y xy -=+=则=

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

完全平方公式测试题与答案

绝密★启用前 完全平方公式 测试时间:20分钟 一、选择题 1.计算(a-3)2 的结果是( ) A.a 2 -9 B.a 2 +9 C.a 2 -6a+9 D.a 2 +6a+9 2.计算(-a-b)2 等于( ) A.a 2 +b 2 B.a 2 -b 2 C.a 2 +2ab+b 2 D.a 2 -2ab+b 2 3.下列式子中,总能成立的是( ) A.(a-1)2 =a 2 -1 B.(a+1)2 =a 2 +a+1 C.(a+1)(a-1)=a 2 -a+1 D.(a+1)(1-a)=1-a 2 4.对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a 2 -b 2 ,根据这个定义,代数式(x+y)☆y 可以化简为( ) A.xy+y 2 B.xy-y 2 C.x 2 +2xy D.x 2 5.(2019黑龙江伊春中考)下列各运算中,计算正确的是( ) A.a 2 +2a 2 =3a 4 B.b 10 ÷b 2 =b 5 C.(m-n)2 =m 2 -n 2 D.(-2x 2)3 =-8x 6 6.(2019湖南张家界中考)下列运算正确的是( ) A.a 2 ·a 3 =a B.a 2 +a 3 =a 5 C.(a+b)2 =a 2 +b 2 D.(a 3)2 =a 6 7.(2018江苏淮安洪泽期末)下列各式中计算正确的是( ) A.(a-b)2 =a 2 -b 2 B.(a+2b)2 =a 2 +2ab+4b 2 C.(a 2 +1)2 =a 4 +2a+1 D.(-m-n)2 =m 2 +2mn+n 2 8.(2018四川南充中考)下列计算正确的是( ) A.-a 4 b÷a 2 b=-a 2 b B.(a-b)2 =a 2 -b 2 C.a 2 ·a 3 =a 6 D.-3a 2 +2a 2 =-a 2 9.已知x 2 +16x+k 是完全平方式,则常数k 等于( ) A.64 B.48 C.32 D.16 10.已知(x+y)2 =9,(x-y)2 =5,则xy 的值为( ) A.-1 B.1 C.-4 D.4 11.已知a+b=3,ab=2,则a 2 +b 2 的值为( ) A.3 B.4 C.5 D.6 二、填空题 12.(1)( +4y)2 =1+8y+ ; (2)(a- )2 =a 2-14a+164. 13.一个正方形的边长增加了2 cm,面积相应增加了32 cm 2 ,则原正方形的边长为 . 三、解答题 14.化简:(m+2)2 +4(2-m). 15.计算: (1)(b+c)(-b-c);(2)(-x+3y)2 ;(3)(-m-n)2 . 16.计算:(x -1 2y)2 -(x -1 2y)(1 2y +x). 参考答案 一、选择题 1.答案 C (a-3)2 =a 2 -6a+9,故选C. 2.答案 C (-a-b)2 =(-a)2 -2·(-a)·b+b 2 =a 2 +2ab+b 2 .故选C. 3.答案 D 根据完全平方公式可知(a-1)2 =a 2 -2a+1,(a+1)2 =a 2 +2a+1,根据平方差公式可知(a+1)(a-1)=a 2 -1,故A 、B 、C 均不成立;D 中(a+1)(1-a)=(1+a)(1-a)=1-a 2 ,故D 成立. 4.答案 C (x+y)☆y=(x+y)2 -y 2 =x 2 +2xy+y 2 -y 2 =x 2 +2xy.故选C. 5.答案 D A.a 2 +2a 2 =3a 2 ,故此选项错误; B.b 10 ÷b 2 =b 8 ,故此选项错误; C.(m-n)2 =m 2 -2mn+n 2 ,故此选项错误; D.(-2x 2)3 =-8x 6 ,故此选项正确. 故选D. 6.答案 D a 2 ·a 3 =a 2+3 =a 5 ,A 错误; a 2与a 3 不是同类项,不能合并,B 错误; (a+b)2 =a 2 +b 2 +2ab,C 错误; (a 3)2 =a 3×2=a 6 ,D 正确. 故选D. 7.答案 D A 项,应为(a-b)2 =a 2 -2ab+b 2 ,故本选项错误;B 项,应为(a+2b)2 =a 2 +4ab+4b 2 ,故本选项错误;C 项,应为(a 2 +1)2 =a 4 +2a 2 +1,故本选项错误;D 项,(-m-n)2 =m 2 +2mn+n 2 ,正确.故选D. 8.答案 D -a 4 b÷a 2 b=-a 2 ,故选项A 错误, (a-b)2 =a 2 -2ab+b 2,故选项B 错误, a 2 ·a 3 =a 5,故选项C 错误, -3a 2 +2a 2 =-a 2 ,故选项D 正确. 9.答案 A 16x=2·8x,(x+8)2 =x 2 +16x+64,故k=64. 10.答案 B 由(x+y)2 =9,得x 2 +2xy+y 2 =9,① 由(x-y)2 =5,得x 2 -2xy+y 2=5,② ①-②,得4xy=4,所以xy=1. 11.答案 C ∵a+b=3,ab=2,∴a 2 +b 2 =(a+b)2 -2ab=32 -2×2=5. 二、填空题 12.答案 (1)1;16y 2 (2)1 8 解析 (1)(1+4y)2 =1+8y+16y 2 . (2)(a -18)2 =a 2 -14a+1 64. 13.答案 7 cm

初中数学人教版八年级上册完全平方公式的综合应用(习题及答案)

初中数学人教版八年级上册实用资料 完全平方公式的综合应用(习题) ? 例题示范 例1:已知12x x - =,求221x x +,441x x +的值. 【思路分析】 ① 观察题目特征(已知两数之差和两数之积11x x ? =,所求为两数的平方和),判断此类题目为“知二求二”问题; ② “x ”即为公式中的a ,“ 1x ”即为公式中的b ,根据他们之间的关系可得:2 221112x x x x x x ??+=-+? ???; ③ 将12x x -=,11x x ?=代入求解即可; ④ 同理,2 4224221112x x x x x x ??+=+-? ???,将所求的221x x +的值及2211x x ?=代入即可求解. 【过程书写】 例2:若2226100x x y y -+++=,则x =_______,y =________. 【思路分析】 此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”. 观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=. 根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-. ? 巩固练习 1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____. 2. 已知3x y +=,2xy =,求22x y +,44x y +的值.

3. 已知2310a a -+=,求221a a +,44 1a a +的值. 4. (1)若229x mxy y ++是完全平方式,则m =________. (2)若22916x kxy y -+是完全平方式,则k =_______. 5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上 的单项式共有_______个,分别是__________ ______________________________. 6. 若22464100a b a b +--+=,则a b -=______. 7. 当a 为何值时,2814a a -+取得最小值,最小值为多少? 8. 求224448x y x y +-++的最值. ? 思考小结 1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等 吗?若不相等,相差多少?

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

人教版【教案】 完全平方公式

完全平方公式 【知识与技能】 1.完全平方公式的推导及其应用. 2.完全平方公式的几何解释. 【过程与方法】 经历探索完全平方公式的过程,进一步发展符号感和推理能力. 【情感态度】 在灵活应用公式的过程中激发学生学习数学的兴趣,培养探究精神. 【教学重点】 完全平方公式的应用. 【教学难点】 完全平方公式的结构特征及几何解释. 一、情境导入,初步认识 问题一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们,来一个孩子,就给一块糖;来两个孩子,就给每个孩子两块糖,…… (1)第1天有a个男孩子去了老人家,老人一共给了这些孩子多少块糖? (2)第2天有b个女孩子去了老人家,老人一共给了这些孩子多少块糖? (3)第 3天这(a+b)个孩子一起去看老人,老人一共给了孩子们多少块糖? (4)这些孩子第3天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么? 【教学说明】(4)的结果需要化简,应用乘法法则可求出(a+b)2.引导学生结合教材认识从几何角度解释(a+b)2的结果.教师讲课前,先让学生完成“名师导学”. 【归纳总结】公式的表达式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2. 公式的特征:公式的左边是一个二项式的平方,右边是一个二次三项式;左边是两数和的形式时,右边就是这两数的平方和加上这两数积的2倍(和对应加);左边是两数差的形式时,右边就是这两数的平方和减去这两数积的2倍(差对应减);两公式结构相同,仅一个符号不同.

二、思考探究,获取新知 例1计算下列各题. 【分析】(1)、(2)可直接应用公式.计算时,如遇小数,应将其化成分数,这样可方便计算.(3)、( 4 )应注意符号,或可直接应用公式(a-b)2=a2-2ab+b2. 例2计算:(1)1032;(2)2992. 【分析】通过观察可发现103=100+3,299=300-1,这样可应用完全平方公

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

完全平方公式练习50题

完全平方公式专项练习 知识点: 姓名: 完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2 2、能否运用完全平方式的判定: ① 两数和(或差)的平方 即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2 ② 两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。 即:a 2+2ab+b 2或a 2-2ab+b 2 -a 2-2ab-b 2或 -a 2+2ab-b 2 专项练习: 1.(a +2b )2 2.(3a -5)2 3..(-2m -3n )2 4. (a 2-1)2-(a 2+1)2 5.(-2a +5b )2 6.(-21ab 2-3 2c )2 7.(x -2y )(x 2-4y 2)(x +2y ) 8.(2a +3)2+(3a -2)2 9.(a -2b +3c -1)(a +2b -3c -1); 10.(s -2t )(-s -2t )-(s -2t )2; 11.(t -3)2(t +3)2(t 2+9)2. 12. 972; 13. 20022; 14. 992-98×100; 15. 49×51-2499; 16.(x -2y )(x +2y )-(x +2y )2 17.(a +b +c )(a +b -c ) 18. (a+b+c+d)2 19.(2a +1)2-(1-2a )2 20.(3x -y )2-(2x +y )2+5x (y -x )

新人教版完全平方公式教案

14.2.2 完全平方公式 时间: 地点:初二(20)班 开课教师:叶春意 一、 教学目标 知识与技能:了解完全平方公式的推导过程,理解公式的几何背景;能用文字 和符号语言表述完全平方公式,掌握公式的结构特征,会运用公式 】 进行准确的计算。 过程与方法:经历完全平方公式的探索过程,使学生熟悉完全平方公式的特征, 进一步发展学生的符号感和推理能力,培养学生的发现能力、归纳 能力。 情感、态度与价值观:体验数学活动充满着探索性和创造性,并在数学活动中 ` 获得成功的体验与喜悦,树立学习信心。 二、 教学重难点 教学重点:能用语言准确表述完全平方公式,会运用公式进行准确的计算 教学难点:掌握公式的结构特征,会运用完全平方公式进行准确的计算 三、 教学过程 ! 1、复习旧知 (1)多项式与多项式相乘的法则: ()()a b m n am an bm bn ++=+++ (2)根据乘方的定义,2()a b +应该写成什么样的形式呢 2()a b += ~ 2、探究新知 问题1 计算下列多项式的积,你能发现什么规律 (1)2(1)(1)(1)p p p +=++= (2)2(2)m +=

(3)2()a b += \ 师生活动:通过计算2()a b +=()()a b a b ++=22a ab ba b +++222a ab b =++,教师引导学生得出222()2a b a ab b +=++。 让学生观察上述公式,尝试总结222()2a b a ab b +=++的特点,小组交流讨论,并派学生代表回答。 教师给予肯定并进行相应补充:两个数的和的平方,等于它们的平方和,加上它们的积的2倍。 学生类比上题,计算下列多项式的积: (4)2(1)(1)(1)p p p -=--= ' (5)2(2)m -= (6)2()a b -= 通过计算,学生自主得出222()2a b a ab b -=-+,并尝试用文字语言表述该公式的特点:两个数的差的平方,等于它们的平方和,减去它们的积的2倍。教师给予肯定,并让学生将两个公式进行对比,进一步挖掘公式的结构特征: ①积为二次三项式; ②积中两项为两数的平方和; . ③另一项是两数的积的2倍,但符号与乘式中间的符号相同; ④公式中的a 、b 可以表示数、单项式或多项式。 222 222()2()2a b a ab b a b a ab b +=++-=-+ 教师指出,这两个公式叫做乘法的完全平方公式,并板书课题。 3、应用新知 - 例1 运用完全平方公式计算:

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

完全平方公式提升练习题

完全平方公式提升练习题 一、完全平方公式 1、(- 21ab 2-3 2c )2; 2、(x -3y -2)(x +3y -2); 3、(x -2y )(x 2-4y 2)(x +2y ); 4、若k x x ++22是完全平方式,则k =____________. 5、.若x 2-7xy +M 是一个完全平方式,那么M 是 6、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 7、如果224925y kxy x +-是一个完全平方式,那么k = 二、公式的逆用 8.(2x -______)2=____-4xy +y 2. 9.(3m 2+_______)2=_______+12m 2n +________. 10.x 2-xy +________=(x -______)2. 11.49a 2-________+81b 2=(________+9b )2. 12.代数式xy -x 2-4 1y 2等于( )2 三、配方思想 13、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 14、已知0136422=+-++y x y x ,求y x =_______. 15、已知222450x y x y +--+=,求21(1)2x xy --=_______.

16、已知x 、y 满足x 2十y 2十 45=2x 十y ,求代数式y x xy +=_______. 17.已知014642222=+-+-++z y x z y x ,则z y x ++= . 四、完全平方公式的变形技巧 18、已知 2 ()16,4,a b ab +==求22 3a b +与2()a b -的值。 19、已知2a -b =5,ab =2 3,求4a 2+b 2-1的值. 20、已知16x x -=,求221x x +,441x x + 21、0132=++x x ,求(1)221x x +(2)441x x +

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

中考数学 完全平方公式提升练习题

第1页/共3页 完全平方公式提升练习题 一、完全平方公式 (1)(-21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); (3)(x -2y )(x 2-4y 2)(x +2y ); (4)(2a +3)2+(3a -2)2 (5)(a -2b +3c -1)(a +2b -3c -1); (6)(s -2t )(-s -2t )-(s -2t )2;(7)(t -3)2(t +3)2(t 2+9)2. 8.已知x 2-5x +1=0,则x 2+ 21 x =________. 二、完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = [来源:学#科#网] 4、如果224925y kxy x +-是一个完全平方式,那么k = 三、公式的逆用[来源:Z+xx+https://www.360docs.net/doc/f4215219.html,] 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2-4 1 y 2等于( )2 四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求21(1)2 x xy --=_______. 4、已知x 、y 满足x 2十y 2十4 5 =2x 十y ,求代数式 y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 五、完全平方公式的变形技巧 1、已知 2 ()16,4,a b ab +==求22 3 a b +与2()a b -的值。

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

《完全平方公式》测试题

6 1.8完全平方公式 (总分100分 时间40分钟) 一、填空题:(每题4分,共28分) 1 2 2 1 2 1. ( _x+3y) = _____ ,( ) = —y-y+1. 3 4 2 2 2 2 2. ( ) =9a - ______ +16b ,x +10x+ _______ =(x+ 2 3. (a+b-c) = ___________________ . 2 2 2 1 4. (a-b) + _______ =(a+b) ,x + 飞 + ___________ =(x- x 2 5. 如果a 2 +ma+9是一个完全平方式,那么m= _______ 6. (x+y-z )(x-y+z )= ____ . 7. 一个正方形的边长增加 2cm,它的面积就增加12cm 2 ,?这个正方形的边长是 ________________ 二、选择题:(每题5分,共30分) 8. 下列运算中,错误的运算有() 2 2 2 2 2 2 2 2 2 〔22 I ①(2x+y) =4x +y ,②(a-3b) =a -9b ,③(-x-y) =x -2xy+y ,④(x- ) =x - 2 x+ , 4 A.1 个 B.2 个 C.3 个 D.4 个 9.若 a 2 +b 2 =2,a+b=1,则 ab 的值为 () A.-1 B.- 1 C.- 3 D.3 2 2 10.若 4 4 ~2 — 1,则-=() x x x A.-2 B.-1 C.1 D.2 11.已知 x-y=4,xy=12,则 x 2 +y 2 的值是() 1 14. 已知 X M 0 且 x+ =5,求 x 4 x .) A.28 B.40 C.26 D.25 12.若 x 、y 是有理数,设 N=3x+2y-18x+8y+35,则() A.N C.N 定是负数 定是正数 1 13.如果(一a 2 八1 2 3 3 三、解答题:( x)2 B.N D.N 1 2 a 4 2 3 或-1 3 每题7分,共42分) B.- 一定不是负数 的正负与x 、y 的取值有关 1 ,则 x 、y 9 -C. 3 的值分别为(

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

完全平方公式的变形与应用

完全平方公式的变形与应用 完全平方公式222222()2,()2a b a ab b a b a ab b +=++-=-+在使用时常作如下变形: (1) 222222()2,()2a b a b ab a b a b ab +=+-+=-+ (2) 2222()()4,()()4a b a b ab a b a b ab +=-+-=+- (3) 2222()()2()a b a b a b ++-=+ (4) 22221[()()]2 a b a b a b +=++- (5) 221[()()]2 ab a b a b =+-- (6) 2222221[()()()]2 a b c ab bc ca a b b c c a ++---=-+-+- 例1 已知长方形的周长为40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解 设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解 设长方形长为α,宽为b ,则α-b=4,αb=12. 由公式(2),有: (α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和,证明:这个整数的2倍也可以表示为两个整数的平方和. 证明 设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解 设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为S ,则由公式(4),有: S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2≥0, ∴当x=y 即(x-y)2=0时,S 最小,其最小值为64232 =128(cm 2). 例5 已知两数的和为10,平方和为52,求这两数的积. 解 设这两数分别为α、b ,则α+b=10,α2+b 2=52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb -bc-cα的值. 解 由公式(6)有: α2+b 2+c 2-αb -bc-αc =12 [(α-b)2+(b-c)2+(c-α)2] =12 [(-1)2+(-1)2+22] =12 ×(1+1+4)=3.

相关文档
最新文档