集合与简易逻辑【应试技巧总结】[1]
集合与简易逻辑知识点整理

集合与简易逻辑 知识点整理班级: 姓名:1.集合中元素的性质(三要素): ; ; 。
2.常见数集:自然数集 ;自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 。
3.子集:A B ⊆⇔ ; 真子集:A B ≠⊂⇔ ; 补(余)集:A C B ⇔ ;【注意】空集是任意集合的子集,是任意非空集合的真子集。
4.交集:A B ⋂⇔ ; 并集:A B ⋃⇔ 。
笛摩根定律:()U C A B ⋂= ;()U C A B ⋃= 。
性质:A B A ⋂=⇔ ;A B A ⋃=⇔ 。
5.用下列符号填空: "","","","","",""≠∈∉⊂⊂=≠0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {}0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。
x a < (0)a >的解集是 ;x a > (0)a >的解集是 。
(0)ax b c c +<>⇔ a x b <+<;(0)ax b c c +<<⇔ 或 。
7.【注意】的情况可根据不等式的性质化归为的情况进行讨论。
8.一元二次不等式恒成立问题:【注意】二次项系数为0时的讨论。
一元二次不等式20ax bx c ++<(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≤(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++>(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≥(0)a ≠恒成立⇔ 。
9.简单分式不等式的解法:()0()f x g x > ⇔()()0f x g x ⋅>⇔()0()0f x g x >⎧⎨>⎩或()0()0f x g x <⎧⎨<⎩()0()f xg x ≥⇔ ⇔ 。
集合与简易逻辑

如:应把集合{1,2,2}改写成 {1,2}
(3) 无序性: 集合中的元素是平等的,没有先后顺序, 因此判定两个集合是否一样,仅需比较它们的元素是否 一样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
二、元素与集合之间的关系: 若a是集合A的元素, 就说 a 属于集合 A , 记作 a∈A ; 若a不是集合A的元素, 则 a 不属于集合 A , 记作 aA。 例如:A={1,2,3,4,5}
Q 有理数集记作______;
R 实数集记作_______;
四、集合的常用表示方法:
“地球上的四大洋”组成的集合可以表示 为: {太平洋,大西洋,印度洋,北冰洋}.
方法一:列举法——把集合中的元素一一 列举出来写在大(花)括号{ }内表示集合的 方法。
例1:用列举法表示下列集合:
{ 2, 3, 5, 7 } (1)小于10的所有质数组成的集合__________; (2)由大于3小于10的整数组成的集合 { 4, 5, 6, 7 ,8 ,9 } ___________________; { -4, 4} (3)方程x2-16=0的实数解组成的集合_________;
3 则3∈A , A 2
集合常用大写字母A,B,C,D,……标记, 元素常用小写字母a,b,c,d,……标记。
三、常用数集及其记法:
数的集合简称数集。 一些常用数集及其记法:
N 非负整数集(即自然数集) 记作_______;
N*或 N+ 正整数集记作_____________;
Z 整数集记作_______;
例2:用描述法表示下列集合:
高中数学竞赛标准教材1人教版 集合与简易逻辑【讲义】

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉.例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示.集合分有限集和无限集两种.集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法.例如{有理数},}0{>x x 分别表示有理数集和正实数集.定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆.规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等.如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集.定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集.定义6 差集,},{\B x A x x B A ∉∈=且.定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成.(1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈(3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ∉或B x ∉,所以)(B A x ∉,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ⊆,反之也有.)(111B C A C B A C ⊆定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法.定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ⋅⋅⋅= 21种不同的方法.二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合.例1 设},,{22Z y x y x a a M ∈-==,求证:(1))(,12Z k M k ∈∈-;(2))(,24Z k M k ∈∈-;(3)若M q M p ∈∈,,则.M pq ∈ [证明](1)因为Z k k ∈-1,,且22)1(12--=-k k k ,所以.12M k ∈-(2)假设)(24Z k M k ∈∈-,则存在Z y x ∈,,使2224y x k -=-,由于y x -和y x +有相同的奇偶性,所以))((22y x y x y x +-=-是奇数或4的倍数,不可能等于24-k ,假设不成立,所以.24M k ∉-(3)设Z b a y x b a q y x p ∈-=-=,,,,,2222,则))((2222b a y x pq --=22222222a y b x b y a a --+=M ya xb yb xa ∈---=22)()((因为Z ya xb Z ya xa ∈-∈-,).2.利用子集的定义证明集合相等,先证B A ⊆,再证A B ⊆,则A =B .例2 设A ,B 是两个集合,又设集合M 满足B A M B A B A M B M A ===,,求集合M (用A ,B 表示). 【解】先证M B A ⊆)( ,若)(B A x ∈,因为B A M A =,所以M x M A x ∈∈, ,所以M B A ⊆)( ;再证)(B A M ⊆,若M x ∈,则.B A M B A x =∈1)若A x ∈,则B A M A x =∈;2)若B x ∈,则B A M B x =∈.所以).(B A M ⊆ 综上,.B A M =3.分类讨论思想的应用.例3 }02{},01{},023{222=+-==-+-==+-=mx x x C a ax x x B x x x A ,若C C A A B A == ,,求.,m a【解】依题设,}2,1{=A ,再由012=-+-a ax x 解得1-=a x 或1=x ,因为A B A = ,所以A B ⊆,所以A a ∈-1,所以11=-a 或2,所以2=a 或3. 因为C C A = ,所以A C ⊆,若∅=C ,则082<-=∆m ,即2222<<-m ,若∅≠C ,则C ∈1或C ∈2,解得.3=m综上所述,2=a 或3=a ;3=m 或2222<<-m .4.计数原理的应用.例4 集合A ,B ,C 是I ={1,2,3,4,5,6,7,8,9,0}的子集,(1)若I B A = ,求有序集合对(A ,B )的个数;(2)求I 的非空真子集的个数.【解】(1)集合I 可划分为三个不相交的子集;A \B ,B \A ,I B A , 中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个.(2)I 的子集分三类:空集,非空真子集,集合I 本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有1024210=个,非空真子集有1022个.5.配对方法. 例5 给定集合},,3,2,1{n I =的k 个子集:k A A A ,,,21 ,满足任何两个子集的交集非空,并且再添加I 的任何一个其他子集后将不再具有该性质,求k 的值.【解】将I 的子集作如下配对:每个子集和它的补集为一对,共得12-n 对,每一对不能同在这k 个子集中,因此,12-≤n k ;其次,每一对中必有一个在这k 个子集中出现,否则,若有一对子集未出现,设为C 1A 与A ,并设∅=1A A ,则A C A 11⊆,从而可以在k 个子集中再添加A C 1,与已知矛盾,所以12-≥n k .综上,12-=n k . 6.竞赛常用方法与例问题. 定理4 容斥原理;用A 表示集合A 的元素个数,则,B A B A B A -+=C B A C B C A B A C B A C B A +---++=,需要xy 此结论可以推广到n 个集合的情况,即∑∑∑∑=≠≤<<≤=+-=n i k j i j i n k j i j i i n i i A A A A A A A111 .)1(11 n i i n A =--+-定义8 集合的划分:若I A A A n = 21,且),,1(j i n j i A A j i ≠≤≤∅= ,则这些子集的全集叫I 的一个n -划分.定理5 最小数原理:自然数集的任何非空子集必有最小数.定理6 抽屉原理:将1+mn 个元素放入)1(>n n 个抽屉,必有一个抽屉放有不少于1+m 个元素,也必有一个抽屉放有不多于m 个元素;将无穷多个元素放入n 个抽屉必有一个抽屉放有无穷多个元素.例6 求1,2,3,…,100中不能被2,3,5整除的数的个数.【解】 记})2(2,1001{},100,,3,2,1{x x x x A I 记为整除能被且≤≤== ,}5,1001{},3,1001{x x x C x x x B ≤≤=≤≤=,由容斥原理,+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+---++=31002100C B A A C C B B A C B A C B A 7430100151001010061005100=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡,所以不能被2,3,5整除的数有26=-C B A I 个.例7 S 是集合{1,2,…,2004}的子集,S 中的任意两个数的差不等于4或7,问S 中最多含有多少个元素?【解】将任意连续的11个整数排成一圈如右图所示.由题目条件可知每相邻两个数至多有一个属于S ,将这11个数按连续两个为一组,分成6组,其中一组只有一个数,若S 含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S 至多含有其中5个数.又因为2004=182×11+2,所以S 一共至多含有182×5+2=912个元素,另一方面,当},2004,10,7,4,2,1,11{N k r t t k r r S ∈≤=+==时,恰有912=S ,且S 满足题目条件,所以最少含有912个元素.例8 求所有自然数)2(≥n n ,使得存在实数n a a a ,,,21 满足:}.2)1(,,2,1{}1}{-=≤<≤-n n n j i a a j i 【解】 当2=n 时,1,021==a a ;当3=n 时,3,1,0321===a a a ;当4=n 时, 1,5,2,04321====a a a a .下证当5≥n 时,不存在n a a a ,,,21 满足条件. 令n a a a <<<= 210,则.2)1(-=n n a n 所以必存在某两个下标j i <,使得1-=-n j i a a a ,所以1111--=-=-n n n a a a a 或21a a a n n -=-,即12=a ,所以1,2)1(1-=-=-n n n a a n n a 或2)1(-=n n a n ,12=a . (ⅰ)若1,2)1(1-=-=-n n n a a n n a ,考虑2-n a ,有22-=-n n a a 或22a a a n n -=-,即22=a ,设22-=-n n a a ,则121----=-n n n n a a a a ,导致矛盾,故只有.22=a 考虑3-n a ,有23-=-n n a a 或33a a a n n -=-,即33=a ,设23-=-n n a a ,则02212a a a a n n -==---,推出矛盾,设33=a ,则2311a a a a n n -==--,又推出矛盾,所以4,22==-n a a n 故当5≥n 时,不存在满足条件的实数.(ⅱ)若1,2)1(2=-=a n n a n ,考虑2-n a ,有12-=-n n a a 或32a a a n n -=-,即23=a ,这时1223a a a a -=-,推出矛盾,故21-=-n n a a .考虑3-n a ,有23-=-n n a a 或-=-n n a a 33a ,即3a =3,于是123--=-n n a a a a ,矛盾.因此32-=-n n a a ,所以12211a a a a n n -==---,这又矛盾,所以只有22a a n =-,所以4=n .故当5≥n 时,不存在满足条件的实数.例9 设A ={1,2,3,4,5,6},B ={7,8,9,……,n },在A 中取三个数,B 中取两个数组成五个元素的集合i A ,.201,2,20,,2,1≤<≤≤=j i A A i j i 求n 的最小值.【解】 .16min =n设B 中每个数在所有i A 中最多重复出现k 次,则必有4≤k .若不然,数m 出现k 次(4>k ),则.123>k 在m 出现的所有i A 中,至少有一个A 中的数出现3次,不妨设它是1,就有集合{1,121,,,b m a a }},,,,1{},,,,,1{365243b m a a b m a a ,其中61,≤≤∈i A a i ,为满足题意的集合.i a 必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以.4≤k 20个i A 中,B 中的数有40个,因此至少是10个不同的,所以16≥n .当16=n 时,如下20个集合满足要求:{1,2,3,7,8}, {1,2,4,12,14}, {1,2,5,15,16}, {1,2,6,9,10}, {1,3,4,10,11}, {1,3,5,13,14}, {1,3,6,12,15}, {1,4,5,7,9}, {1,4,6,13,16}, {1,5,6,8,11}, {2,3,4,13,15}, {2,3,5,9,11}, {2,3,6,14,16}, {2,4,5,8,10}, {2,4,6,7,11}, {2,5,6,12,13}, {3,4,5,12,16}, {3,4,6,8,9}, {3,5,6,7,10}, {4,5,6,14,15}. 例10 集合{1,2,…,3n }可以划分成n 个互不相交的三元集合},,{z y x ,其中z y x 3=+,求满足条件的最小正整数.n【解】 设其中第i 个三元集为,,,2,1},,,{n i z y x i i =则1+2+…+∑==n i i zn 1,43所以∑==+n i i z n n 142)13(3.当n 为偶数时,有n 38,所以8≥n ,当n 为奇数时,有138+n ,所以5≥n ,当5=n 时,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}满足条件,所以n 的最小值为5.三、基础训练题1.给定三元集合},,1{2x x x -,则实数x 的取值范围是___________.2.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________.3.集合}3,2,1{=B 的非空真子集有___________个.4.已知集合}01{},023{2=+==+-=ax x N x x x M ,若M N ⊆,则由满足条件的实数a 组成的集合P =___________.5.已知}{},2{a x x B x x A ≤=<=,且B A ⊆,则常数a 的取值范围是___________.6.若非空集合S 满足}5,4,3,2,1{⊆S ,且若S a ∈,则S a ∈-6,那么符合要求的集合S 有___________个.7.集合}14{}12{Z k k Y Z n n X ∈±=∈+=与之间的关系是___________.8.若集合}1,,{-=xy xy x A ,其中Z x ∈,Z y ∈且0≠y ,若A ∈0,则A 中元素之和是___________.9.集合}01{},06{2=-==-+=mx x M x x x P ,且P M ⊆,则满足条件的m 值构成的集合为___________. 10.集合},9{},,12{2R x x y y B R x x y x A ∈+-==∈+==+,则=B A ___________.11.已知S 是由实数构成的集合,且满足1)2;1S ∉)若S a ∈,则S a∈-11.如果∅≠S ,S 中至少含有多少个元素?说明理由.12.已知B A C a x y y x B x a y y x A =+====},),{(},),{(,又C 为单元素集合,求实数a 的取值范围. 四、高考水平训练题1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==⊆⊆=B C A C B A I B I A I}8,6,4{)(1=B A C ,则=)(1B C A ___________.3.已知集合}121{},0310{2-≤≤+=≥-+=m x m x B x x x A ,当∅=B A 时,实数m 的取值范围是___________.4.若实数a 为常数,且=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+-=∈a x ax x A a 则,1112___________. 5.集合}1,12,3{},3,1,{22+--=-+=m m m N m m M ,若}3{-=N M ,则=m ___________.6.集合},27{},,35{++∈+==∈+==N y y b b B N x x a a A ,则B A 中的最小元素是___________.7.集合}0,,{},,,{2222y x y x B xy y x y x A -+=+-=,且A =B ,则=+y x ___________.8.已知集合}04{},021{<+=<-+=px x B xx x A ,且A B ⊆,则p 的取值范围是___________.9.设集合},05224),{(},01),{(22=+-+==--=y x x y x B x y y x A }),{(b kx y y x C +==,问:是否存在N b k ∈,,使得∅=C B A )(,并证明你的结论.10.集合A 和B 各含有12个元素,B A 含有4个元素,试求同时满足下列条件的集合C 的个数:1)B A C ⊆且C 中含有3个元素;2)∅≠A C .11.判断以下命题是否正确:设A ,B 是平面上两个点集,}),{(222r y x y x C r ≤+=,若对任何0≥r ,都有B C A C r r ⊆,则必有B A ⊆,证明你的结论.五、联赛一试水平训练题1.已知集合A B B x mx x m z z B x x A ⊆∅≠>+-==<=且,},2,11{},0{2,则实数m 的取值范围是___________.2.集合}12,2,,3,2,1{+=n n A 的子集B 满足:对任意的B y x B y x ∉+∈,,,则集合B 中元素个数的最大值是___________.3.已知集合}2,,{},,,{2d a d a a Q aq aq a P ++==,其中0≠a ,且R a ∈,若P =Q ,则实数=q ___________. 4.已知集合}1),{(},0,),{(y x xy y x B a a y x y x A +=+=>=+=,若B A 是平面上正八边形的顶点所构成的集合,则=a ___________.5.集合},,,4812{Z n l m l n m u u M ∈++==,集合},,,121620{Z r q p r q p u u N ∈++==,则集合M 与N 的关系是___________.6.设集合}1995,,3,2,1{ =M ,集合A 满足:M A ⊆,且当A x ∈时,A x ∉15,则A 中元素最多有___________个.7.非空集合}223{},5312{≤≤=-≤≤+=x x B a x a x A ,≤则使B A A ⊆成立的所有a 的集合是___________.8.已知集合A ,B ,aC (不必相异)的并集},,2,1{n C B A =, 则满足条件的有序三元组(A ,B ,C )个数是___________.9.已知集合}1),{(},1),{(},1),{(22=+==+==+=y x y x C ay x y x B y ax y x A ,问:当a 取何值时,C B A )(为恰有2个元素的集合?说明理由,若改为3个元素集合,结论如何?10.求集合B 和C ,使得}10,,2,1{ =C B ,并且C 的元素乘积等于B 的元素和.11.S 是Q 的子集且满足:若Q r ∈,则0,,=∈-∈r S r S r 恰有一个成立,并且若S b S a ∈∈,,则S b a S ab ∈+∈,,试确定集合S .12.集合S={1,2,3,4,5,6,7,8,9,0}的若干个五元子集满足:S 中的任何两个元素至多出现在两个不同的五元子集中,问:至多有多少个五元子集?六、联赛二试水平训练题1.321,,S S S 是三个非空整数集,已知对于1,2,3的任意一个排列k j i ,,,如果i S x ∈,j S y ∈,则i S y x ∈-.求证:321,,S S S 中必有两个相等.2.求证:集合{1,2,…,1989}可以划分为117个互不相交的子集)117,,2,1( =i A i ,使得(1)每个i A 恰有17个元素;(2)每个i A 中各元素之和相同.3.某人写了n 封信,同时写了n 个信封,然后将信任意装入信封,问:每封信都装错的情况有多少种?4.设2021,,,a a a 是20个两两不同的整数,且整合{120}i j a a i j +≤≤≤中有201个不同的元素,求集合{120}i j a a i j -<≤≤中不同元素个数的最小可能值.5.设S 是由n 2个人组成的集合.求证:其中必定有两个人,他们的公共朋友的个数为偶数.6.对于整数4≥n ,求出最小的整数)(n f ,使得对于任何正整数m ,集合}1,,1,{-++n m m m 的任一个)(n f 元子集中,均有至少3个两两互质的元素.7.设集合S={1,2,…,50},求最小自然数k ,使S 的任意一个s 元子集中都存在两个不同的数a 和b ,满足ab b a )(+.8.集合+∈=N k k X },6,,2,1{ ,试作出X 的三元子集族&,满足: (1)X 的任意一个二元子集至少被族&中的一个三元子集包含;(2))k 的元素个数表示&&(6&2=. 9.设集合}21{,m ,,A =,求最小的正整数m ,使得对A 的任意一个14-分划1421,,,A A A ,一定存在某个集合)141(≤≤i A i ,在i A 中有两个元素a 和b 满足43b a b <≤.。
高考数学第一轮复习 集合与简易逻辑

高考数学第一轮复习集合与简易逻辑一、知识结构二、考点目标定位1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质.三、复习方略指南本章内容在高考中以考查空集与全集的概念,元素与集合、集合与集合之间的关系,集合的交、并、补运算为重点,以上内容又以集合的运算为重点考查内容.逻辑联结词与充要条件这部分,以充要条件为重点考查内容.本章内容概念性强,考题大都为容易的选择题,因此复习中应注意:1.复习集合,可以从两个方面入手,一方面是集合的概念之间的区别与联系,另一方面是对集合知识的应用.2.主要是把握集合与元素、集合与集合之间的关系,弄清有关的术语和符号,特别是对集合中的元素的属性要分清楚.3.要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,二者相互对照可加深对双方的认识和理解.4.复习逻辑知识时,要抓住所学的几个知识点,通过解决一些简单的问题达到理解、掌握逻辑知识的目的.5.集合多与函数、方程、不等式有关,要注意知识的融会贯通.一、集合的概念与运算知识梳理1.集合的有关概念2.元素与集合、集合与集合之间的关系 (1)元素与集合:“∈”或“∉”.(2)集合与集合之间的关系:包含关系、相等关系. 3.集合的运算(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集,记为A ∩B ,即A ∩B ={x |x ∈A 且x ∈B }.(2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与集合B 的并集,记为A ∪B ,即A ∪B ={x |x ∈A 或x ∈B }.(3)补集:一般地,设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中所有不属于A 的元素组成的集合,叫做子集A 在全集S 中的补集(或余集),记为SA ,即SA ={x |x ∈S 且x ∉A }.点击双基1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于 A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3}解析:M ={x |x 2<4}={x |-2<x <2},N ={x |x 2-2x -3<0}={x |-1<x <3},结合数轴,0-1-2231x∴M ∩N ={x |-1<x <2}. 答案:C2.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(RA )∩B 等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}解析:RA ={x ∈R |x ≥5-2},而5-2∈(3,4),∴(RA )∩B ={4}.答案:D3.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是 A.P ∩Q =P B.P ∩Q Q C.P ∪Q =Q D.P ∩Q P 解析:P ∩Q ={2,3,4,5,6},∴P ∩Q P . 答案:D4.设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是_______________.解析:构造满足条件的集合,实例论证.U ={1,2,3},P ={1},Q ={1,2},则(UQ )={3},(UP )={2,3},易见(UQ )∩P =∅.答案:(UQ )∩P5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x ⊆A },则A 、B 、C 之间的关系是___________________.解析:用列举法表示出B ={1},C ={∅,{1},{0},A },易见其关系.这里A 、B 、C是不同层次的集合,C 以A 的子集为元素,同一层次的集合可有包含关系,不同层次的集合之间只能是从属关系.答案:B A ,A ∈C ,B ∈C 典例剖析【例1】函数f (x )=⎩⎨⎧∈-∈,,M x xP x x其中P 、M 为实数集R 的两个非空子集,又规定f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.给出下列四个判断,其中正确判断有 ①若P ∩M =∅,则f (P )∩f (M )=∅ ②若P ∩M ≠∅,则f (P )∩f (M )≠∅ ③若P ∪M =R ,则f (P )∪f (M )=R ④若P ∪M ≠R ,则f (P )∪f (M )≠RA.1个B.2个C.3个D.4个 剖析:由题意知函数f (P )、f (M )的图象如下图所示.f M ()f P ()xyO设P =[x 2,+∞),M =(-∞,x 1],∵|x 2|<|x 1|,f (P )=[f (x 2),+∞),f (M )=[f (x 1),+∞),则P ∩M =∅.f M ()f P ()xy f x ()1f x ()2x 1x 2O而f (P )∩f (M )=[f (x 1),+∞)≠∅,故①错误.同理可知②正确.设P =[x 1,+∞),M =(-∞,x 2],∵|x 2|<|x 1|,则P ∪M =R .f (P )=[f (x 1),+∞),f (M )=[f (x 2),+∞), f (P )∪f (M )=[f (x 1),+∞)≠R ,故③错误.同理可知④正确. 答案:B【例2】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.解:A ={x |-2<x <-1或x >0}, 设B =[x 1,x 2],由A ∩B =(0,2]知x 2=2,且-1≤x 1≤0, ①由A ∪B =(-2,+∞)知-2≤x 1≤-1. ②由①②知x 1=-1,x 2=2,∴a =-(x 1+x 2)=-1,b =x 1x 2=-2.评述:本题应熟悉集合的交与并的涵义,熟练掌握在数轴上表示区间(集合)的交与并的方法.【例3】记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1=的定义域为B . (1)求A ;(2)若B ⊆A ,求实数a 的取值范围.提示:(1)由2-13++x x ≥0,得11+-x x ≥0,∴x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞] (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0. ∵a <1,∴a +1>2a .∴B =(2a ,a +1).∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2.而a <1,∴21≤a <1或a ≤-2.故当B ⊆A 时,实数a 的取值范围是(-∞,-2)∪[21,1].【例4】设集合P={m|-1<m ≤0},Q={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是A.P QB.Q PC.P=QD.P ∩Q=Q剖析:Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立}, 对m 分类:①m =0时,-4<0恒成立;②m <0时,需Δ=(4m )2-4×m ×(-4)<0,解得m <0. 综合①②知m ≤0,∴Q ={m ∈R |m ≤0}. 答案:A评述:本题容易忽略对m =0的讨论,应引起大家足够的重视.【例5】 已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.剖析:如果目光总是停留在集合这一狭窄的知识范围内,此题的思维方法是很难找到的.事实上,集合符号在本题中只起了一种“化妆品”的作用,它的实际背景是“抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)有公共点,求实数m 的取值范围”.这种数学符号与数学语言的互译,是考生必须具备的一种数学素质.解:由⎩⎨⎧≤≤=+-=+-+),20(01,022x y x y mx x 得x 2+(m -1)x +1=0. ① ∵A ∩B ≠∅,∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1.当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1知,方程①只有负根,不符合要求; 当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①有两个互为倒数的正根.故必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.综上所述,所求m 的取值范围是(-∞,-1).评述:上述解法应用了数形结合的思想.如果注意到抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)的公共点在线段上,本题也可以利用公共点内分线段的比λ的取值范围建立关于m 的不等式来解.【例6】设m ∈R ,A ={(x ,y )|y =-3x +m },B ={(x ,y )|x =cos θ,y =sin θ,0<θ<2π=,且A ∩B ={(cos θ1,sin θ1),(cos θ2,sin θ2)}(θ1≠θ2),求m 的取值范围.提示:根据题意,直线y =-3x +m 与圆x 2+y 2=1(x ≠1)交于两点,22)3(1||-+m <1且0≠-3×1+m .∴-2<m <2且m ≠3. 答案:-2<m <2且m ≠3.【例7】 设M 、N 是两个非空集合,定义M 与N 的差集为M -N ={x |x ∈M 且x ∉N },则M -(M -N )等于A.NB.M ∩NC.M ∪ND.M 解析:M -N ={x |x ∈M 且x ∉N }是指图(1)中的阴影部分.MNMN(1) (2)同样M -(M -N )是指图(2)中的阴影部分.答案:B【例8】 设集合P ={1,a ,b },Q ={1,a 2,b 2},已知P =Q ,求1+a 2+b 2的值.解:∵P =Q ,∴⎪⎩⎪⎨⎧==22,b b a a①或⎪⎩⎪⎨⎧==.,22a b b a②解①得a =0或a =1,b =0或b =1.(舍去)由②得a =b 2=a 4,∴a =1或a 3=1. a =1不合题意, ∴a 3=1(a ≠1).∴a =ω,b =ω2,其中ω=-21+23i. 故1+a 2+b 2=1+ω2+ω4=1+ω+ω2=0.练习测试1.集合A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =2},则A ∩B 是 A.(1,-1)B.⎩⎨⎧-==11y xC.{(1,-1)}D.{1,-1}2.设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________. 3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________.4.已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为__________________.5.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是A.(IA )∪B =IB.(IA )∪(IB )=I C.A ∩(IB )=∅D.(I A )∩(IB )=IB6.记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )= )1)(3(--x x 的定义域为集合N .求:(1)集合M 、N ;(2)集合M ∩N 、M ∪N .7.已知A ={x ∈R |x 2+2x +p =0}且A ∩{x ∈R |x >0}=∅,求实数p 的取值范围.8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<41},且P ∩Q =Q ,求m 的取值范围.9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想.二、逻辑联结词与四种命题知识梳理 1.逻辑联结词(1)命题:可以判断真假的语句叫做命题. (2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.(4)真值表:表示命题真假的表叫真值表. 2.四种命题 (1)四种命题原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p .(2)四种命题之间的相互关系这里,原命题与逆否命题,逆命题与否命题是等价命题.点击双基1.由“p :8+7=16,q :π>3”构成的复合命题,下列判断正确的是 A.p 或q 为真,p 且q 为假,非p 为真 B.p 或q 为假,p 且q 为假,非p 为真 C.p 或q 为真,p 且q 为假,非p 为假 D.p 或q 为假,p 且q 为真,非p 为真解析:因为p 假,q 真,由复合命题的真值表可以判断,p 或q 为真,p 且q 为假,非p 为真.答案:A2.命题p :若a 、b ∈R ,则|a |+|b |>1是|a +b |>1的充分而不必要条件;命题q :函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞),则A.“p 或q ”为假B.“p 且q ”为真C. p 真q 假D. p 假q 真 解析:∵|a +b |≤|a |+|b |,若|a |+|b |>1,不能推出|a +b |>1,而|a +b |>1,一定有|a |+|b |>1,故命题p 为假. 又由函数y =2|1|--x 的定义域为|x -1|-2≥0,即|x -1|≥2,即x -1≥2或x -1≤-2.故有x ∈(-∞,-1]∪[3,+∞). ∴q 为真命题. 答案:D3.设函数f (x )的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x ∈R ,有f (x )≤M ,则M 是函数f (x )的最大值; ②若存在x 0∈R ,使得对任意x ∈R ,且x ≠x 0,有f (x )<f (x 0),则f (x 0)是函数f (x )的最大值;③若存在x 0∈R ,使得对任意x ∈R ,有f (x )≤f (x 0),则f (x 0)是函数f (x )的最大值.这些命题中,真命题的个数是A.0B.1C.2D.3 解析:①错.原因:可能“=”不能取到.②③都正确. 答案:C4.命题“若m >0,则关于x 的方程x 2+x -m =0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为___________________.解析:先写出其命题的逆命题、否命题、逆否命题,逐一判断.答案:25.已知命题p:函数y=log a(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则A.“p且q”为真B.“p或q”为假C. p真q假D. p假q真解析:解决本题的关键是判定p、q的真假.由于p真,q假(可举反例y=x+3),因此正确答案为C.答案:C典例剖析【例1】给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有A.0个B.2个C.3个D.4个剖析:原命题和逆否命题为真.答案:B【例2】若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0.否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.这是因为它和逆命题互为逆否命题,而逆命题是假命题.逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.因为原命题是真命题,它与原命题等价.评述:解答命题问题,识别命题的条件p与结论q的构成是关键.【例3】指出下列复合命题的形式及其构成.(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形;(3)有一个内角为60°的三角形是正三角形或直角三角形.解:(1)是非p形式的复合命题,其中p:若α是一个三角形的最小内角,则α>60°.(2)是p且q形式的复合命题,其中p:一个内角为90°,另一个内角为45°的三角形是等腰三角形,q:一个内角为90°,另一个内角为45°的三角形是直角三角形.(3)是p或q形式的复合命题,其中p:有一个内角为60°的三角形是正三角形,q:有一个内角为60°的三角形是直角三角形.【例4】写出命题“当abc=0时,a=0或b=0或c=0”的逆命题、否命题、逆否命题,并判断它们的真假.剖析:把原命题改造成“若p则q”形式,再分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理和规律.解:原命题:若abc=0,则a=0或b=0或c=0,是真命题.逆命题:若a=0或b=0或c=0,则abc=0,是真命题.否命题:若abc≠0,则a≠0且b≠0且c≠0,是真命题.逆否命题:若a≠0且b≠0且c≠0,则abc≠0,是真命题.【例5】有A、B、C三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A盒子上的纸条写的是“苹果在此盒内”,B盒子上的纸条写的是“苹果不在此盒内”,C盒子上的纸条写的是“苹果不在A盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A盒内,则A、B两个盒子上的纸条写的为真,不合题意.若苹果在B盒内,则A、B两个盒子上的纸条写的为假,C盒子上的纸条写的为真,符合题意,即苹果在B盒内.同样,若苹果在C盒内,则B、C两盒子上的纸条写的为真,不合题意.综上,苹果在B盒内.练习测试1.如果原命题的结论是“p且q”形式,那么否命题的结论形式为A.⌝p且⌝qB.⌝p或⌝qC.⌝p或⌝qD.⌝q或⌝p2.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题②“面积相等的三角形全等”的否命题③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题④“若A∩B=B,则A⊆B”的逆否命题A.①②B.②③C.①②③D.③④3.分别用“p或q”“p且q”“非p”填空.(1)命题“15能被3和5整除”是___________________形式;(2)命题“16的平方根是4或-4”是______________形式;(3)命题“李强是高一学生,也是共青团员”是___________________形式.4.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是_______________.5.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射击击中飞机”,试用p1、p2及联结词“或”“且”“非”表示下列命题:(1)两次都击中飞机;(2)两次都没击中飞机;(3)恰有一次击中飞机;(4)至少有一次击中飞机.6.设A、B为两个集合.下列四个命题:①A B⇔对任意x∈A,有x∉B;②A B⇔A∩B=∅;③A B⇔A B;④A B⇔存在x ∈A,使得x∉B.其中真命题的序号是______________.(把符合要求的命题序号都填上)7.命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.写出下列命题非的形式:(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;(2)q:若x=3或x=4,则方程x2-7x+12=0.9.小李参加全国数学联赛,有三位同学对他作如下的猜测.甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,问:小李得了第几名?10、写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.小结1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证).教学点睛1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.要明确原命题、否命题、逆命题、逆否命题之间的关系.三、充要条件与反证法知识梳理1.充分条件:如果p⇒q,则p叫q的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q是p的必要条件.2.必要条件:如果q⇒p,则p叫q的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q是p的充分条件.3.充要条件:如果既有p⇒q,又有q⇒p,记作p⇔q,则p叫做q的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法.点击双基1.ac2>bc2是a>b成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a>b ac2>bc2,如c=0.答案:A2.已知a、b、c为非零的平面向量.甲:a·b=a·c,乙:b=c,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 解析:命题甲:a ·b =a ·c ⇒a ·(b -c )=0⇒a =0或b =c . 命题乙:b =c ,因而乙⇒甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B3.在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒A >30°.∴“A >30°”是“sin A >21”的必要不充分条件. 答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A 典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是 A.x <0 B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3 剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0.证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”.∵x =1是方程的根,将x =1代入方程,得a ·12+b ·1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ·12+b ·1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根. 综合(1)(2)知命题成立.【例3】求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件. 证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044aa a Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例4】 下列说法对不对?如果不对,分析错误的原因.(1)x 2=x +2是x 2+x =x 2的充分条件; (2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里). 评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2} {-1,2},所以(1)(2)两个结论都不对. 【例5】 指出下列命题中,p 是q 的什么条件. (1)p :0<x <3,q :|x -1|<2; (2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点. 解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件.(3)p 是q 的充要条件.评述:依集合的观点看,若A B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.练习测试1.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2. “cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分又不必要条件 3.在△ABC 中,“A >B ”是“cos A <cos B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.5.函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是 A.a ∈(-∞,1] B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)6.已知数列{a n }的前n 项和S n =p n+q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 7.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y-n ≤0},那么点P (2,3)∈A ∩(UB )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >58.已知关于x 的一元二次方程mx 2-4x +4=0, ① x 2-4mx +4m 2-4m -5=0. ② 求使方程①②都有实根的充要条件. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明. 教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证.练习测试解答 一、集合的概念与运算1、解析:⎩⎨⎧=-=+20y x y x ⇒⎩⎨⎧-==.1,1y x答案:C2、解析:∵A ∩B ={2},∴log 2(a +3)=2.∴a =1.∴b =2.∴A ={5,2},B ={1,2}.∴A ∪B ={1,2,5}. 答案:{1,2,5}3、解析:A B 说明A 是B 的真子集,利用数轴(如下图)可知a ≤1.a 1 2答案:a ≤14、解析:若a =0,则x =-21. 若a ≠0,Δ=4-4a =0,得a =1. 答案:a =0或a =15、解析一:∵A 、B 、I 满足A ⊆B ⊆I ,先画出文氏图,根据文氏图可判断出A 、C 、D 都是正确的.B AI解析二:设非空集合A 、B 、I 分别为A ={1},B ={1,2},I ={1,2,3}且满足A ⊆B ⊆I .根据设出的三个特殊的集合A 、B 、I 可判断出A 、C 、D 都是正确的.答案:B6、解:(1)M ={x |2x -3>0}={x |x >23}; N ={x |(x -3)(x -1)≥0}={x |x ≥3或x ≤1}. (2)M ∩N ={x |x ≥3};M ∪N ={x |x ≤1或x >23}.7、解:∵A ∩{x ∈R |x >0}=∅,∴(1)若A =∅,则Δ=4-4p <0,得p >1; (2)若A ≠∅,则A ={x |x ≤0},即方程x 2+2x +p =0的根都小于或等于0. 设两根为x 1、x 2,则⎪⎩⎪⎨⎧≥=≤-=+≥-=.0,02,0442121p x x x x p Δ ∴0≤p ≤1. 综上所述,p ≥0. 8、解:点集P 表示平面上以O 1(-2,3)为圆心,2为半径的圆所围成的区域(包括圆周);点集Q 表示平面上以O 2(-1,m )为圆心,21为半径的圆的内部.要使P ∩Q =Q ,应使⊙O 2内含或内切于⊙O 1.故有|O 1O 2|2≤(R 1-R 2)2,即(-1+2)2+(m -3)2≤(2-21)2.解得3-25≤m ≤3+25.评述:本题选题目的是:熟悉用集合语言表述几何问题,利用数形结合方法解题.9、解:∵B ={x |1<x <2},若存在实数a ,使A ∩B =A ,则A ={x |(x -a )(x -a 2)<0}. (1)若a =a 2,即a =0或a =1时,此时A ={x |(x -a )2<0}=∅,满足A ∩B =A ,∴a =0或a =1.(2)若a 2>a ,即a >1或a <0时,A ={x |0<x <a 2},要使A ∩B =A ,则⎩⎨⎧≤≥212a a ⇒1≤a≤2,∴1<a ≤2.(3)若a 2<a ,即0<a <1时,A ={x |a <x <a 2},要使A ∩B =A ,则⎩⎨⎧≥≤122a a ⇒1≤a ≤2,∴a ∈∅.综上所述,当1≤a ≤2或a =0时满足A ∩B =A ,即存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0=且A ∩B =A 成立.二、逻辑联结词与四种命题1、解析:p 且q 的否定为⌝p 或⌝q .答案:B2、解析:写出满足条件的命题再进行判断.答案:C 3、答案:(1)p 且q (2)p 或q (3)p 且q 4、解:(1)两次都击中飞机是p 1且p 2;(2)两次都没击中飞机是⌝p 1且⌝p 2;(3)恰有一次击中飞机是p 1且⌝p 2,或p 2且⌝p 1; (4)至少有一次击中飞机是p 1或p 2. 5、答案:若a ≠0且b ≠0,则ab ≠06、解析:A B ⇔存在x ∈A ,有x ∉B ,故①错误;②错误;④正确.亦或如下图所示.B AA B ∩③反例如下图所示.ABA B ⇒A B .反之,同理.答案:④7、分析:原命题中,a 、b 为实数是前提,条件是x 2+ax +b ≤0有非空解集(即不等式有解),结论是a 2-4b ≥0,由四种命题的关系可得出其他三种命题.解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则x 2+ax +b ≤0有非空解集.否命题:已知a 、b 为实数,若x 2+ax +b ≤0没有非空解集,则a 2-4b <0.逆否命题:已知a 、b 为实数,若a 2-4b <0,则x 2+ax +b ≤0没有非空解集. 原命题、逆命题、否命题、逆否命题均为真命题.8、解:(1)函数f (x )=ax 2+bx +c 的图象与x 轴没有交点或至少有两个交点.(2)若x =3或x =4,则x 2-7x +12≠0. 9、解:(1)假设小李得了第三名,则甲全猜对,乙全猜错,显然与题目已知条件相矛盾,故假设不可能.(2)假设小李得了第二名,则甲猜对一半,乙猜对一半,也与已知条件矛盾,故假设不可能.(3)假设小李得了第一名,则甲猜对一半,乙全猜错,丙全猜对,无矛盾. 综合(1)(2)(3)知小李得了第一名. 10、解:(1)命题的否定:x 、y 都是奇数,则x +y 不是偶数,为假命题.原命题的否命题:若x 、y 不都是奇数,则x +y 不是偶数,是假命题. (2)命题的否定:xy =0则x ≠0且y ≠0,为假命题. 原命题的否命题:若xy ≠0,则x ≠0且y ≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题. 原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题. 三、充要条件与反证法1、解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于rp ,∴q p .答案:A 2、解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3、解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4、答案:充分不必要5、解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1. 答案:D6、分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件.解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n-1,a n =(p -1)·p n -1,1-n na a =p (n ≥2),∴{a n }是等比数列. 7、解析:∵UB ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8、解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1;方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9、证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.10、解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0.。
集合与简易逻辑

集合与简易逻辑
嘿,集合就像个大口袋,啥都能装。
你想想,一群数字放一起就是个集合。
我有个同学做数学题,就用集合的概念,可清楚了。
简易逻辑呢,哇哦,就像个侦探在找真相。
有个人判断事情,用简易逻辑,一下子就明白了。
集合里的元素各有特点,这多有趣。
就像一群小伙伴,每个人都不一样。
有次考试就考集合的元素,可把人难住了。
逻辑判断能让你不迷糊,嘿,这很重要。
就像有个指南针,不会走丢。
我认识一个人,做决策就靠简易逻辑。
集合的运算也不简单呀,哇,就像玩游戏得有规则。
有个人算集合的并集交集,费了好大劲。
逻辑推理就像破案,可刺激了。
有次讨论问题,用逻辑推理,真相大白。
集合的表示方法有好几种呢,这可不是小事。
就像有不同的语言表达同一件事。
我看到一个题,要求用不同方法表示集合。
简易逻辑让你思维更清晰,这多棒。
就像给大脑洗了个澡。
有个学生学了简易逻辑,做题都顺了。
集合可以很大很大,也可以很小很小,嘿,这多神奇。
就像宇宙一样广阔,也像针尖一样小。
有个问题就关于集合的大小。
总之,集合和简易逻辑很有用,能让你的数学更厉害。
2023年高考数学二轮复习第三篇小题提速练透大题规范增分第1讲集合与简易逻辑

¬p 为
(B )
A.∃a0≥0,使得 a0+2 0122≤0
B.∀a<0,都有 a+2 0122≤0
C.∃a0<0,使得 a0+2 0122≤0
D.∀a<0,都有
a+2
1 022<0
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
【解析】 命题是特称命题,则特称命题的否定是全称命题, 得¬p 为∀a<0,都有 a+2 0122≤0, 故选 B.
所以∁U(A∪B)={-2,0}.故选D.
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
6.(2022·鹰潭二模)设全集U={x|-5<x<5},集合A={x|x2-4x-5
<0},B={x|-3<x<4},则(∁UA)∩B=
A.[4,5)
B.(-3,-1]
(B )
C.(-5,-3)
D.(-5,2]
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
8.(2022·浙江高考)设x∈R,则“sin x=1”是“cos x=0”的 (A )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
【解析】 因为sin2x+cos2x=1可得: 当sinx=1时,cos x=0,充分性成立; 当cos x=0时,sin x=±1,必要性不成立; 所以当x∈R,sin x=1是cos x=0的充分不必要条件. 故选A.
第三篇
小题提速练透•大题规范增分
第1讲 集合与简易逻辑
返回导航
导航立前沿 考点启方向
高考二轮总复习 • 数学
2019年高考理科数学二轮复习专题集合与简易逻辑解题方法与技巧总结
2019年高三二轮复习 理科数学专题一 集合与简易逻辑考向一 集合的运算1.【交集、补集运算】【2018年天津卷改编】设全集为R ,集合,,则.【答案】[【解析】 由题意可得:,结合交集的定义可得:.2. 【集合元素的属性】【2018年全国卷II 改编】已知集合,则中元素的个数为 .【答案】93. 【集合的运算与函数不等式相结合】【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅ 【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}{|0}A B x x x x x x =<<=<{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.【命题预测☆看准方向】集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.预计2019年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.试题类型一般是一道选择题或填空题,多与函数、方程、不等式、解析几何等综合考查.【典例分析☆提升能力】【例1】设A ={}2430x x x -+≤,B ={}230x x -<,则图中阴影部分表示的集合为( )A .3(3,)2-- B .3(3,)2- C .3[1,)2D .3(,3)2【答案】C【解析】由题意,得{|13}A x x =≤≤,3{|}2B x x =<,又图中阴影部分表示的集合为A B =3{|1}2B x x =≤<,故选C .【趁热打铁】【2018年理新课标I 卷】已知集合,则( )A. B.C. D.【答案】B 【解析】 解不等式得,所以,所以可以求得,故选B.【例2】设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值范围是( )A .)1,(-∞B .]1,(-∞C .),1(+∞D .),1[+∞ 【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A. 【趁热打铁】【浙江省教育绿色评价联盟2018届5月】已知集合,,若,则( )A. B. C. D.【答案】B【方法总结☆全面提升】在进行集合的交、并、补运算中可依据元素的不同属性采用不同的方法求解,常用到的技巧有:(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解; (4)注意转化关系(U C A)∩B=B ⇔B ⊆U C A,A ∪B=B ⇔A ⊆B,U C (A ∩B )=(U C A )∪(U C B ), U C (A ∪B )=(U C A )∩(U C B )等.注意两个问题(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.【规范示例☆避免陷阱】【典例】已知集合23100,121{|}{|,}A x x x B x m x m A B A =--≤=+≤≤-⋃=若,求实数m 的取值范围.【规范解答】,.A B A B A ⋃=∴⊆23{|}{10025,|}A x x x x x =--≤=-≤≤ ①若,121,B m m φ=+>-则即2,2m m <<故时, A B A ⋃=; ②若B φ≠,如图所示,则121,2m m m +≤-≥即.由B A ⊆得解得33m -≤≤.又∵2,2 3.m m ≥∴≤≤由①②知, 3,m A B A ≤⋃=当时.【反思提高】造成本题失分的根本原因是易于忽视“空集是任何集合的子集”这一性质.当题目中出现,,A B A B A A B B ⊆⋂=⋃=时,注意对A 进行分类讨论,即分为A φ=和A φ≠两种情况讨论.【误区警示】(1)在进行集合的运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2) 空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.在解决有关A B ⋂∅=的问题时,往往忽略空集的情况,一定要先考虑()A B ∅或=是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(3)五个关系式U U A B A B A A B B B A ⊆⋂⋃⊆,=,=,痧以及()U A B ⋂∅=ð是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.考向二 简易逻辑 【高考改编☆回顾基础】1.【四种命题及其关系】【2017课标1,理3】设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A.13,p p B .14,p p C .23,p p D .24,p p【答案】B【解析】2. 【充要条件】【2018年理数天津卷】设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件 【答案】A绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A 选项.3. 【全称命题与复合命题】【2017山东卷改编】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 . ①∧pq②⌝∧pq③⌝∧pq④⌝⌝∧p q【答案】②故填②.【命题预测☆看准方向】常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式、立体几何中的线面关系、平面解析几何中的线线关系、直线与圆的位置关系等为载体,考查充要条件或命题的真假判断等,难度一般不大.预测2019年将对其中的一或二个知识点予以考查.【典例分析☆提升能力】【例1】【2018年浙江卷】已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】A 【解析】【趁热打铁】【2018届河南省漯河市12月模拟】已知l , m 是空间两条不重合的直线, α是一个平面,则“m α⊥, l 与m 无交点”是“//l m , l α⊥”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【例2】命题:“00x ∃>,使002()1x x a ->”,这个命题的否定是( )A .0x ∀>,使2()1x x a ->B .0x ∀>,使2()1x x a -≤C .0x ∀≤,使2()1x x a -≤D .0x ∀≤,使2()1x x a -> 【答案】B【解析】由已知,命题的否定为0x ∀>,2(1x x a ⋅-≤使),故选B. 【例3】设命题p : 1x ∀<, 21x <,命题q : 00x ∃>, 012x x >,则下列命题中是真命题的是A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝ 【答案】B【解析】当2x =-时, 241x =>,显然命题p 为假命题; 当01x =时, 01221x x =>=,显然命题q 为真命题; ∴p ⌝为真命题, q ⌝为假命题 ∴()p q ⌝∧为真命题 故选:B【趁热打铁】已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是(.A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D【解析】由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题;所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D.【方法总结☆全面提升】(1)命题真假的判定方法:①一般命题p 的真假由涉及的相关知识进行辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,它的逆命题跟否命题同真假;③形如p ∨q ,p ∧q ,⌝p 命题的真假根据真值表判定;④全称命题与特称命题的否定:全称命题():,p x M p x ∀∈,其否定形式是()00,x M p x ∃∈⌝;特称命题()00:,p x M p x ∃∈,其否定形式是(),x M p x ∀∈⌝.(2) 一些常用的正面叙述的词语及它们的否定词语表:正面词语 等于(=) 大于(>) 小于(<)是都是否定词语不等于(≠) 不大于(≤) 不小于(≥)不是不都是正面词语 至多有一个 至少有一个 任意的 所有的 一定 否定词至少有两个一个也没有某个 某些不一定语(3) 充分条件、必要条件判断的定义法:先判断p q ⇒与q p ⇒是否成立,然后再确定p 是q 的什么条件.(4)用集合的观点看充分条件、必要条件:A ={x|x 满足条件p},B ={x|x 满足条件q},(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件.(5)对于充分条件、必要条件的判断要注意以下几点:①要弄清先后顺序:“A 的充分不必要条件是B”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A.②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以尝试通过举出恰当的反例来说明.③要注意转化:若⌝p 是⌝q 的必要不充分条件,则p 是q 的充分不必要条件;若⌝p 是⌝q 的充要条件,那么p 是q 的充要条件.④要善于利用集合间的包含关系判断:若A B ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件.【规范示例☆避免陷阱】【典例】已知p :“向量a 与向量b 的夹角θ为钝角”是q :“a b ∙<0”的 条件.【反思提高】判断条件与结论之间的关系时要从两个方向判断,解答本题易于判断一个方向就下结论,忽视对“a b ∙<0”成立时能否导出“向量a 与向量b 的夹角为钝角”的判断.充要条件的判断三种常用方法:(1)利用定义判断.如果已知p q⇒,则p是q的充分条件,q是p的必要条件;(2)利用等价命题判断;(3) 把充要条件“直观化”,如果p r⇒,可认为p不是q的“子集”⇒,可认为p是q的“子集”;如果q p,由此根据集合的包含关系,可借助韦恩图说明.【误区警示】(1)区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.(2)(2)p或q的否定:¬p且¬q;p且q的否定:¬p或¬q.(3)“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B 的充分不必要条件”则是指A能推出B,且B不能推出A.。
一、简易逻辑
高三数学概念、方法、题型、易误点总结(一)基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。
本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。
一、集合与简易逻辑1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个2.遇到A B =∅ 时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。
如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B = ,则实数a =______.3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n,12-n.22-n 如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
4.集合的运算性质: ⑴A B A B A=⇔⊆; ⑵A B B B A=⇔⊆;⑶A B ⊆⇔uu A B ⊇痧; ⑷u uA B A B =∅⇔⊆ 痧; ⑸u A B U A B =⇔⊆ ð; ⑹()U C A B U U C A C B = ;⑺()U U U C A B C A C B = .如设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。
成人高考数学——1.集合与简易逻辑(一)
第1页 /共3页成人高考高起点《数学》第一部分 代数第一章 集合与简易逻辑复习要求一、了解集合的意义及其表示方法。
了解空集、全集、子集、交集,并集、补集的概念及其表示方法。
1.知道什么是集合,什么是集合的元素,并能正确地利用集合的几种表示方法表示给定的集合,以及判断给定集合的元素。
2.知道空集是一个集合,并且不含有任何元素,熟悉空集的记号。
3.知道什么是子集,什么是真子集,什么是集合相等,会运用这些概念判断一个集合是否是另一个集合的子集(真子集)和两个集合是否相等,知道空集是任何集合的一个子集。
二、了解符号⊆ 、≠ 、= 、∈的含义,并能运用这些符号表示集合与集合、元素与集合的关系。
三、理解充分条件、必要条件、充分必要条件的概念。
1.知道什么叫作充分条件 、必要条件、充要条件。
2.能根据定义和学过的知识判断一个命题中的条件是结论成立的充分条件,还是必要条件,还是充分必要(充要)条件。
典型例题例1 由不大于7的正整数所组成的集合是( )。
(A ) {1,2,3,5,7}(B ) {1,2,3,4,5,6,7}(C ) {2,3,5}(D ) {X|X<=7}答案:(B )分析:若设 {}{}1,2,3,5,7,1,2,3,4,5,6,7,A B =={}2,3,5C = {}=|7D x x ≤显然有, D B A ⊄∉⊄c 若引进差集的定义,设由属于集合M 但不属于集合N 的元素所构成的集合为集合M 与N 的差集,记为M – N 。
则有{}{}{}4,6,;1,4,6,7,;1,7,.B A A B A BC C B C A C C A C -=-=-=-=-=-=例1解题完毕。
例2 由大于-3且小于11的偶数所组成的集合是( )第2页 /共3页(A ){}|311x x >-<(B ){}|311x x -<<(C ){}|311,2,x x x k k N -<<=∈(D ){}|311,2,x x x k k z -<<=∈答案:(D )。
文科数学回归教材 1集合与简易逻辑
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念、方法、题型、易误点及应试技巧总结 基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。 集合与简易逻辑 一.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如 (1)设P、Q为两个非空实数集合,定义集合P+Q={|,}abaPbQ,若{0,2,5}P,
}6,2,1{Q,则P+Q中元素的有________个。 (答:8) (2)设{(,)|,}UxyxRyR,{(,)|20}Axyxym,{(,)|Bxyxyn0},那么点)()3,2(BCAP
u
的充要条件是________
(答:5,1nm); (3)非空集合}5,4,3,2,1{S,且满足“若Sa,则Sa6”,这样的S共有_____个 (答:7) 二.遇到AB时,你是否注意到“极端”情况:A或B;同样当AB时,你是否忘记A的情形?要注意到是任何集合的子集,是任何非空集合的真子集。如 集合{|10}Axax,2|320Bxxx,且ABB,则实数a=___.
(答:10,1,2a) 三.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为,n2,12n ,12n .22n 如 满足{1,2}{1,2,3,4,5}M集合M有______个。
(答:7) 四.集合的运算性质: ⑴ABABA; ⑵ABBBA; ⑶ABuuAB痧; ⑷uuABAB痧; ⑸uABUABð; ⑹()UCABUUCACB; ⑺()UUUCABCACB. 如:设全集}5,4,3,2,1{U,若}2{BA,}4{)(BAC
U,}5,1{)()(BCACUU
,则
A=_____,B=___. (答:{2,3}A,{2,4}B) 五.研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:xyxlg|—函数的定义域;xyylg|—函数的值域;xyyxlg|),(—函数图象上的点集,如 (1)设集合{|2}Mxyx,集合N=2|,yyxxM,则MN___ (答:[4,)); (2)设集合{|(1,2)(3,4),MaaR,{|(2,3)(4,5)Naa,}R,则NM_____ (答:)}2,2{()
六.数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如: 已知函数12)2(24)(22ppxpxxf在区间]1,1[上至少存在一个实数c,使0)(cf,求实数p的取值范围。
(答:3(3,)2) 七.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。如: 在下列说法中:⑴“p且q”为真是“p或q”为真的充分不必要条件; ⑵“p且q”为假是“p或q”为真的充分不必要条件; ⑶“p或q”为真是“非p”为假的必要不充分条件; ⑷“非p”为真是“p且q”为假的必要不充分条件。 其中正确的是__________ (答:⑴⑶) 八.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若﹁p 则﹁q” ;逆否命题为“若﹁q 则﹁p”。 提醒: (1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价; (2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”; (3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定; (4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“ABBA”判断其真假,这也是反证法的理论依据。 (5)哪些命题宜用反证法? 如: (1)“在△ABC中,若∠C=900,则∠A、∠B都是锐角”的否命题为__________ (答:在ABC中,若90C,则,AB不都是锐角);
(2)已知函数2(),11xxfxaax,证明方程0)(xf没有负数根。 九.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若BA,则A是B的充分条件;若BA,则A是B的必要条件;若A=B,则A是B的充要条件。如: (1)给出下列命题: ① 实数0a是直线12yax与322yax平行的充要条件;
② 若0,,abRba是baba成立的充要条件; ③ 已知Ryx,,“若0xy,则0x或0y”的逆否命题是“若0x或0y则0xy”; ④“若a和b都是偶数,则ba是偶数”的否命题是假命题 。 其中正确命题的序号是_______ (答:①④); (2)设命题p:|43|1x;命题q:0)1()12(2aaxax。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是
(答:1[0,]2) 十.一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为axb的形式,若0a,则bxa;若0a,则bxa;若0a,则当0b时,xR;当0b时,x。如 已知关于x的不等式0)32()(baxba的解集为)31,(,则关于x的不等式0)2()3(abxba的解集为_______ (答:{|3}xx) 十一.一元二次不等式的解集(联系图象)。尤其当0和0时的解集你会正确表示吗?设0a,12,xx是方程20axbxc的两实根,且12xx,则其解集如下表: 20axbxc 20axbxc 20axbxc 2
0axbxc
0 1{|xxx或2}xx 1{|xxx或
2}xx 12{|}xxxx 12
{|}xxxx
0 {|}2bxxa R {|}2bxxa
0 R
R
如解关于x的不等式:01)1(2xaax。 (答:当0a时,1x;当0a时,1x或1xa;当01a时,11xa;当1a时,x;
当1a时,11xa) 十二.对于方程02cbxax有实数解的问题。首先要讨论最高次项系数a是否为0,其次若0a,则一定有042acb。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形? 如:(1)222210axax对一切Rx恒成立,则a的取值范围是_______ (答:(1,2]); (2)关于x的方程()fxk有解的条件是什么?(答:kD,其中D为()fx的值域),特别
地,若在[0,]2内有两个不等的实根满足等式cos23sin21xxk,则实数k的范围是_______. (答:[0,1))
十三.一元二次方程根的分布理论。方程2()0(0)fxaxbxca在),(k上有两根、在(,)mn上有两根、在),(k和),(k上各有一根的充要条件分别是什么? 0()0()02fmfnbman
、()0fk)。根的分布理论成立的前提是开(0()02fkbka、
区间,若在闭区间],[nm讨论方程0)(xf有实数解的情况,可先利用在开区间),(nm上实根分布的情况,得出结果,再令nx和mx检查端点的情况.
如实系数方程220xaxb的一根大于0且小于1,另一根大于1且小于2,则12ab的取值范围是_________ (答:(41,1))
十四.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程20axbxc的两个根即为二次不等式20(0)axbxc的解集的端点值,也是二次函数2
yaxbxc
的图象与x轴的交点的横坐标。
如(1)不等式32xax的解集是(4,)b,则a=__________
(答:18); (2)若关于x的不等式02cbxax的解集为),(),(nm,其中0nm,则关于x
的不等式02abxcx的解集为________
(答:),1()1,(
nm
);
(3)不等式23210xbx对[1,2]x恒成立,则实数b的取值范围是_______ (答:)。
y (a>0) O k x1 x2 x