米糠油成套加工设备原理工艺

米糠油成套加工设备原理工艺
米糠油成套加工设备原理工艺

稻米油设备,又名米糠油设备,其意义在于提取米糠中的高营养食用油脂。

原理工艺

浸出法(精炼法)

浸提工艺生产出的油也叫浸出油,就是用有机溶剂(比如汽油、乙醇等)浸提油料,浸出法是采用溶剂油(六号轻汽油)将油脂原料经过浸泡后,进行高温提取,使油脂被萃取出来的一种制油工艺。最初浸提出来的“油”是有机溶剂和油脂等的混合物,不能食用,必须经过一系列精炼工艺(脱腊、脱胶、脱水、脱臭、脱酸、脱色等化学处理)后才能食用,这种油一般颜色较浅、材料种子中最初的天然气味淡或无明显气味。浸提工艺几乎能将油料中所有的油全部提取出来,经济效益非常高,是现代油脂行业最普及的加工方式。

制取工艺

米糠的浸出→米糠→筛选→去石→膨化(造粒)→浸出→米糠混合油→加温分提→精过滤→米糠油

稻米油经压榨或浸出等工艺提取分离所得的油脂即为稻米油。分为米糠油和米珍油两类:从米糠(稻谷的保护皮层如果皮、种皮、外胚乳等)中提取的油脂为米糠油,从米珍(稻米胚与糊粉层在洁净的生产车间里精准碾米提纯物)中提取的油脂为米珍油。

GB 19112—2003 《米糠油》是目前我国食用稻米油的国家标准。但随着人们日益对食用油安全的重视,2013年7月3日,由全国粮油标准化委员会油料及油脂技术工作组等主办的《米糠油》国家标准研讨会在安徽合肥召开。该工作组组长、武汉轻工大学教授何东

平表示,《食用稻米油》新国标将在今年下半年完成起草,明年上半年报批、审定,有望在明年下半年颁布。《米珍油》的发明将颠覆原《米糠油》食用稻米油的标准。

稻谷,亚洲乃至世界最重要的粮食作物。稻谷64%的营养在米皮和米胚中,约60%的营养蕴藏于糊粉层和胚(米珍)中。当前稻米油提炼于米皮和胚芽,150公斤稻谷能提炼出1升一级稻米油。在日本、东南亚等国家和我国的台湾地区,又称玄米油,研发及食用历史久远,且不断加快,将来稻米油将脱脂分离自米珍。

稻米油独含谷维素,维生素E含量远远高出其它食用油,此外稻米油烟点较高,煎炒烹炸油相对其它家庭油品油烟稍少一点,健康多一点。稻米油每百克饱和脂肪酸含量为23.2,单不饱和脂肪酸含量为42.2,多不饱和脂肪酸含量为34.5,比例接近1:1:1,接近世界营养协会推荐标准,是一种高品质的天然的健康用油。

新乡市红阳机械有限公司(原新乡市红阳油脂工程技术有限公司),位于中国河南省新乡市国家级经济技术开发区,是河南省生产油脂加工设备的专业老厂家,中国粮油学会会员单位。

集成电路制造技术-原理与工艺 课后习题答案

第一单元: 3.比较硅单晶锭CZ,MCZ和FZ三种生长方法的优缺点。 答:CZ直拉法工艺成熟,可拉出大直径硅棒,是目前采用最多的硅棒生产方法。但直拉法中会使用到坩埚,而坩埚的使用会带来污染。同时在坩埚中,会有自然对流存在,导致生长条纹和氧的引入。直拉法生长多是采用液相掺杂,受杂质分凝、杂质蒸发,以及坩埚污染影响大,因此,直拉法生长的单晶硅掺杂浓度的均匀性较差。 MCZ磁控直拉法,在CZ法单晶炉上加一强磁场,高传导熔体硅的流动因切割磁力线而产生洛仑兹力,这相当于增强了熔体的粘性,熔体对流受阻。能生长无氧、均匀好的大直径单晶硅棒。设备较直拉法设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。 FZ悬浮区熔法,多晶与单晶均由夹具夹着,由高频加热器产生一悬浮的溶区,多晶硅连续通过熔区熔融,在熔区与单晶接触的界面处生长单晶。与直拉法相比,去掉了坩埚,没有坩埚的污染,因此能生长出无氧的,纯度更高的单晶硅棒。 6.硅气相外延工艺采用的衬底不是准确的晶向,通常偏离[100]或[111]等晶向一个小角度,为什么? 答:在外延生长过程中,外延气体进入反应器,气体中的反应剂气相输运到衬底,在高温衬底上发生化学反应,生成的外延物质沿着衬底晶向规则地排列,生长出外延层。 气相外延是由外延气体的气相质量传递和表面外延两个过程完成的。表面外延过程实质上包含了吸附、分解、迁移、解吸这几个环节,表面过程表明外延生长是横向进行的,是在衬底台阶的结点位置发生的。因此,在将硅锭切片制备外延衬底时,一般硅片都应偏离主晶面一个小角度。目的是为了得到原子层台阶和结点位置,以利于表面外延生长。 7. 外延层杂质的分布主要受哪几种因素影响? 答:杂质掺杂效率不仅依赖于外延温度、生长速率、气流中掺杂剂的摩尔分数、反应室的几何形状等因素,还依赖于掺杂剂自身的特性。另外,影响掺杂效率的因素还有衬底的取向和外延层结晶质量。硅的气相外延工艺中,在外延过程中,衬底和外延层之间存在杂质交换现象,即会出现杂质的再分布现象,主要有自掺杂效应和互扩散效应两种现象引起。

米糠油的提炼方法总结

1、物理精炼 物理精炼以其比较简单的工艺流程,可直接获得质量高的精炼油和副产品脂肪酸,而且原辅材料节省,没有废水污染,产品稳定性好,精炼率高等优点,越来越引起人们的关注。尤其对高酸值油脂,其优越性更加显著。它包括蒸馏前的预处理和蒸馏脱酸两个阶段。由于预处理对物理精炼油的质量起着决定性作用。近几年来对米糠油的物理精炼研究主要集中于预处理方面。B和Bhattacharrya[11]对含脂肪酸4?0~12?4%的米糠油对经过几种脱胶脱蜡方式处理、脱色后物理精炼米糠油的特性进行了研究。研究表明,低温(10℃)加工后物理精炼米糠油的色泽、FFA、胶质和蜡总量、谷维素、生育酚含量均非常好,适当低温处理(17℃)是可以的。室温(32℃)或稍低于室温(25℃)联合脱胶脱蜡,物理精炼RBO的质量不受欢迎。因此,低温(10℃)脱蜡无论对低FFA 还是高FFA的油均可得到色泽等均好的油脂。经磷酸脱胶(65℃)、低温脱蜡(10℃)、脱色物理精炼油色泽比同温(65℃)水脱胶和水脱蜡(10℃)、脱色物理精炼油色泽深,在较高温度下脱蜡(17或25℃)对色泽无影响;磷酸脱胶、水脱蜡(25℃),脱色物理精炼油色泽优于水脱胶替代磷脱胶;磷酸脱胶的精炼RBO 中生育酚含量低于水脱胶精炼米糠油(RBO);单独进行水脱胶(65℃)和低温(10℃)水脱蜡比磷酸脱胶(65℃)和水脱蜡生产的油脂质量好。全部试验结果表明,在联合低温(10℃)脱胶脱蜡后的米糠油物理精炼可生产色浅、游离脂肪酸(FFA)含量低、谷维素和生育酚含量高的优质米糠油。 2、米糠油的硅胶脱色法 米糠经溶剂浸出制得的米糠油,其色泽呈暗棕色、暗绿褐色或绿黄色,这主要取决于米糠贮存中的变质程度、制油方法和加工条件。一般来说,米糠油的深色经脱色不能完全除去,生产清澈透明和色浅的米糠油较困难。,采用硅胶柱渗滤脱色和硅胶同混合油混合脱色两种方法。其缺点是混合油通过硅胶柱时(尤其是溶剂浸出毛米糠油)流速慢。硅胶脱色可将工业常规实用的精炼工艺:脱胶—一次脱蜡—精炼—脱色—二次脱蜡和脱臭改进成硅胶柱—渗滤处理—脱胶—脱蜡—精炼—脱色和脱臭工艺。 3、米糠油的生物精炼法 Bhattacharrya和 D.KBkattacharrya[13]将生物精炼技术应用于高酸值米糠油的精炼,其原理借助微生物酶(1,3?特效脂肪酶)在一定条件下能催化脂肪酸及甘油间的酯化反应,使大部分脂脂酸转化为甘油酯。研究认为高酸值米糠油生物精炼的最佳反应条件是:加酶量为油重的10%、压力1333?22Pa、温度70℃、加水10%、加入甘油为理论计算量(加过量甘油未见明显改善)。他们所做实验中,当毛糠油FFA为30%,反应1h,FFA降低至19?2%;反应2h,游离脂肪酸降低至8?5%;经反应5h和7h;FFA分别降低至4?7%和3?6%。经过这种生物精炼脱酸处理的油中还残余一些游离脂肪酸,可再经过碱炼方法除去。就精炼特性而论,根据调查,生物精炼和碱炼结合的工艺过程大大胜过物理精炼和碱炼中和相结合的工艺过程。同其它工艺比较,采用酶催化脱酸和碱中和结合的工艺过程精炼高酸值米糠油需要的能量很低,经济效益高。

大豆油生产工艺

大豆油生产工艺 1.压榨法制油工艺流程 2.以花生果为例:清理→剥壳→破碎→轧胚→蒸炒→压榨→花生原油(毛油) 3.2.浸出法制油工艺流程 4.以大豆为例:清理→破碎→软化→轧胚→浸出→蒸发→汽提→大豆原油(毛油)5.3.油脂精炼工艺流程 6.原油(毛油)→过滤→水化(脱胶)→碱炼(脱酸)→脱色→脱臭→成品油 油脂精炼 毛油一般指从浸出或压榨工序由植物油料中提取的含有不宜食用(或工业用)的某些杂质的油脂。 毛油的主要成分是甘油三脂肪酸酯的混合物(俗称中性油)。除中性油外,毛油中还含有非甘油酯物质(统称杂质),其种类、性质、状态,大致可分为机械杂质、脂溶性杂质和水溶性杂质等三大类。 1﹒油脂精炼的目的和方法 (1)油脂精炼的目的油脂精炼,通常是指对毛油进行精制。毛油中杂质的存在,不仅影响油脂的食用价值和安全贮藏,而且给深加工带来困难,但精炼的目的,又非将油中所有的杂质都除去,而是将其中对食用、贮藏、工业生产等有害无益的杂质除去,如棉酚、蛋白质、磷脂、黏液、水分等都除去,而有益的"杂质",如生育酚等要保留。因此,根据不同的要求和用途,将不需要的和有害的杂质从油脂中除去,得到符合一定质量标准的成品油,就是油脂精炼的目的。 (2)油脂精炼的方法根据操作特点和所选用的原料,油脂精炼的方法可大致分为机械法、化学法和物理化学法三种。

上述精炼方法往往不能截然分开。有时采用一种方法,同时会产生另一种精炼作用。例如碱炼(中和游离脂肪酸)是典型的化学法,然而,中和反应生产的皂脚能吸附部分色素、粘液和蛋白质等,并一起从油中分离出来。由此可见,碱炼时伴有物理化学过程。 油脂精炼是比较复杂而具有灵活性的工作,必须根据油脂精炼的目的,兼顾技术条件和经济效益,选择合适的精炼方法。 2﹒机械方法 (1)沉淀 K沉淀原理沉淀是利用油和杂质的不同比重,借助重力的作用,达到自然分离二者的一种方法。 L沉淀设备沉淀设备有油池、油槽、油罐、油箱和油桶等容器。 M沉淀方法沉淀时,将毛油置于沉淀设备内,一般在20~30℃温度下静止,使之自然沉淀。由于很多杂质的颗粒较小,与油的比重差别不大。因此,杂质的自然沉淀速度很慢。另外,因油脂的粘度随着温度升高而降低,所以提高油的温度,可加快某些杂质的沉淀速度。但是,提高温度也会使磷脂等杂质在油中的溶解度增大而造成分离不完全,故应适可而止。 沉淀法的特点是设备简单,操作方便,但其所需的时间很长(有时要10多天),又因水和磷脂等胶体杂质不能完全除去,油脂易产生氧化、水解而增大酸值,影响油脂质量,不仅如此,它还不能满足大规模生产的要求,所以,这种纯粹的沉淀法,只适用于小规模的乡镇企业。 (2)过滤

(完整版)集成电路工艺原理期末试题

电子科技大学成都学院二零一零至二零一一学年第二学期 集成电路工艺原理课程考试题A卷(120分钟)一张A4纸开卷教师:邓小川 一二三四五六七八九十总分评卷教师 1、名词解释:(7分) 答:Moore law:芯片上所集成的晶体管的数目,每隔18个月翻一番。 特征尺寸:集成电路中半导体器件能够加工的最小尺寸。 Fabless:IC 设计公司,只设计不生产。 SOI:绝缘体上硅。 RTA:快速热退火。 微电子:微型电子电路。 IDM:集成器件制造商。 Chipless:既不生产也不设计芯片,设计IP内核,授权给半导体公司使用。 LOCOS:局部氧化工艺。 STI:浅槽隔离工艺。 2、现在国际上批量生产IC所用的最小线宽大致是多少,是何家企业生产?请 举出三个以上在这种工艺中所采用的新技术(与亚微米工艺相比)?(7分) 答:国际上批量生产IC所用的最小线宽是Intel公司的32nm。 在这种工艺中所采用的新技术有:铜互联;Low-K材料;金属栅;High-K材料;应变硅技术。 3、集成电路制造工艺中,主要有哪两种隔离工艺?目前的主流深亚微米隔离工 艺是哪种器件隔离工艺,为什么?(7分) 答:集成电路制造工艺中,主要有局部氧化工艺-LOCOS;浅槽隔离技术-STI两种隔离工艺。 主流深亚微米隔离工艺是:STI。STI与LOCOS工艺相比,具有以下优点:更有效的器件隔离;显著减小器件表面积;超强的闩锁保护能力;对沟道无 侵蚀;与CMP兼容。 4、在集成电路制造工艺中,轻掺杂漏(LDD)注入工艺是如何减少结和沟道区间的电场,从而防止热载流子的产生?(7分) 答:如果没有LDD形成,在晶体管正常工作时会在结和沟道区之间形成高

米糠的加工再利用

米糠的加工再利用 食科1201 刘书锴 1010312122 米糠是糙米碾白过程中被碾下的皮层及少量米胚和碎米的混合物。传统的米糠也就是现行国家标准米糠主要是由种皮、种皮、外胚乳、糊粉层和胚加工制成的,因此在加工过程中会混进少量的稻壳和一定量的灰尘和微生物,所以只能用于饲料,是稻谷加工的主要副产品。其产量约为面年900万吨左右,是一种量大面广的可再生资源。 米糠中所包含的糠层和糊粉层含有极丰富的维生素(特别是B族维生素)、矿物质和蛋白质。 例如,米糠中的胡萝卜素具有人体的需要而转换成维生素A的特征。经过转换的胡萝卜素能保持视力、皮肤和粘膜的健康,并能帮助毛细血管内的血液循环。维生素D,促进肠道对钙质的吸收。维生素B1、B2和B12等水溶性维生素,能帮助糖质和脂质的代谢,并能增强食欲,防治贫血等功效。 此外,米糠中所含有的含量较高的植酸盐经酶法或非酶法水解所产生的肌醇有着良好的保健功能。 所以,在食用方面来说,现在美国等发达国家已经有食用米糠问世,我国也有类似产品被发明,即应用现代食品加工精准碾制技术将米糠中的不益食物质(稻壳、果皮、种皮、灰尘、微生物等)与益食营养物质(胚、糊粉层等外层胚乳)在洁净的生产车间里进行精准碾磨分离。食品级米糠虽然只占稻谷重量的6%,但占稻谷营养的约60%。 在国内,米糠的利用主要还是用于制作米糠油和菲丁,但这两项利用率也仅占米糠产量的15%,其中米糠油占10%。 米糠是一种重要的油源,而且它与大豆、油菜等油料作物不同,不需要专门栽培,不占耕地。米糠是一种营养丰富的植物油,富含亚油酸、亚麻酸等必须脂肪酸,而这些脂肪酸是脊椎动物维持健康所必须的,自身不能合成的,要从食物中摄取的脂肪酸。其饱和脂肪酸、单不饱和脂肪酸和脂肪酸的比例为1:2.1:1.8,接近世界卫生组织建议的脂肪酸最佳摄入比例1:2.1:1.1。并且,在食用之后吸收率达到90%以上。这些都使得米糠油有着良好的降低血压、预防肥胖、维持妊娠,减少胆固醇在血管壁上过多沉积,可用于高血脂症及动脉粥样硬化症的防治的作用。因此它被誉为“心脏油”,“青春油”。由于米糠油本身稳定性良好,适合作为油炸用油,还可制造人造奶油、人造黄油、起酥油、色拉油。米糠油除作食用油外,在工业上亦得到广泛应用,是生物柴油良好的原料。 在工业上制取米糠油通常采取压榨法和浸出发。但是由于米糠油颜色上不足,口感也不如色拉油,使得米糠油在市场的销售受阻。 日本,对于米糠的利用目前处于世界领先水平。 米糠中所以含有的有效成分被作为营养饮料和婴幼儿奶粉原料,在医药用品和营养辅助食品领域被广泛使用。以米糠营养素和米糠营养纤维为基本原料生产的固体饮料,富含优质的脂肪、蛋白质、生育酚、生育三烯酚,而且已全无米糠的不良口感,具有浓郁的可可香味和令

萘普生

萘普生的合成工艺设计 1.产品简介 1.1中英文名称,分子式,结构式 中文名称:萘普生 英文名称:(dl)-2-(methoxy-2-naphthy)-d-naproxen 分子式:C14H14O3 结构式: 1.2 物化性质 白色或类白色结晶性粉末;无臭或几乎无臭。在甲醇、乙醇或氯仿中溶解,在乙醚中略溶,在水中几乎不溶,。熔点为135~158℃,本品遇光可慢慢变色。本产品具有羧基官能团,可以进行一系列的反应如酯化(或取代)和中和反应。。萘环上则能发生硝化取代及催化加氢等等。 1.3 用途 本品有抗炎、解热、镇痛作用为PG合成酶抑制剂。口服吸收迅速而完全,1次给药后2~4小时血浆浓度达峰值,在血中99%以上与血浆蛋白结合,t1/2为13~14小时。约95%自尿中以原形及代谢产物排出。对于类风湿性关节炎、骨关节炎、强直性脊椎炎、痛风、运动系统(如关节、肌肉及腱)的慢性变性疾病及轻、中度疼痛如痛经等,均有肯定疗效。中等度疼痛可于服药后1小时缓解,镇痛作用可持续7小时以上。对于风湿性关节炎及骨关节炎的疗效,类似阿司匹林。对因贫血、胃肠系统疾病或其他原因不能耐受阿司匹林、吲哚美辛等消炎镇痛药的病人,用本药常可获满意效果。 可安全地与皮质激素合用,但与皮质激素合用时,疗效并不比单用皮质激素时

好。本品与水杨酸类药物合用也不比单用水杨酸类好。此外,阿司匹林可加速本品的排出。 1.4 该产品的前景分析 随着萘普生钠市场竞争的愈发激烈,快速有效的掌握市场发展情况成为企业及决策者成功的关键。市场研究是一个科学系统的工作,直接影响着企业发展战略的规划、产品营销方案的设计、公司投资方针的制定以及未来发展方向的确定。市场研究并非单纯从某一个层面对市场进行评价,要得到有实际价值、具有指导意义的结论,就必须从专业的角度对市场进行全面细致的研究。如此,才能时刻保持清晰的发展思路,不因纷繁的信息而迷失,在日益激烈的市场竞争中立于不败之地。针对企业的这种需要,我们对萘普生钠市场进行了深度调研,并撰写了《2011中国萘普生钠市场投资前景预测及发展策略》,帮助企业进行决策。本报告详尽描述了萘普生钠产品的市场环境,市场发展现状(包括技术、供需、价格、原材料),市场发展预测(未来五年市场供需及市场发展趋势),并且在研究市场竞争的基础上,对行业投资前景及投资价值进行了研究(包括投资风险、投资环境、投资壁垒、投资收益等),并提出了我们对萘普生钠产品投资的建议。由于该产品药效明显副作用小,受到市场高度青睐,具有很好的经济效益,市场前景广阔。 2合成方法 2.1第一种合成方法—不对称二羟基反应法 (1)合成基本原理 1997年,Griesbach等【25 J报道了一种新的合成方法,以烯烃的Sharpless不对称二羟基化反应(AD-lllix)作为起始步骤来合成(s)-(+)-萘普生。化合物(4)经不对称二羟基化反应生成二醇(7),对映选择性高达98%,而且操作简便,条件温和。二醇(7)单磺酰化成酯(8)后,再经氢化钠处理获得80%的环氧化物(9)。环氧化物(9)于室温下,催化氢解生成伯醇(10),化学收率达92%,对映选择性可达97%。伯醇(10)最后经Jones氧化反应得到产物①的对应行为96%。

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。

机械加工工艺规程完整

第10章机械加工工艺规程 10.1 工艺过程 10.1.1 生产过程与工艺过程 (1) 生产过程 生产过程是指把原材料(半成品)转变为成品的全过程。机械产品的生产过程,一般包括:①生产与技术的准备,如工艺设计和专用工艺装备的设计和制造、生产计划的编制,生产资料的准备;②毛坯的制造,如铸造、锻造、冲压等;③零件的加工,如切削加工、热处理、表面处理等;④产品的装配,如总装,部装、调试检验和油漆等;⑤生产的服务,如原材料、外购件和工具的供应、运输、保管等。 机械产品的生产过程一般比较复杂,目前很多产品往往不是在一个工厂单独生产,而是由许多专业工厂共同完成的。例如:飞机制造工厂就需要用到许多其他工厂的产品(如发动机、电器设备、仪表等),相互协作共同完成一架飞机的生产过程。因此,生产过程即可以指整台机器的制造过程,也可以是某一零部件的制造过程。 (2) 工艺过程 工艺过程是指在生产过程中改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品的过程。如毛坯的制造,机械加工、热处理、装配等均为工艺过程。在工艺过程中,若用机械加工的方法直接改变生产对象的形状、尺寸和表面质量,使之成为合格零件的工艺过程,称为机械加工工艺过程。同样,将加工好的零件装配成机器使之达到所要求的装配精度并获得预定技术性能的工艺过程,称为装配工艺过程。 机械加工工艺过程和装配工艺过程是机械制造工艺学研究的两项主要容。 10.1.2 机械加工工艺过程的组成 机械加工工艺过程是由一个或若干个顺序排列的工序组成的,而工序又可分为若干个安装、工位、工步和走刀,毛坯就是依次通过这些工序的加工而变成为成品的。 (1) 工序 工序是指一个或一组工人,在一个工作地点对一个或同时对几个工件所连续完成的那一部分工艺过程。区分工序的主要依据,是工作地点(或设备)是否变动和完成的那部分工艺容是否连续。如图4.1所示的零件,孔1需要进行钻孔和铰孔,如果一批工件中,每个工件都是在一台机床上依次地先钻孔,而后铰孔,则钻孔和铰孔就构成一个工序。如果将整批工件都是先进行钻孔,然后整批工件再进行铰孔,这样钻孔和铰孔就分成两个工序了。 工序不仅是组成工艺过程的基本单元,也是制订工时定额,配备工人,安排作业和进行质量检验的依据。 通常把仅列出主要工序名称的简略工艺过程称为工艺路线。 (2) 安装与工位 工件在加工前,在机床或夹具上先占据一正确位置(定位),然后再夹紧的过程称为装夹。工件(或装配单元)经一次装夹后所完成的那一部分工艺容称为安装。在一道工序中可以有一个或多个安装。工件加工中应尽量减少装夹次数,因为多一次装夹就多一次装夹误差,而且增加了辅助时间。因此生产中常用各种回转工作台、回转夹具或移动夹具等,以便在工件一次装夹后,可使其处于不同的位置加工。为完成—定的工序容,一次装夹工件后,工件(或装配单元)与夹具或设备的可动部分一起相对刀具或设备固定部分所占据的每一个位

米糠油生产工艺

毛油生产工艺: 图5-1 毛油生产工艺流程 米糠预处理:原料米糠中可含有少量杂质,经筛选除去;而后进入调质系统,向原料中通入少量蒸汽(约为原料量的2%),使其软化,便于后续压榨出油。 压榨:预处理后米糠直接进入液压压榨机,采用冷榨方式,将米糠中大部分糠油压榨挤出,出油即为米糠毛油,直接进入物理精炼车间精炼提纯;压榨产生的饼粕中含有部分毛油,进入浸出车间进一步提取毛油。 浸出:饼粕进入油浸出器,向其中添加溶剂正己烷,使饼粕中油脂溶解在溶剂内,组成混合油,混合油通过过滤介质(筛网),其中所含的固体粕末即被截留,得到较为洁净的混合油。 混合油蒸发:利用油脂几乎不挥发,而溶剂沸点低、易于挥发的特性,采用盘管蒸汽加热使溶剂大部分汽化蒸出,从而使混合油中油脂的浓度大大提高。 混合油相从混合油罐进入第一长管蒸发器管程,蒸发的溶剂经分离室进入一蒸冷凝器;浓缩后的混合油进入第二长管蒸发器进行蒸发,蒸发的溶剂汽经分离室进入二蒸冷凝器。由第一、第二蒸发器出来的溶剂蒸气因其中不含水,经冷换器冷却后直接流入循环溶剂罐。 该工序主要使用长管蒸发器,其特点是加热管道长,混合油经预热后由下部进入加热管内,迅速沸腾,产生大量蒸气泡并迅速上升。混合油也被上升的蒸气

泡带动并拉曳为一层液膜沿管壁上升,溶剂在此过程中继续蒸发。由于在薄膜状态下进行传热,故蒸发效率较高。 汽提:通过蒸发,混合油的浓度大大提高,但其中仍含有少量的溶剂油,采用汽提将其去除。混合油与水不相溶,向沸点很高的浓混合油内通入一定压力的直接蒸汽(直接蒸汽通入量约为物料量的2%),同时在设备的夹套内通入间接蒸汽加热,使通入混合油的直接蒸汽不致冷凝,直接蒸汽与溶剂蒸气压之和与外压平衡,溶剂即沸腾,从而降低了高沸点溶剂的沸点,未凝结的直接蒸汽夹带蒸馏出的溶剂一起进入冷凝器进行冷凝回收。汽提后所得毛油进入物理精炼车间精炼。 湿粕脱溶:浸出器过滤分离的湿粕中含有少量溶剂,向其中通入水蒸气进行脱溶,去除其中溶剂,其原理与混合油汽提相同。 由汽提塔、脱溶出来的混合蒸气中含有少量水,进入冷凝器,经冷凝后的溶剂、水混合液流入分水器进行分水,分离出的溶剂流入循环溶剂罐。 水 蒸汽 副产品混 合脂肪酸 图5-2 毛油物理精炼生产工艺流程 沉淀过滤:毛油中含有不溶性杂质颗粒,主要是饼渣、泥沙、草屑等,利用其与油的比重不同,依靠自然沉降将其分离。 水化脱胶:向毛油中加入少量水(加入水量约为毛油重量的1%-3%),使其中的水溶性杂质凝聚沉淀而与油脂分离。水化时,凝聚沉淀的水溶性杂质以磷脂为主,当毛油中不含水分或含水分极少时,它能溶解分散于油中;当磷脂吸水湿润时,水与磷脂的亲水基结合后,就带有更强的亲水性,吸水能力更加增强,随

榨油生产工艺中三去六脱介绍

榨油生产工艺中三去六脱介绍 一、三去:去轻、去石、去磁。 去轻:是为了得到更纯的胡麻子作为原料,通过物理比重差异在风力悬浮筛选下去除、比胡麻籽轻的杂质如:粉尘、胡麻皮等 去重:通过比重差异,在震动筛上将胡麻籽重的杂质去除。 去磁:利用铁性杂质的磁性原理去除铁性杂质。“三去”保证产品安全,同时保护生产设备。 二、六脱:脱酸、脱胶、脱色、脱水、脱臭、脱蜡。 我国目前的食用油按国家标准来说有食用一级油、二级油、高级烹调油、色拉油等等。我公司产品生产工艺属于全精炼(色拉油)生产工艺。就目前大多数地区的消费档次而言,食用油还没有区分出烹调油、凉拌油(色拉油)等,多数地区的饮食习惯,食用油主要是烹调用,即炒菜用,因此主要是烹调油。近几年来,随着油脂精炼生产线的引进和国产精炼设备的不断成熟,色拉油以及各种企业标准的精炼油产量不断提高,再加上一些厂家的广告效应,有些城市及地区食用油消费逐渐转向色拉油等精制油,这说明人们消费水平的提高,追求更精更纯的食品。但从营养的角度来讲,拿来全精炼油(色拉油)作烹调油,是不是合适,值得探讨。 从化学角度讲,现有绝大多数天然油脂95%以上是由饱和及不饱和程度各异的脂肪酸甘油三酯(甘三酯)组成并伴有少量种类繁多的类脂物质。这些类脂物主要包括磷脂、游离脂肪酸、甾醇及甾醇酯、维生素、色素、萜烯类、蜡、脂肪醇、烃类等,它们绝大多数对人体有益无害,但仍有些成分及有些油料的油含有毒成分是一定要去除的。从毛油到色拉油,一般需要经过脱胶(脱磷)、脱酸、脱色、脱臭,有些油品还需脱腊等工序的处理。经过这些精炼过程之后油脂的主要类脂物成分和其中的营养成分的含量会发生系列变化。 (一)、脱酸——游离脂肪酸(FFA) 油脂中含有游离脂肪酸,主要是由于未熟油料种子中尚未合成为酯的脂肪酸。油料因受潮、发热受解脂酶作用或存放过程中氧化分解也能产生FFA。一般未精炼植物油脂中约含有0.5%-5%,受解脂酶分解过的米糠油、棕榈油中FFA可高达到达20%以上。 油脂脱酸的主要目的应体现在:高含量FFA对食用者的口味和菜肴风味的影响较大,并非其本身对人体有什么危害。 (二)、脱胶——磷脂 粗植物油中磷脂含量视油料品种、制取方法而不同,一般为0.1%-3%。大豆油中磷脂含量较高,约为1%-3%。 磷脂对人体虽具有调解代谢、增强体能、健脑、补脑、消除大脑疲劳、增强智商,提高人体记忆力、降低人体血液胆固醇、调节血脂、防止动脉粥样硬化、保护人体肝脏、防止脂肪肝、防止胆结石、防止老年骨质疏松证、防止克山病等功能,并且对油脂具有抗氧化增效的作用,但在油脂精炼中却要首当其冲将其去除的主要原因是:(1)混入油中使油脂颜色深暗、混浊;(2)油中有水或长时间存放,磷脂易吸水,沉淀,加快油脂变质;(3)加热到280℃开始焦苦发黑;(4)磷脂等胶质的存在,直接影响脱酸、脱色、脱臭等后续加工工序的完成。 作为一般的烹调油,从保管及多数地区的烹调习惯即高温烹调来讲,脱磷是必要的。 脱除磷脂的主要工序是脱胶,去除了毛油中76%的磷脂,到脱臭之后,几乎100%地将其去除。 (三)、脱色——色素 油脂中的色素主要是天然色素,包括类胡萝卜素和叶绿素两类。自然界最多的胡萝卜素

药物化学实验讲义(萘普生)2011版

手性药物萘普生的光学拆分法制备 一:实验目的 掌握用光学拆分法制备手性药物萘普生,了解拆分消旋化合物的原理,学习用旋光仪分析手性药物中间体光学纯度的方法。 二:实验原理 具有手性的药物其对映体往往有完全不同的药理活性,单一对映体的手性药物因其药效高、副作用低和安全等优点,受到了化学家和制药企业的重视,近二、三十年,手性药物得到了很大的发展,其销售额以每年15%的速度在增长。 萘普生为非甾体类抗炎镇痛药,用于治疗风湿性和类风湿性关节炎、胃关节炎、强直性脊柱炎、痛风、关节炎、腱鞘炎.亦可用于缓解肌肉骨骼扭伤、挫伤、损伤以及痛经等所致的疼痛。研究表明(S)-萘普生的药效是(R)-萘普生的28倍。 目前获得单一手性化合物的方法主要有:①手性源合成法:以手性物质为原料合成其他手性化合物。②不对称催化合成法:是在催化剂或酶的作用下合成得到单一对映体化合物的方法。③外消旋体拆分法:是在拆分剂的作用下,利用物理化学或生物方法将外消旋体拆分成两个对映体,其中化学拆分法是工业生产上广泛应用的方法。化学拆分法是利用如果外消旋体分子含有的活性基团与某一光学活性试剂(拆分剂)进行反应,生成两种非对映异构体的盐或其它复合物,再利用它们物理性质(如溶解度)和化学性质的不同将两者分开,最后把拆分剂从中分离出去,便可得到单一对映体。 本实验拆分的反应式如下: H3CO CHCOOH CH3 (±)-萘普生 H3CO CHCOOH CH3 (+)-萘普生 (-)-葡辛胺 拆分 反应结束后得到的产物(S)-萘普生,需测定其对映选择性,即产物的对映体过剩(ee 值)。其测定方法有多种,本实验利用的是旋光仪的方法。 三、仪器和试剂 旋光仪;熔点仪;磁力搅拌器(带加热控温);搅拌子;100 ml烧瓶;冷凝管;布氏漏斗;烘箱;小勺。 主要原料、试剂的规格和用量 名称规格用量外消旋萘普生 C.P. 2.5 g (—)-葡辛胺 C.P. 3.2 g 甲醇 C.P. 50 mL 氢氧化钠 A.R. 少量 盐酸少量

集成电路制造工艺原理

《集成电路制造工艺原理》 课程教学 教案 山东大学信息科学与工程学院 电子科学与技术教研室(微电) 张新

课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编 《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技 术。 5.教学课时安排:(按54学时) 课程介绍及绪论 2学时 第一章衬底材料及衬底制备 6学时 第二章外延工艺 8学时 第三章氧化工艺 7学时 第四章掺杂工艺 12学时 第五章光刻工艺 3学时 第六章制版工艺 3学时 第七章隔离工艺 3学时 第八章表面钝化工艺 5学时 第九章表面内电极与互连 3学时 第十章器件组装 2学时

年产1万吨米糠油实施方案

湖南银光粮油股份有限公司 1万吨/年精炼米糠油建设工程项目实施方案 一、项目承建单位基本情况 (一)、建设单位概况 湖南银光粮油股份有限公司创办于1996年,原为湖南银利来粮油实业有限公司。在各级各部门的大力关心和支持下,现已发展成集优质粮油原料订单种植、收储与大米、植物油加工、销售、服务于一体的省级农业产业化龙头企业。公司注册资本5516万元,总资产1.85亿元,员工300余人;现有年产10万吨大米生产线二条、年处理压榨米糠毛油1万吨生产线、年精炼米糠油1万吨生产线和年产5万吨食用植物油生产线各一条,储粮仓容6万吨、储油灌容1.5万吨。公司通过了ISO9001、ISO14001和HACCP 三大体系认证,注册的银光牌商标荣获“中国驰名商标”,生产的银光牌系列大米荣获“中国名牌产品”、“全国放心米”和“绿色食品”称号,银光山茶油被评为“湖南名牌产品”。并被省农发行评定为“黄金客户”、省工商局评定为“守合同重信用”单位、中国粮食行业协会评定为“诚信粮油单位”和“全国放心粮油示范企业”。 2009年,公司共落实优质稻订单种植基地40万亩,油茶林种植基地10.5万亩,带动农民增收8000万元;实现工业总产值4.8亿元,创利税680万元,达到了农民增收、企业增效的“双赢”目的。 湖南银光粮油股份有限公司,是按照现代企业管理制度成立的有限责任公司,按照现代企业管理模式建立健全了现代企业管理制度。公司高度重视食用植物油产品的研发工作,2007年与湖南农业大学合作,共同完成了“米糠油精炼及其系列产品生产工艺研究”的科研成果,米糠油精炼项目引进具有国际先进水平的加工工艺,具备承担该项目建设的能力。 (二)、配套原料情况 湖南省是我国稻谷生产量最大的省份,年产稻谷总量约1800万吨,折

米糠预处理工艺过程及原理

米糠预处理工艺过程及原理 传统预处理工艺 米糠浸出制油前的预处理,传统工艺主要有造粒成型和蒸炒(烘炒)成型两种。这两种方式虽然工艺成熟、稳定,但也有不少弊端,如动力、蒸汽消耗大,粉末度大,色泽深,干粕残油高,溶剂损耗大,浸出设备的生产率低,易使平转浸出器产生搭桥现象,精炼得率低等。 膨化预处理工艺 膨化成型保鲜原理 膨化亦称为结构化或组织化,即利用膨化机的不等距非标准螺旋系统的挤压推进,米糠间隙中的气体被挤出,并迅速被物料填充,米糠受剪切作用而产生回流,使机膛内的压力增大,随着螺旋与机膛间的摩擦使米糠的晶体达到充分混合、挤压、加热、胶合、糊化而产生组织变化,脂肪层结构遭到破坏;同时机械能转化为热能,机膛内温度很快升高到125℃左右,有效的钝化了米糠中的各种酶的活性,破坏了脂肪层结构;米糠被挤压到出口处时,淀粉、蛋白质转化为粘性状态,压力由高压瞬间变为常压,造成水分迅速地从组织结构中蒸发出来,使其内部形成无数的微孔结构,冷却干燥后,米糠即膨化成型。 工艺流程 原料米糠→糠粞分离→调质→油料膨化机→冷却→(包装计量)→浸出车间→精炼车间→成品油 膨化前准备 米糠进入膨化机前必须预先进行糠粞分离。因为原料中如含有较多的碎米和粗糠壳等杂质,会加快膨化机的磨损,更重要的是碎米含有较多的淀粉,使米糠在膨化过程中形成不了适当的压力,而且会使膨化物料结构松散,达不到良好的膨化效果,极易增加浸出料的粉末度和干粕残油,而影响浸出效果。 原料米糠的水分对膨化机的工作甚有影响,它直接决定膨化后的弹性与塑性。米糠水分过高,物料弹性差,不能产生足够的压力和热能适宜的破坏油细胞和酶;而水分过低,物料塑性差,会使膨化温度过高,物料焦化,加深物料颜色,并易堵塞膨化机,也不能产生良好的膨化物料。根据使用结果,米糠入机前水分应控制在11~13%为宜。

生产工艺流程总结

生产工艺流程总结 水泥生产工艺小结 水泥生产自诞生以来,历经了多次重大技术变革,从最早的立式窑到回转窑,从立波尔窑到悬浮预热窑,再到如今的预分解窑,每一次变革都推动了水泥生产技术的发展。以悬浮预热和预分解技术为核心的新型干法水泥生产技术,把现代科学技术和工业生产最新成就相结合,使水泥生产具有高效、优质、环保、大型化和自动化等现代化特征,从而把水泥工业推向一个新的阶段。 水泥生产主要包括生料制备、熟料烧成和水泥粉磨至成品三个阶段,而在每个阶段中又包含了许多工艺过程。比如生料制备中涉及到矿山开采、原料预均化及粉磨和生料的均化等过程;而熟料烧成系统中又涉及到旋风筒、连接管道、分解炉、回转窑和篦冷机五种主要工艺设备。本文主要通过生料制备、熟料烧成和水泥成品三个大方面对整个新型干法水泥生产工艺进行描述。 1 生料制备 矿山开采和原料预均化 任何产品的制备,原料的选取和制备均是重要的一个环节,原料的品质会直接影响生产产品的质量。所以,在水泥生产中,原料选取即矿石开采需要做好质量控制工作。在矿石开采过程中,首先要做好勘探工作,切实掌握矿体的质

量,然后在此基础上根据生产需求,合理搭配,选择性开采,尽可能的缩小原料的化学成分波动,这同时也可为原料预均化创造了一定的条件。 1959年,原料预均化技术首次应用于美国水泥工业。预均化技术就是在原料的存取过程中,运用科学的堆取料技术,实现原料的初步均化。具体是在原料堆放时,由堆料机连续地把进来的物料,按照一定的方式堆成尽可能多的相互平行、上下重叠、厚薄一致的料层,而在取料时,则通过选择与料堆方式相适应的取料机和取料方式,在垂直于料的方向上,同时切取所有料层,这样就在取料的同时完成了物料的混合均化,起到预均化的目的。 预均化是在预均化堆场中进行的,预均化堆场按照功能又可以分为预均化堆场、预配料堆场和配料堆场三种类型。预均化堆场是将成分波动较大的单一品种物料石灰石、原煤等,以一定的堆取料方式在堆场内混合均化,使其出料成分均匀稳定;预配料堆场是将成分波动较大的两种或两种以上原料,按照一定的配合比例进入堆场,经混合均匀,使其出料成分均匀,并基本符合下一步配料要求; 配料堆场是将全部品种的原料,按照配料要求,以一定的比例进入堆场,经过混合均化,在出料时达到成分均匀稳定,并且完全符合生料成分要求。 原料的粉磨

集成电路制造工艺原理

集成电路制造工艺原理 课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社 3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技术。 5.教学课时安排:(按54学时) 课程介绍及绪论2学时第一章衬底材料及衬底制备6学时 第二章外延工艺8学时第三章氧化工艺7学时第四章掺杂工艺12学时第五章光刻工艺3学时第六章制版工艺3学时第七章隔离工艺3

学时 第八章表面钝化工艺5学时 第九章表面内电极与互连3学时 第十章器件组装2学时 课程教案: 课程介绍及序论 (2学时) 内容: 课程介绍: 1 教学内容 1.1与微电子技术相关的器件、集成电路的制造工艺原理 1.2 与光电子技术相关的器件、集成电路的制造 1.3 参考教材 2教学课时安排 3学习要求 序论: 课程内容: 1半导体技术概况 1.1 半导体器件制造技术 1.1.1 半导体器件制造的工艺设计 1.1.2 工艺制造 1.1.3 工艺分析 1.1.4 质量控制 1.2 半导体器件制造的关键问题 1.2.1 工艺改革和新工艺的应用 1.2.2 环境条件改革和工艺条件优化 1.2.3 注重情报和产品结构的及时调整 1.2.4 工业化生产 2典型硅外延平面器件管芯制造工艺流程及讨论 2.1 常规npn外延平面管管芯制造工艺流程 2.2 典型pn隔离集成电路管芯制造工艺流程 2.3 两工艺流程的讨论 2.3.1 有关说明 2.3.2 两工艺流程的区别及原因 课程重点:介绍了与电子科学与技术中的两个专业方向(微电子技术方向和光电子技术方向)相关的制造业,指明该制造业是社会的基础工业、是现代化的基础工业,是国家远景规划中置于首位发展的工业。介绍了与微电子技术方向相关的分离器件(硅器件)、集成电路(硅集成电路)的制造工艺原理的内容,指明微电子技术从某种意义上是指大规模集成电路和超大规模集成电路的制造技术。由于集成电路的制造技术是由分离器件的制造技术发展起来的,则从制造工艺上看,两种工艺流程中绝大多数制造工艺是相通

机械加工工艺及其设备

机械制造工艺学 课程设计说明书 设计题目设计“CA6140车床拨叉”零件的机械加 工工艺及工艺设备 设计者 学号 指导教师 2006-9-27

目录 序言 一.零件的分析 (1) (一)零件的作用 (1) (二)零件的工艺分析 (2) 二.工艺规程的设计 (3) (一)确定毛坯的制造形式 (3) (二)基面的选择 (3) (三)制定工艺路线 (3) (四)机械加工余量工序尺寸及毛坯尺寸的确定..5 (五)确立切削用量及基本工时 (7) 三.夹具设计 (13) (一)问题的提出 (13) (二)夹具设计 (13) 四.参考文献 (17) 序言

机械制造工艺学课程设计使我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的.这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。 就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后参加祖国的“四化”建设打下一个良好的基础。 由于能力所限,设计尚有许多不足之处,恳请各位老师给予指导。 一、零件的分析 (一)零件的作用 题目所给的零件是CA6140车床的拨叉。它位于车床变速机构中,主要起换档,使主轴回转运动按照工作者的要求工作,获得所需的速度和扭矩的作用。零件上方的φ25孔与操纵机构相连,二下方的φ60半孔则是用于与所控制齿轮所在的轴接触。通过上方的力拨动下方的齿轮变速。两件零件铸为一体,加工时分开。 (二)零件的工艺分析 CA6140车床共有两处加工表面,其间有一定位置要求。 分述如下: 1.以φ25mm孔为中心的加工表面 这一组加工表面包括:φ25H7mm的孔,以及φ42mm的圆柱两端面,其中主要加工表面为φ25H7mm通孔。 2.以φ60mm孔为中心的加工表面 这一组加工表面包括:φ60H12的孔,以及φ60H12的两个端面。主要是φ60H12的孔。 3. 铣16H11的槽 这一组加工表面包括:此槽的端面,16H11mm的槽的底面,

米糠油浸出设备工艺流程

米糠油浸出设备工艺流程 米糠油具有很高的营养价值。米糠油中的脂肪酸组成、维生素E、甾醇、谷维素等有利于人体的吸收,具有清除血液中的胆固醇、降低血脂、促进人体生长发育等有益作用,食后吸收率达90%以上,早已成为西方家庭的日常健康食用油。今天宏日机械为大家介绍米糠油浸出设备工艺流程,让大家对米糠油进一步的了解! 1、米糠的物理特性及加工特点 米糠中油脂的含量约为 14% ~ 24%,是一种中低含油量的油料。和其他油料相比还具有以下特点:淀粉含量高;酶的种类多,易酸败,不宜久存;含有磷脂、糠蜡等多种胶体物质;密度小,颗粒细,粉末度大;品种多,组分变化大。 鉴于米糠的上述物理特性,决定了米糠制油的特殊工艺不能像大

豆那样直接采用一次浸出工艺,而是采用膨化浸出制油工艺,即在浸出之前对米糠进行膨化处理。一方面通过膨化处理,可以使粉末状的米糠膨化成多孔、透气性较好的柱状结构,使米糠的密度加大,溶剂的渗透速度加快,在浸出过程中利于溶剂的渗透,降低糠粕残油;另一方面通过膨化处理,还可以使米糠中的解脂酶被充分钝化,失去活性,使米糠在保存过程中不易酸败,延长了米糠的保鲜期,大大降低了浸出毛油的酸值,有效地提高了米糠浸出毛油的质量。因此,米糠经过膨化后,不仅能够提高产量还可以改善物料的浸出特性,提高溶剂在物料中的渗透速度,在后道加工工序中能够节约能源,降低湿粕含溶量,提高混合油浓度,增强蒸脱机和蒸发器的脱溶能力,降低各种消耗,提高米糠的出油率。 2、米糠的膨化工艺 3、膨化工艺操作说明 筛选 米糠中杂质含量变化较大,其中的粗糠和碎米严重影响后续工艺

的取油和湿粕的脱溶 ,因此必须经过筛选去除,使米糠的含杂率达到膨化的要求。在膨化过程中一般要求米糠中杂质含量小于 3%,而粗纤维含量在 8% 左右即可达到要求。 磁选 如果米糠中含有铁杂,在膨化过程中铁杂会对膨化机的榨螺造成严重的损坏,并堵塞膨化机的模块,影响膨化机的膨化效果,因此米糠中的铁杂必须清除干净。由于米糠颗粒小,流动性差,米糠中的铁杂通常采用让米糠通过安装在设备进料口处的条型磁铁的方法加以除去,而不采用永磁滚筒等除铁设备。 调质 调质处理是在米糠进入膨化机之前,先对米糠进行提前预热,提高米糠膨化前的温度。调质处理后米糠的温度一般控制在 65 ~75 ℃,水分控制在 10% ~ 12% 。这样,一方面可以增加膨化机的产量,另一方面可以提高米糠膨化质量。

相关文档
最新文档