特殊四边形培优习题精选及答案

特殊四边形培优习题精选及答案
特殊四边形培优习题精选及答案

《特殊平行四边形习题精选》

1、矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则∠BOE=________°

2、菱形ABCD 的对角线AC 、BD 相交于O ,△AOB 的周长为33 ,∠ABC=60o,则菱形ABCD 的面积为__________

3、如图,矩形ABCD 长为a ,宽为b ,若s 1=s 2=

21

(s 3+s 4),则s 4等于( ) (A )ab 83 (B )ab 43 (C )ab 32 (D )ab 21

4、菱形ABCD 中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF=_________°

5、点M 、N 分别在正方形ABCD 的边CD 、BC 上,,已知△MCN 的周长等于正方形ABCD 周长的一半,求∠MAN 的度数。

6、如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处,求证:EF=DF.

7、如图,在平行四边形ABCD 中,BC = 2AB ,E 为BC 的中点,求∠AED 的度数;

B C D

O

E B C

D E F

S1

S2

S4S3B

C D

E F

F

E

D

C

B A

8、如图,以正方形ABCD 的对角线AC 为一边,延长AB 到E ,使AE = AC ,

以AE 为一边作菱形AEFC ,若菱形的面积为29,求正方形边长;

9、如图AD 是⊿ABC 边BC 边上的高线,E 、F 、G 分别是AB 、BC 、AC 的中点,求

证:四边形EDGF 是等腰梯形;

10、如图1,正方形ABCD 边长为1,G 为CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于点H 。 (1)求证:①△BCG ≌△DCE ;②BH ⊥DE 。

(2)当点G 运动到什么位置时,BH 垂直平分DE ?请说明理由。

11、如图,正方形ABCD 中,过D 做DE ∥AC ,∠ACE =30°,CE 交AD 于点F ,求证:AE = AF ;

12、如图,在⊿ABC 中,∠BAC = 90,AD ⊥BC 于D ,CE 平分∠ACB ,交AD 于G ,交AB 于E ,EF ⊥BC 于F ,求证:四边形AEFG 是菱形;

F

A

B D

C E

F 12题

13、如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC中点,求证:AF = BC + CF

14、已知ΔABC 中,E、F 分别为AB、AC 的中点,CD 平分∠BCA 交EF 于D,

求证:AD⊥DC

15、已知:平行四边形ABCD 中,AB+BC=11cm,∠A=150°,平行四边形ABCD的面积是15cm2,求AB,BC。

16、如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD、

△BCE、△ACF,猜想:四边形ADEF是什么四边形,试证明你的结论.

17、已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.

求证:AP=EF.

18、如图,△ABC 为等边三角形,D 、F 分别为BC 、AB 上的点,且CD =BF ,以AD 为边作等边△ADE. (1)求证:△ACD ≌△CBF.

(2)点D 在线段BC 上何处时,四边形CDEF 是平行四边形且∠DEF=30°.

19、如图,在Rt ⊿ABC 中,∠C = 90,AC = AB ,AB = 30,矩形DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若DG :GF = 1:4,求矩形DEFG 的面积是;

20、如图,AC 、BD 是矩形ABCD 的对角线,AH ⊥BD 于H ,CG ⊥BD 于G ,AE 为∠BAD 的平分线,交GC 的延长线于E ,求证:BD = CE ;

A B

C D E F

G

答案:

1、∵AE平分∠BAD∵∠BAE=45°∴△ABE是等腰直角三角形∴BE=BA∵∠BAE = 45°,∠CAE=15°

∴∠BAO=60°∵OA=OB∴⊿ABO是等边三角形∴BA=OB=BE∴∠BEO=∠BOE∵∠EBO=∠CAD=30°∴∠BOE=75°

2、菱形对角线即角平分线∠ABC=60°可以求得∠ABO=30°,即AB=2AO,设AO=x,则AB=2x,则OB==x,即(3+)x=3+即x=1,∴菱形的对角线长为2、2,

故菱形ABCD的面积为S=×2×2=2.故答案为2.

3、解设BF=x EB=y

所以矩形ABCD面积=ab s1=1/2a(b-x) s2=1/2b(a-y) s3=1/2xy

因为s1=s2=1/2(s3+s4) 所以s1+s2=s3+s4=1/2ab所以s4=1/2ab-s3

s1=s2=1/4ab s3=1/8ab 所以s4=3/8ab

4、连AC,因为ABCD为菱形且∠B =∠EAF= 60°,∠BAE= 20°,所以AC=AD,∠FAD=∠BAD-∠BAE-∠EAF=120°-20°-60°=40°,而且,∠ACD=ADF=60°,所以三角形ACE全等于三角形ADF,所以AE=AF,又因为∠EAF= 60°,所以三角形EAF为等边三角形。所以∠AEF=60°,又因为∠CEF=180°-∠AEB-∠AEF,而∠AEB=180°-∠B-∠BAE=180°-60°-20°=100°,所以∠CEF=180°-100°-60°=20°。

5、延长MB到点E使BE=DN,连接AE,易证△ADN≌△ABE,∠DAN=∠BAE,AN=AE

∴∠EAN=90° ∵△CMN的周长等于正方形周长的一半∴MN=BM+DN=ME

∵AM=AM ∴△EAM≌△NAM ∴∠MAN=1/2∠EAN=45°

6、∵AE=AB=CD, ∠E=∠B=90°=∠D, ∠AFE=∠CFD, ∴△AFE≌△CFD, ∴EF=DF.

7、解:取AD的中点F,连接EF,∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,∵BC=2AB,E为BC中点,∴AB=BE,

∴∠BAE=∠AEB,∵BE=AF,∴四边形ABEF是平行四边形

∴四边形ABEF是菱形,∴AB∥EF,∴∠BAE=∠AEF,

∴∠AEF=∠AEB,同理:∠FED=∠CED,∴∠AED=∠AEF+∠FED=×180°=90°.

8、设正方形的边长为x,则AC=AE=x,菱形的面积为底×高,x?x=9,可求出x的长为3.即正方形边长为3.

9、∵E、F、G分别是BC、AB、AC的中点∴FG和EF均是⊿ABC的中位线∴FG//BC,EF//AC

∴四边形EFGC是平行四边形∴EF=CG,FG=CE∵⊿ADC是直角三角形,且DG为斜边中线

∴DG=?AC=CG∴EF=DG又∵ED=CE-CD=FG-CD<FG,ED//FG∴四边形EDGF是等腰梯形

10、当DGEF是平行四边形时,应该满足对边相等的条件,即EF=GD 由于CEFG是正方形,故EF=CG 从而可知此时有CG=GD,即G处于CD的中点位置。证明:当G运动到CD的中点时,由于CEFG是正方形,EF//CG//CD//GD,且EF=CG=GD=CE=GF 连接GE、DF,则由于四边形DGEF的对边DG和FE 平行且相等,故DGEF为平行四边形。3).当BH垂直平分DE时,连接GE,则三角形GHD和三角形GHE 为全等的直角三角形,即有GD=GE, 另,由于GCEF为正方形,股GE=(根号下2)*CG, 从而:CD=(根号下2+1)*CG=1 可求得CG=根号下2-1 即:G运动到CD的(根号下2-1)处时,BH垂直平分DE。

11、作EG⊥AC,G∈AC,则EG=DO[O是中心,ED‖AC],得到EG=AC/2.

∠GCE=30o,∴CE=2EG=AC,∠AEC=(180o-30o)/2=75o

∠AFE=∠BCE=45o+30o=75o=∠AEF.∴AE=AF

12、∵EF⊥BC ∠BAC=90°∴△AEC与△FEC同是直角三角形且共斜边CE 又∵CE平分∠ACB ∠ACE=∠FCE ∴△AEC≌△FCE ∴AE=FE AC=FC ∵AC=FC ∠ACE=∠FCE △ACG与△FCG共边CG ∴△ACG≌△FCG ∴AG=FG 加上AE=FE ∴四边形AEFG是菱形

13、过点E作EM⊥AF,交AF于M∵AE是∠BAF的角平分线∴BE=EM故AB=AM∵E是BC的中点∴BE=EC∴EC=EM,又EF为公共边∴Rt△EFM≌Rt△EFC∴MF=FC∴AF=AM+MF=AB+FC而AB=BC (正方形的边)∴AF=BC+FC

14、证明:因为E,F为重点所以EF//BC 又CD为角C的平分线那么角EDC=角DCB=角FCD 又因为AF=DF=FC 那么设角DAF=∠1 所以∠DAF=∠ADF=∠1 设EDC=角DCB=角FCD=EDC=角DCB=角FCD=∠2 又∠DFA=2∠2 那么在三角形DAF中∠ADF+∠DAF+∠DFA=180 即2∠1+∠2=180 所以∠1+∠2=90度即∠ADF+∠FDC=90度所以AD⊥DC

15、AB=6,BC=5 或AB=5,BC=6

16、证明:四边形ADEF是平行四边形.连接ED、EF,

∵△ABD、△BCE、△ACF分别是等边三角形,∴AB=BD,BC=BE,∠DBA=∠EBC=60°.

∴∠DBE=∠ABC.∴△ABC≌△DBE.同理可证△ABC≌△FEC,∴AB=EF,AC=DE.

∵AB=AD,AC=AF,∴AD=EF,DE=AF.∴四边形ADEF是平行四边形.

17、证明:如图,连接PC,∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,

∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,

又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=PC,所以EF=AP.

18、(1)在△ACD和△CBF中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF=30°,即为∠DCF=30°,在△BCF中,∠CFB=90°,即F为AB的中点,又因为△ACD ≌△CBF,所以点D为BC的中点.

证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,

在△ACD和△CBF中,

所以△ACD≌△CBF(SAS);

(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=×60°=30°则∠DEF=∠FCD=30°.

19、100

20、证明: 四边形ABCD是矩形∴AB=CD,∠BAD=∠CDA=90o又∵AD=DA ∴⊿BAD≌⊿CDA(SAS) ∴∠ABD=∠DCA ∵AH⊥BD ∴∠BAH=90o-∠ABD ∵∠CAD=90o-∠DCA ∴∠BAH=∠CAD ∵AE平分∠BAD ∴∠BAE=∠DAE=45o∴∠HAE=45o-∠BAH,∠CAE=45o-∠CAD ∴∠HAE=∠CAE ∵CG⊥BD ∴AH//CG ∴∠E=∠HAE ∴∠E=∠CAE ∴AC=CE ∵BD=AC【矩形对角线相等】∴BD=CE

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)及答案

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)及答案 一、平行四边形 1.问题发现: (1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长. 问题探究: (2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形 ABCD 截得线段的长度. 问题解决: (3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点 (1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由. 【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F . 【解析】 试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分. (2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分. (3)存在,直线y x =平分五边形OABCD 面积、周长. 试题解析:(1)作图如下:

2018四边形特殊四边形经典习题(附答案)

2018年暑假作业精编《四边形》 第一部分 基础题 1.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边 于点E ,且AE =3,则AB 的长为( )A .4 B .3 C . 2 5 D .2 2.如图所示,如果 ABCD 的对角线AC ,BD 相交于点O ,?那么图中的全等三角形共有( ) A .1对 B .2对 C .3对 D .4对 3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A . ∠3=∠4 B . ∠1=∠2 C . ∠D =∠DCE D . ∠D +∠ACD =180° 4.如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE , 则△CDE 的周长为( ) A.20 B.12 C.14 D.13 5.如果三角形的两条边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( ) A.6 B.8 C.10 D.12 6.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,已知BC =10,则DE 的长为( ) A .3 B .4 C .5 D .6 7.矩形各内角的平分线围成一个( ) A .平行四边形 B .正方形 C .矩形 D .菱形 8.下列命题中正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是矩形

C .对角线相等的平行四边形是矩形 D .对角线互相垂直的平行四边形是矩形 9.下列命题中错误的是( ) A .对角线相等的平行四边形是矩形 B .对角线互相垂直的矩形是正方形 C .对角线互相平分的菱形是正方形 D .对角线平分一组对角的矩形是正方形 10.下列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形 C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等 D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上 11.在菱形ABCD 中,∠ABC =60o,AC =4,则BD 的长为 . 12.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 13.在平行四边形ABCD 中, ∠A =40o,则∠B = o. 14.如图, 四边形 ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是___________ ____.(只需写出一个) 15. 如图, 口ABCD 中,AE ⊥ BD 于 E .∠EAC =30°,AE =3 则AC 的长等于 16.如图, ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE =_____度. 17.如图,在□ABCD 中,∠A =120°,则∠D =_ _°. 18. 顺次连接菱形四边中点所得四边形是_________. 19.20. 已知菱形的两对角线长分别为6和8,则菱形的面积为

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

2019中考数学压轴题精选

2019中考数学压轴题 1.(眉山)如图1,在平面直角坐标系中,抛物线y =﹣9 4x 2 +bx+c 经过点A (﹣5,0)和点B (1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点E ,PG ⊥y 轴,交抛物线于点G.过点G 作GF ⊥x 轴于点F.当矩形PEFG 的周长最大时,求点P 的横坐标; (3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN =∠DBA , MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由. O

2.(甘肃)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴 交于点C. (1)求二次函数的解析式; (2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标; (3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.

3.(广安)如图,抛物线与x轴交于A、B两点在B的左侧,与y轴交于点N,过A点的直线l:与y轴交于点C,与抛物线的另一个交点为D,已知,,P点为抛物线上一动点不与A、D重合.求抛物线和直线l的解析式; 当点P在直线l上方的抛物线上时,过P点作轴交直线l于点E,作轴交直线l 于点F,求的最大值; 设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

初中八年级数学经典四边形习题60道(附答案)

赵老师 经典四边形习题50道(附答案) 1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60?,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

赵老师 若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

浙教版八年级上册数学第2章《特殊三角形》培优测试卷及答案

浙教版八年级上册数学第2章《特殊三角形》培优测试卷 考试时间:120分钟满分:120分 一、选择题(本大题有12小题,每小题3分,共36分) 下面每小题给出的四个选项中,只有一个是正确的. 1.将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是() A. 12cm≤h≤19cm B. 12cm≤h≤13cm C. 11cm≤h≤12cm D. 5cm≤h≤12cm 2.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出() A. 直角三角形的面积 B. 最大正方形的面积 C. 较小两个正方形重叠部分的面积 D. 最大正方形与直角三角形的面积和 (第1题)(第2题)(第3题) 3.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1,连接DE,将△AED 沿直线沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF,过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为() A. 8 B. C. D. . 4.如图,BM是△ABC的角平分线,D是BC边上的一点,连接AD,使AD=DC,且∠BAD=120°,则∠AMB=() A. 30° B. 25° C. 22.5° D. 20° (第4题)(第5题)(第6题) 5.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD 与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE; ②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有() A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤ 6.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1(n>2)的度数为() A. B. C. D. 7.如图,小正方形边长为1,连接小正方形的三个顶点得△ABC,则AC边上的高是(). A. B. C. D. 8.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长

精选四边形压轴题及其答案

精选四边形(菱形、矩形、正方形)压轴题及答案 1.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动. (1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由; (2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值; (3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值. 【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC 即可; (2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求 出AC=CE=a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求 出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可; (3)根据(1)(2)知:点P在运动中保持∠APD=90°,得出点P的路径是以AD 为直径的圆,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,求出QC即可. 【解答】解:(1)AE=DF,AE⊥DF,

理由是:∵四边形ABCD是正方形, ∴AD=DC,∠ADE=∠DCF=90°, ∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF, 在△ADE和△DCF中 , ∴△ADE≌△DCF, ∴AE=DF,∠DAE=∠FDC, ∵∠ADE=90°, ∴∠ADP+○CDF=90°, ∴∠ADP+∠DAE=90°, ∴∠APD=180°﹣90°=90°, ∴AE⊥DF; (2) (1)中的结论还成立,CE:CD=或2, 理由是:有两种情况: ①如图1,当AC=CE时, 设正方形ABCD的边长为a,由勾股定理得:AC=CE==a, 则CE:CD=a:a=; ②如图2,当AE=AC时,

四边形经典试题50题及答案

经典四边形习题50道(附答案) 1.已知:在矩形ABCD中,AE?BD于E, ∠DAE=3∠BAE ,求:∠EAC的度数。 2.已知:直角梯形ABCD中,BC=CD=a 且∠BCD=60?,E、F分别为梯形的腰AB、 DC的中点,求:EF的长。 3、已知:在等腰梯形ABCD中,AB∥DC, AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10 求:等腰梯形ABCD的周长。 4、已知:梯形ABCD中,AB∥CD,以AD, AC为邻边作平行四边形ACED,DC延长线 交BE于F,求证:F是BE的中点。 5、已知:梯形ABCD中,AB∥CD,AC?CB, AC平分∠A,又∠B=60?,梯形的周长是 20cm, 求:AB的长。 6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。 7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F, _B_C _A_B _A_B _E _A _B _B _B

使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于 E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , 延长BC 到F ,使CF=CE , 求证:BE?DF _C _B _F _B _C _F _C _D _B _F _ F _G _B _D _A _E

金老师教育-中考数学总复习:28特殊三角形--知识讲解(附培优提高题练习含答案解析)

中考总复习:特殊三角形—知识讲解(提高) 【考纲要求】 【高清课堂:等腰三角形与直角三角形考纲要求】 1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定. 2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题. 3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题. 【知识网络】 【考点梳理】 考点一、等腰三角形 1.等腰三角形:有两条边相等的三角形叫做等腰三角形. 2.性质: (1)具有三角形的一切性质; (2)两底角相等(等边对等角); (3)顶角的平分线,底边中线,底边上的高互相重合(三线合一); (4)等边三角形的各角都相等,且都等于60°. 要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条. 3.判定: (1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边); (2)三个角都相等的三角形是等边三角形; (3)有一个角为60°的等腰三角形是等边三角形. 要点诠释: (1)腰、底、顶角、底角是等腰三角形特有的概念; (2)等边三角形是特殊的等腰三角形. 考点二、直角三角形 1.直角三角形:有一个角是直角的三角形叫做直角三角形. 2.性质: (1)直角三角形中两锐角互余; (2)直角三角形中,30°锐角所对的直角边等于斜边的一半; (3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°; (4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方; (5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;

济南中考数学易错题精选-平行四边形练习题

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长. 【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】 试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出 ∠APB=∠PBC即可得出答案; (2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出 PD+DH+PH=AP+PD+DH+HC=AD+CD=8; (3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1, ∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH.

(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB=∠BPH , 又∵∠A=∠BQP=90°,BP=BP , 在△ABP 和△QBP 中, {90APB BPH A BQP BP BP ∠=∠∠=∠=?=, ∴△ABP ≌△QBP (AAS ), ∴AP=QP ,AB=BQ , 又∵AB=BC , ∴BC=BQ . 又∠C=∠BQH=90°,BH=BH , 在△BCH 和△BQH 中, {90BC BQ C BQH BH BH =∠=∠=?=, ∴△BCH ≌△BQH (SAS ), ∴CH=QH . ∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH 的周长是定值. (3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB . 又∵EF 为折痕, ∴EF ⊥BP . ∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP .

(完整)初中数学经典四边形习题50道(附答案)

经典四边形习题 50道(附答案) 1.已知:在矩形ABCD 中,A E ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60度,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60度,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

三角形培优解析

有同学问我:“我听课能听懂,但是不会做题,这是怎么回事?”其实这样的同学大多数问题就出在这里:(1)你只听懂了浅层次的知识,没有深入,所掌握的东西达不到应用的高度;(2)有的同学浅尝辄止,会了一点就认为都会了,比如一个例题老师讲3种方法,他听懂一种就不再听其他解法了;(3)听懂了知识,但是没记住,或没弄明白怎么应用;(4)缺乏数学思想和数学方法的指导,像方程思想、分类讨论思想等都是重要的数学思想和方法;另外,还有些同学因为信心不足,认为数学很难,没有兴趣学,这样就失去了入门的过程,因此更没法深入。 知识点透析: 一.三角形的有关概念 1.三角形的概念包涵三层含义: (1)不在同一条直线上;(2)三条线段;(3)首尾顺次相连. 2.平时所说的三角形的角是指三角形的内角。 3.在表示三角形时,三个字母没有先后顺序,只要三个字母相同就表示同一个三角形。 二.三角形的分类 1.三角形的两种分类方法是各自独立的,但是同一个三角形可以同属于两种不同类别,例如,等腰直角三角形既是等腰三角形,又是直角三角形。 2.等边三角形是特殊的等腰三角形,等边三角形也叫正三角形。 3.在等腰三角形中,若没有指明腰和底边或顶角和底角,则解题时要分类讨论。 三.三角形的高 1.三角形的高是一条线段,即顶点到对边的垂直线段。 2.任意三角形都有三条高。 四.三角形的中线 1.三角形的中线是一条线段,即顶点到其对边中点之间的线段。 2.三角形的一条中线将这个三角形分成两个面积相等的三角形。 五.三角形的角平分线 1.三角形的角平分线是线段,不是直线,不是射线。 2.一个三角形有三条角平分线,他们在三角形的内部,且交于一点。 六.三角形的稳定性 三角形的稳定性说明三角形三条边的长度确定后,其形状和大小也随之确定。 七.三角形的内角和定理 1.三角形内角和定理适用于任意三角形。 2.在三角形中,已知任意两个角,可以求出第三个角。 3.已知三角形中三个内角的关系,可以求出各个内角的度数,通常利用方程的知识来解决。 4.直角三角形的两锐角互余。 八.三角形的外角 1.在三角形的每个顶点处都有两个外角,这个两个外角相等。 2.三角形的外角等于与它不相邻的两个内角的和,特别注意“不相邻”。 3.三角形的一个外角大于与它不相邻的每一个内角。 九.多边形 1.多边形是由不在同一直线上的线段首尾顺次相连接组成的封闭图形,多边形的边数大于等于3,有几条边就是几边形。 2.用大写字母表示多边形时,字母必须按顺/逆时针的顺序排列。 3.正多边形必须具备的两个条件: (1)边相等(2)角相等。二者缺一不可。

(专题精选)初中数学四边形难题汇编附答案解析

(专题精选)初中数学四边形难题汇编附答案解析 一、选择题 1.如图,在?ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( ) A .33° B .34° C .35° D .36° 【答案】B 【解析】 【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数. 【详解】 解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°, 由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°, ∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°. 故选:B . 【点睛】 本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键. 2.如图,在菱形ABCD 中,点E 在边AD 上,30BE AD BCE ⊥∠=?,.若2AE =,则边BC 的长为( ) A 5 B 6 C 7 D .22【答案】B 【解析】 【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】

∵四边形ABCD 是菱形, ∴AD BC BC AB =,∥. ∵BE AD ⊥.∴BE BC ⊥. ∴30BCE ∠=?,∴2EC BE =, ∴223AB BC EC BE BE ==-=. 在Rt ABE △中,由勾股定理得()22223BE BE += , 解得2BE = ,∴36BC BE ==. 故选B. 【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键. 3.若菱形的对角线分别为6和8,则这个菱形的周长为( ) A .10 B .20 C .40 D .48 【答案】B 【解析】 【分析】 根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可. 【详解】 如图所示, 根据题意得AO=12×8=4,BO=12 ×6=3, ∵四边形ABCD 是菱形, ∴AB=BC=CD=DA ,AC ⊥BD , ∴△AOB 是直角三角形, ∴22169AO BO ++, ∴此菱形的周长为:5×4=20. 故选:B . 【点睛】 此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键. 4.如图,足球图片正中的黑色正五边形的内角和是( ).

2020年九年级数学中考典型压轴题专项训练:四边形(含答案)

2020年九年级数学中考典型压轴题专项训练:四边形 1、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积. 2、如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点. (1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积. 3、如图,在?ABCD中,点E,F在对角线AC上,且AE=CF.求证: (1)DE=BF;(2)四边形DEBF是平行四边形. 4、如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F. (1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

5、如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF. (1)求证:四边形AECF是菱形; (2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号) 6、如图,?ABCD中,AB=2,AD=1,∠ADC=60°,将?ABCD沿过点A的直线l折叠,使点D 落到AB边上的点D′处,折痕交CD边于点E. (1)求证:四边形BCED′是菱形; (2)若点P时直线l上的一个动点,请计算PD′+PB的最小值. 7、如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.

八年级平行四边形专题练习(含答案)

中考专题复习平行四边形 知识考点:理解并掌握平行四边形的判定和性质 精典例题: 【例1】已知如图:在四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC和AD边上,AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点。 分析:构造全等三角形或利用平行四边形的性质来证明BO=DO 略证:连结BF、DE 在四边形ABCD中,AB=CD,AD=BC ∴四边形ABCD是平行四边形 ∴AD∥BC,AD=BC 又∵AF=CE ∴FD∥BE,FD=BE ∴四边形BEDF是平行四边形 ∴BO=DO,即点O是BD的中点。 【例2】已知如图:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是平行四边形。 分析:欲证四边形EFGH是平行四边形,根据条件需从边上着手分析,由E、F、G、H分别是各边上的中点,可联想到三角形的中位线定理,连结AC后,EF和GH的关系就明确了,此题也便得证。(证明略) 变式1:顺次连结矩形四边中点所得的四边形是菱形。 变式2:顺次连结菱形四边中点所得的四边形是矩形。 变式3:顺次连结正方形四边中点所得的四边形是正方形。 变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。例1图 O F E D C B A 例2图

变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。 变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。 娈式6图 娈式7图 变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。 探索与创新: 【问题】已知如图,在△ABC 中,∠C =900 ,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 和BN 相交于P ,求∠BPM 的度数。 分析:条件给出的是线段的等量关系,求的却是角的度数,为此,我们由条件中的直角及相等的线段,可联想到构造等腰直角三角形,从而应该平移AN 。 略证:过M 作ME ∥AN ,且ME =AN ,连结NE 、BE ,则四边形AMEN 是平行四边形,得NE =AM ,ME ∥AN ,AC ⊥BC ∴ME ⊥BC 在△BEM 和△AMC 中, ME =CM ,∠EMB =∠MCA =900 ,BM =AC ∴△BEM ≌△AMC ∴BE =AM =NE ,∠1=∠2,∠3=∠4,∠1+∠3=900 ∴∠2+∠4=900 ,且BE =NE ∴△BEN 是等腰直角三角形 ∴∠BNE =450 ∵AM ∥NE 探索与创新图 E N A

三角形培优训练100题集锦(学生用)

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC ,AD 三条线段转化到同一个三角形当中。 解:延长AD 到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 2、如图,ABC ?中,E 、F 分别在AB 、AC 上,DF DE ⊥,D 是中点,试比较CF BE +与 EF 的大小。 证明:延长FD 到点G ,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

二次函数平行四边形存在性问题例题

二次函数平行四边形存在性问题例题 一.解答题(共9小题) 1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点

分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x 轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F 在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. 4.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA ﹣QO|的取值范围. 5.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,

相关文档
最新文档