《1.1集合》 学案
高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案

1.1 集合1.1.1集合及其表示方法课程标准(1)通过实例,了解集合的含义,理解元素与集合的属于关系.(2)针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.(3)在具体情境中,了解空集的含义.新知初探·自主学习——突出基础性教材要点知识点一集合的概念在数学中,我们经常用“集合”来对所研究的对象进行分类.把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集),组成集合的每个对象都是这个集合的元素.知识点二元素与集合的表示及关系1.元素与集合的符号表示表示{元素:通常用英文小写字母________表示.集合:通常用英文大写字母________表示.2.元素与集合的关系1.符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A ”这两种结果.2.∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.集合中元素的特征5.集合的分类:集合可以根据它含有的元素个数分为两类:含有有限个元素的集合称为有限集,含有无限个元素的集合称为无限集.空集可以看成包含0个元素的集合,所以空集是有限集.6.几种常见的数集及其记法:所有非负整数组成的集合,称为自然数集,记作N;在自然数集N中,去掉元素0之后的集合,称为正整数集,记作N*或N+;所有整数组成的集合称为整数集,记作Z;所有有理数组成的集合称为有理数集,记作Q;所有实数组成的集合称为实数集,记作R.知识点三集合的表示1.列举法:把集合中的元素________出来(相邻元素之间用逗号分隔),并用大括号“{ }”括起来表示集合的方法叫做________.2.描述法:一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.状元随笔1.列举法表示集合时的5个关注点(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素是无序的.(5)集合中的元素可以是任何事物.2.描述法表示集合时的3个关注点(1)写清楚集合中元素的符号,如数或点等;(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等;(3)不能出现未被说明的字母.知识点四区间及其表示1.区间的几何表示R____________,“∞”读作“无穷大”;“-∞”读作“负无穷大”;“+∞”读作“正无穷大”.3.无穷大的几何表示状元随笔(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.基础自测1.下列能构成集合的是( )A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生D.香港的高楼2.集合{x∈N*|x-3<2}的另一种表示法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.若1∈{a,a+1,a2},则a的值是( )A.0B.1C.-1D.0或1或-14.用区间表示下列集合:≤x<5}=________;(1){x|−12(2){x|x<1或2<x≤3}=________.课堂探究·素养提升——强化创新性题型1 集合的概念[经典例题]例1 下列对象能构成集合的是( )①援助武汉抗击新型冠状病毒肺炎疫情的优秀医护人员;构成集合的元素具有确定性.②所有的钝角三角形;③2019年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④方法归纳判断一组对象组成集合的依据判断给定的对象能不能构成集合,关键在于能否找到一个明确的标准,对于任何一个对象,都能确定它是不是给定集合的元素.跟踪训练1 下列各项中,不可以组成集合的是( )A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数题型2 元素与集合的关系[经典例题]例2 (1)下列关系中,正确的有( )①1∈R;②√2∉Q;③|-3|∈N;④|-√3|∈Q.2A.1个B.2个C.3个D.4个(2)满足“a∈A且4-a∈A,a∈N且4-a∈N”,有且只有2个元素的集合A的个数是( )A.0B.1C.2D.3a分类处理:①a=0,a=1,a=2;②a=3,a=4.还讨论吗?方法归纳判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可.此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.跟踪训练2 (1)下列说法正确的是( )A.0∉NB.√2∈QC.π∉RD.√4∈ZN自然数集;Z整数集;Q有理数集;R实数集.∈N,x∈N,则集合A中的元素为________.(2)集合A中的元素x满足63−x题型3 集合的表示——列举法[教材P7例题1]例3 用列举法表示下列集合:找准元素,列举法是把集合中所有元素一一列举出来.(1)方程x(x-1)=0的所有解组成的集合A;(2)“Welcome”中的所有字母构成的集合.(3)2022年冬奥会的主办城市组成的集合.(4)函数y=2x-1的图象与坐标轴交点组成的集合.方法归纳1.用列举法表示集合的三个步骤(1)求出集合的元素.(2)把元素一一列举出来,且相同元素只能列举一次. (3)用“{ }”括起来. 2.在用列举法表示集合时的关注点(1)用列举法书写集合时,先应明确集合中的元素是什么.(2)元素不重复,元素无顺序.如集合{1,2,3,4}与{2,1,4,3}表示同一集合. 跟踪训练3 用列举法表示下列集合: (1)方程组{2x −3y =14,3x +2y =8的解集;(2)由所有小于13的既是奇数又是素数的自然数组成的集合; (3)方程x 2-2x +1=0的实数根组成的集合.题型4 集合的表示——描述法[数学抽象、逻辑推理]例4 (1)用描述法表示平面直角坐标系中,第一象限内所有点组成的集合B .状元随笔描述法注意元素的共同特征.(2)已知集合M={x|x=3n,n∈Z},N={x|x=3n+1,n∈Z},P={x|x=3n-1,n∈Z},且a∈M,b∈N,c∈P,若d=a-b+c,则( )A.d∈M B.d∈NC.d∈P D.d∈M且d∈N(3)若集合A={x|mx2+2x+m=0,m∈R}中有且只有一个元素,则m的取值集合是________.方法归纳1.描述法表示集合的两个步骤2.用描述法表示集合应注意的四点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}可以写成{x|x<1},而不能写成{x<1}.(2)所有描述的内容都要写在大括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进大括号内,即{x ∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.3.解答集合表示方法综合题的策略(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键.(2)若已知集合是用列举法给出的,整体把握元素的共同特征是解题的关键.教材反思列举法和描述法表示集合,关键是找准元素的特点,有限个元素一一列举,无限个元素的可以用描述法来表示集合,需要用一种适当方法表示.何谓“适当方法”,这就需要我们首先要准确把握列举法和描述法的优缺点,其次要弄清相应集合到底含有哪些元素.要弄清集合含有哪些元素,这就需要对集合进行等价转化.转化时应根据具体情景选择相应方法,如涉及方程组的解集,则应先解方程组.将集合的三种语言相互转化也有利于我们弄清楚集合中的元素.跟踪训练4 用适当的方法表示下列集合: (1)所有被5整除的数;(2)如图中阴影部分的点(含边界)的坐标的集合.(3)不等式组{3x −2≥1,2x −1<5的解集;(4)二次函数y =x 2+2x -10的图象上所有的点组成的集合.题型5 用区间表示集合[数学运算、直观想象] 例5 用区间表示下列集合:(1)3x -4<0的所有解组成的集合A =________; (2)2x +6≥0的所有解组成的集合B =________.方法归纳方程、不等式等知识与集合交汇问题的处理(1)准确理解集合中的元素,明确元素的特征性质.(2)解题时应注意方程、不等式等知识以及转化、分类与整合思想的综合应用. 跟踪训练5 用区间表示下列不等式,并在数轴上表示这些区间. (1)-2<x <5;(2)-3<x ≤4;(3)2≤x <5; (4)x ≤4;(5)x >-3;(6)x ≥-4.易错点 忽略集合中元素的互异性出错例 含有三个元素的集合{a ,ba ,1},也可表示为集合{a 2,a +b ,0},求a ,b 的值. 【错解】 ∵{a ,ba ,1}={a 2,a +b ,0},∴{a +ba +1=a 2+(a +b )+0,a ·ba ·1=a 2·(a +b )·0, 解得{a =1,b =0或{a =−1,b =0.【正解】 ∵{a ,ba ,1}={a 2,a +b ,0},∴{a +ba+1=a 2+(a +b )+0,a ·b a·1=a 2·(a +b )·0,解得{a =1,b =0或{a =−1,b =0.由集合中元素的互异性,得a ≠1. ∴a =-1,b =0. 【易错警示】1.1 集合1.1.1 集合及其表示方法新知初探·自主学习[教材要点]知识点二1.a,b,c,…A,B,C,…2.a∈A a∉A知识点三1.一一列举列举法知识点四2.(-∞,+∞)[基础自测]1.解析:A,B,D中研究的对象不确定,因此不能构成集合.答案:C2.解析:∵x-3<2,x∈N*,∴x<5,x∈N*,∴x=1,2,3,4.故选B.答案:B3.解析:由已知条件1∈{a,a+1,a2}知有三种情况,若a=1,则a+1=2,a2a=a2=1,与集合元素的互异性相矛盾,故a≠1.若a+1=1,即a=0,则a2=0.与集合元素的互异性相矛盾,故a≠0.若a2=1,即a=±1,当a=-1时,符合题意.综上知a=-1.答案:C≤x<5} 4.解析:(1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x|-12=[−1,5).2(2)注意到集合中的“或”对应区间中的“∪”,则{x|x<1或2<x≤3}=(-∞,1)∪(2,3].答案:(1)[−1,5)(2)(-∞,1)∪(2,3]2课堂探究·素养提升例1 【解析】 由集合中元素的确定性知,①中“优秀医护人员”和⑤中“聪明的学生”不确定,所以不能构成集合.【答案】 D跟踪训练1 解析:由于接近于0的数没有一个确定的标准,因此C 中的对象不能构成集合.故选C.答案:C例2 【解析】 (1)12是实数,√2是无理数,|-3|=3是非负整数,|-√3|=√3是无理数.因此,①②③正确,④错误.(2)∵a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A ={0,4}满足要求;若a =1,则4-a =3,此时A ={1,3}满足要求;若a =2,则4-a =2,此时A ={2}不满足要求.故有且只有2个元素的集合A 有2个,故选C.【答案】 (1)C (2)C跟踪训练2 解析:(1)A.N 为自然数集,0是自然数,故本选项错误;B.√2是无理数,Q 是有理数集合,√2∉Q ,故本选项错误;C.π是实数,即π∈R ,故本选项错误;D.√4=2,2是正整数,则√4∈Z ,故本选项正确.故选D.(2)由63−x ∈N ,x ∈N 知x ≥0,63−x >0,且x ≠3,故0≤xx ∈N ,故x =0,1,2.当x =0时,63−0=2∈N ,当x =1时,63−1=3∈N , 当x =2时,63−2=6∈N .故集合A 中的元素为0,1,2.答案:(1)D (2)0,1,2例3 【解析】 (1)因为0和1是方程x (x -1)=0的解,而且这个方程只有两个解,所以A ={0,1}.(2)由于“Welcome ”中包含的字母有W ,e ,l ,c ,o ,m ,共6个元素,因此可以用列举法表示为{W ,e ,l ,c ,o ,m}.(3)北京、张家口同为2022年冬奥会主办城市,因此可以用列举法表示为{北京,张家口}.(4)函数y =2x -1的图象与x 轴的交点为(12,0),与y 轴的交点为(0,-1),因此可以用列举法表示为{(0,−1),(12,0)}.跟踪训练3 解析:(1)解方程组{2x −3y =14,3x +2y =8,得{x =4,y =−2,故解集可用描述法表示为{(x ,y)|{x =4,y =−2},也可用列举法表示为{(4,-2)}. (2)小于13的既是奇数又是素数的自然数有4个,分别为3,5,7,11.可用列举法表示为{3,5,7,11}.(3)方程x 2-2x +1=0的实数根为1,因此可用列举法表示为{1},也可用描述法表示为{x ∈R |x 2-2x +1=0}.例4 【解析】 (1)因为集合B 的特征性质是横坐标与纵坐标都大于零,因此B ={(x ,y )|x >0,y >0}.(2)由题意,设a =3k ,k ∈Z ,b =3y +1,y ∈Z ,c =3m -1,m ∈Z ,则d =3k -(3y +1)+3m -1=3(k -y +m )-2.令t =k -y +m ,则t ∈Z ,则d =3t -2=3t -3+1=3(t -1)+1,t ∈Z ,则d ∈N ,故选B.【解析】(3)当m =0时,方程mx 2+2x +m =0为2x =0,解得x =0,A ={0};当m ≠0时,若集合A 只有一个元素,则一元二次方程mx 2+2x +m =0有两个相等实根,所以判别式Δ=22-4m 2=0,解得m =±1;综上,当m =0或m =±1时,集合A 只有一个元素.所以m 的值组成的集合是{-1,0,1}.【答案】 (1)见解析 (2)B (3){-1,0,1}跟踪训练4 解析:(1){x |x =5n ,n ∈Z }.(2){(x ,y)|−1≤x ≤32,−12≤y ≤1,且xy ≥0}. (3)由{3x −2≥1,2x −1<5,得{x ≥1,x <3,所以不等式组{3x −2≥1,2x −1<5的解集为[1,3). (4)二次函数y =x 2+2x -10的图象上所有的点组成的集合中,代表元素为有序实数对(x ,y ),其中x ,y 满足y =x 2+2x -10,由于点有无数个,则用描述法表示为{(x ,y )|y =x 2+2x -10}.例5 【解析】 (1)因为3x -4<0,所以3x <4,即x <43,所以A ={x|x <43},用区间表示为:A =(−∞,43).(2)因为2x +6≥0,所以2x ≥-6,即x ≥-3,所以B ={x |x ≥-3},用区间表示为:B=[-3,+∞).)(2)[-3,+∞) 【答案】(1)(−∞,43跟踪训练5 答案:(1)(-2,5).(2)(-3,4].(3)[2,5).(4)(-∞,4].(5)(-3,+∞).(6)[-4,+∞).。
1.1.1集合的概念 - 一课时集合的含义(新教材配套学案)

1.1集合的概念第一课时 集合的含义【学习目标】1、初步理解集合的含义,了解集合元素的性质。
2、知道常用数集及其记法。
3.了解“属于”关系的意义,记住常用数集的表示符号并会应用。
【自主学习】一、设计问题,创设情境问题1:你能把小学、初中所学过的数总结一下吗?可以怎样分类?问题2:研究下面几个例子:(1)1~10之间的所有偶数;(2)邹平一中今年入学的全体高一学生;(3)所有的正方形;(4)到直线l 的距离等于定长d 的所有点;(5)方程0232=+-x x 的所有实数根;(6)地球上的四大洋.你能发现这些问题中所包含的数、学生、图形、点、根、海洋(研究对象)所具有的特性吗? 你还能举出这样的例子吗?二、学生探索、尝试解决问题3:上面的例(3)到例(6)都能组成集合吗?它们的元素分别是什么?问题4:根据问题2中的例子总结集合是什么?集合中的元素有什么性质?尝试解决。
例1 判断下列元素的全体是否组成集合,并说明理由。
(1) 与定点A,B 等距离的点。
(2) 高中学生中的游泳能手。
问题5:如果把1~10之间的所有偶数所组成的集合记作A ,那么元素1,2与集合A 分别是什么关系?怎么表示这种关系?问题6:既然集合可以用大写拉丁字母A ,B ,C 来表示,对于常用数集我们用特定的字母来表示,你能记清楚、记熟练吗?三、运用规律,解决问题例2 用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A.(2)0 N;5 Z;13 Q. 四、变练演练,深化提高例3 判断下列说法是否正确,并说明理由。
(1) 大于3小于5的所有自然数构成一个集合。
(2) 直角坐标平面内第一象限的一些点组成一个集合。
(3) 方程2(1)(2)0x x -+=所有解组成的集合有3个元素。
例4 集合A 中的元素x 满足6,,3N x N x ∈∈-则集合A 中的元素为例5 已知集合A 中元素满足20,,x a a R +>∈,若1,2,A A ∉∈则实数a 的取值范围。
高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案含解析第一册

1.1 集合1.1。
1集合及其表示方法内容标准学科素养1。
通过实例了解集合的含义,体会元素与集合的“属于”关系.数学抽象数学建模2.能用自然语言、图形语言、集合语言描述不同的具体问题。
授课提示:对应学生用书第1页[教材提炼]知识点一元素与集合的概念1.集合:有一些能够确定的、不同的对象汇聚在一起,就说由这些对象构成一个集合.通常用英文大写字母A,B,C…表示.2.元素:组成集合的每个对象都是这个集合的元素,通常用英文小写字母a,b,c…表示.3.空集:不含任何元素的集合称为空集,记作∅。
知识点二元素与集合的关系1.属于:如果a是集合A的元素,就记作a∈A,读作a属于A。
2.不属于:如果a不是集合A中的元素,就记作a∉A,读作a 不属于集合A。
3.无序性:集合中的元素,可以任意排列,与次序无关.知识点三集合元素的特点1.确定性:集合的元素必须是确定的.2.互异性:对于一个给定的集合,集合中的元素一定是不同的.知识点四集合的分类1.有限集:含有有限个元素的集合.2.无限集:含有无限个元素的集合.知识点五几种常见的数集号N*知识点六集合的表示方法1.列举法把集合的所有元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,这种表示集合的方法称为列举法.2.描述法(1)特征性质:一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.(2)描述法:用特征性质p(x)来表示集合的方法,称为特征性质描述法,简称描述法.知识点七区间及其表示1.如果a<b,则有下表:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a 〈x<b}开区间(a,b){x|a≤x 〈b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.实数集R可以用区间表示为(-∞,+∞),“∞"读作“无穷大”.如:符号[a,+∞)(a,+∞)(-∞,a](-∞,a)定义{x|x≥a}{x|x〉a}{x|x≤a}{x|x〈a}[自主检测]1.下列给出的对象中,能组成集合的是()A.与定点A,B等距离的点B.高中学生中的游泳能手C.无限接近10的数D.非常长的河流答案:A2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:D3.下列结论中,不正确的是()A.若a∈N,则错误!∉NB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则错误!∈R答案:A4.分别用描述法、列举法表示大于0小于6的自然数组成的集合.解析:描述法:{x∈N|0<x<6},列举法:{1,2,3,4,5}.授课提示:对应学生用书第2页探究一集合的概念[例1]下列对象中可以构成集合的是()A.大苹果B.小橘子C.中学生D.著名的数学家[解析]选项正误原因A×大苹果到底以多重算大,标准不明确B×小橘子到底以多重算小,标准不明确C√中学生标准明确,故可构成集合Dד著名”的标准不明确[答案]C判断一个“全体"是否能构成一个集合,其关键是对标准的“确定性”的把握,即根据这个“标准”,可以明确判定一个对象是或者不是给定集合的元素.给出下列元素①学习成绩较好的同学;②方程x2-1=0的解;③漂亮的花儿;④大气中直径较大的颗粒物.其中能组成集合的是()A.②B.①③C.②④D.①②④答案:A探究二元素与集合的关系[例2]集合A中的元素x满足错误!∈N,x∈N,则集合A 中的元素为________.[解析]由错误!∈N,x∈N知x≥0,错误!>0,且x≠3,故0≤x<3.又x∈N,故x=0,1,2。
(新课程)高中数学1.1.1集合的概念学案2 新人教B版必修1

(2)正整数集:,记作。
(3)整数集:,记作。[
(4)有理数集:,记作。
(5)实数集:,记作。
二、典例解析
例1.你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的3位同学构成的集合?
变式训练:教材第4页练习A第1题
例2.
(1)-3N;(2)3.14Q;(3) Q;(4)0Φ;
(新课程)高中数学1.1.1《集合的概念》学案2新人教B版必修1
学科
数学
编制人
审核人
教学案编号
1
课型
新授课
课题
1.1.1集合的概念
课标要求
初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法。
重点难点
集合的概念与集合中元素的性质
教学过程设计
一、知识要点
1.集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。构成集合的每个对象叫做这个集合的
(5) Q;(6) R;(7)1N+;(8) R。
变式训练:教材第5页练习A第3题
三、课后作业
教材第5页练习B第2题、第9页习题1-1B第3题
四、思考与讨论
已知由1, 三个实数构成一个集合,求 应满足的条件。
五、归纳小结
(或)。
2.集合中元素的性质:、、。
3.集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。
4.元素与集合的关系:
如果a是集合A的元素,就说,记作,读作。
如果a不是集合A的元素,就说,记作,读作。
5.空集:,记作。
6.集合的分类:含有有限个元素的集合叫做,含有无限个元素的集合叫做。
第一章集合与函数概念1.1集合学案(新人教A版必修1)

1.1 集合【自主学习】阅读课本P2-P5,完成课前先学案【学习目标】1、初步理解集合的概念,知道常用数集及其记法;初步了解“属于”关系的意义;2、运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
【知识梳理】(一)集合的意义:(集合理论创始人康托尔)把一定范围内一些确定的、不同的东西的全体构成一个集合(set)。
集合常用大写的拉丁字母来表示,如集合A、集合B。
集合中的每一个对象称为该集合的元素(element),简称元。
集合的元素常用小写的拉丁字母来表示。
(二)常用的数集的记法: N表示的集合, N*表示的集合,Z表示的集合,Q表示的集合, R表示的集合。
(三)集合的表示方法:常用的有列举法和描述法(数学语言的分类:文字、符号、图形)(1)列举法的书写约定:;(2)描述法的书写约定:;(3)图形表示:①venn图;②数轴表示;(四)关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合{1,2,3},也可以写成由1,3,2组成一个集合{1,3,2},它们都表示同一个集合.(4)纯粹性:集合中的所有元素都满足条件(即没有杂质,纯的,一个不多)。
例如:高一15班的学生的集合中没有其他班的学生。
(5)完备性:满足条件的所有元素都在集合中(即没有遗漏,全都有,一个不少)。
例如:所有高一15班的学生都在的高一15班的学生集合中,没有一个高一15班的学生在其他班。
【预习自测】1、用符号“∈”或“∉”填空(元素与集合的关系以及常用数集的记法)0 N ; -1 N ; 0 N +; 31 Z ; 12- Q ;Q ;R ;2、分别用列举法、描述法和venn 图分别表示下列每一个集合。
人教A版《必修1》“1.1《集合》习题课”导学案

高一数学《必修1》导学案 1.1集合习题课【学习目标】1、理解集合间的基本关系;2、会求两个集合的并集、交集,会求给定子集的补集;3、能使用Venn 图研究集合中元素的个数;【课中导学】探究一:已知集合{1,2},A =集合B 满足{1,2},A B =则集合B 有几个,哪几个?探究二:在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系? 探究三:设集合A ={}{}(3)()0,,(4)(1)0x x x a a R B x x x --=∈=--=,求,A B A B ⋂ 探究四:学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛?变式1:学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛。
问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?变式2:已知全集{|010},(){1,3,5,7}U U A B x N x A C B ==∈≤≤⋂=,试求集合B我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
(新课程)高中数学1.1.1《集合的概念》学案2 新人教B版必修1
学科数学编制人审核人教学案编号 1课型新授课课题 1.1.1集合的概念课标要求初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法。
重点难点集合的概念与集合中元素的性质教学过程设计一、知识要点1.集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。
构成集合的每个对象叫做这个集合的(或)。
2.集合中元素的性质:、、。
3.集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。
4.元素与集合的关系:如果a是集合A的元素,就说,记作,读作。
如果a不是集合A的元素,就说,记作,读作。
5.空集:,记作。
6.集合的分类:含有有限个元素的集合叫做,含有无限个元素的集合叫做。
7.常用的数集及其记号:(1)自然数集:,记作。
(2)正整数集:,记作。
(3)整数集:,记作。
[(4)有理数集:,记作。
(5)实数集:,记作。
二、 典例解析例1. 你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的3位同学构成的集合?变式训练:教材第4页练习A 第1题例2.填空:或用符号∉∈(1) -3 N ; (2)3.14 Q ; (3)31 Q ; (4)0 Φ ; (5)3 Q ; (6)21- R ; (7)1 N +; (8)π R 。
变式训练:教材第5页练习A 第3题三、 课后作业教材第5页练习B 第2题、第9页习题1-1B 第3题四、 思考与讨论已知由1,2,x x 三个实数构成一个集合,求x 应满足的条件。
五、归纳小结。
高中数学 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学案 新人教A版必修1
第2课时集合的表示学习目标:1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)[自主预习·探新知]1.列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为描述法.一般形式为A={x∈I|p},其中x叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.思考:(1)不等式x-2<3的解集中的元素有什么共同特征?(2)如何用描述法表示不等式x-2<3的解集?[提示](1)元素的共同特征为x∈R,且x<5.(2){x|x<5,x∈R}.[基础自测]1.思考辨析(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(2)集合{(1,2)}中的元素是1和2.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )[答案](1)×(2)×(3)√2.方程x2=4的解集用列举法表示为( )A.{(-2,2)} B.{-2,2}C.{-2} D.{2}B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]3.用描述法表示函数y=3x+1图象上的所有点的是( )【导学号:37102022】A.{x|y=3x+1} B.{y|y=3x+1}C.{(x,y)|y=3x+1} D.{y=3x+1}C[该集合是点集,故可表示为{(x,y)|y=3x+1},选C.]4.不等式4x-5<7的解集为________.{x|4x-5<7} [用描述法可表示为{x|4x-5<7}.][合作探究·攻重难]用列举法表示集合用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A.(2)小于8的质数组成的集合B.(3)方程2x 2-x -3=0的实数根组成的集合C .(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D .[解] (1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}. (2)小于8的质数有2,3,5,7, 所以B ={2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32.所以C =⎩⎨⎧⎭⎬⎫-1,32.(4)由⎩⎪⎨⎪⎧y =x +3,y =-2x +6,得⎩⎪⎨⎪⎧x =1,y =4.所以一次函数y =x +3与y =-2x +6的交点为(1,4), 所以D ={(1,4)}.个步骤求出集合的元素把元素一一列举出来,且相同元素只能列举一次 用花括号括起来提醒:二元方程组的解集,函数的图象点形成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“”隔开,,,-[跟踪训练]1.用列举法表示下列集合:(1)方程组⎩⎪⎨⎪⎧x +y =2,x -y =0的解集;(2)A ={(x ,y )|x +y =3,x ∈N ,y ∈N }.【导学号:37102023】[解] (1)由⎩⎪⎨⎪⎧x +y =2,x -y =0,解得⎩⎪⎨⎪⎧x =1,y =1,故该方程组的解集为{(1,1)}. (2)因为x ∈N ,y ∈N ,x +y =3,所以⎩⎪⎨⎪⎧x =0,y =3或⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =2,y =1或⎩⎪⎨⎪⎧x =3,y =0.故A ={(0,3),(1,2),(2,1),(3,0)}.用描述法表示集合用描述法表示下列集合: (1)比1大又比10小的实数的集合;(2)平面直角坐标系中第二象限内的点组成的集合;(3)被3除余数等于1的正整数组成的集合. [解] (1){x ∈R |1<x <10}.(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}. (3){x |x =3n +1,n ∈N }. 描述法表示集合的个步骤[跟踪训练]2.用描述法表示下列集合:图111(1)函数y =-2x 2+x 图象上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合;(3)如图111中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.【导学号:37102024】[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }. (2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为{(x ,y )|-1≤x ≤32,-12≤y ≤1,xy ≥0}.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.集合表示方法的综合应用 [探究问题] 1.下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?提示:(1)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,所以实质上{x |y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,所以{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合. 2.设集合A ={x |ax 2+x +1=0}. (1)构成集合A 的元素是什么?(2)方程ax 2+x +1=0是关于x 的一元二次方程吗,为什么? 提示:(1)构成集合A 的元素是方程ax 2+x +1=0的根.(2)不一定.当a =0时,方程是关于x 的一元一次方程;当a ≠0时,方程是关于x 的一元二次方程.集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合. 思路探究:A 中只有一个元素――→等价转化方程kx 2-8x +16=0只有一解――→分类讨论求实数k 的值[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意; (2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意. 综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.[当 堂 达 标·固 双 基]1.不等式x -3<2且x ∈N *的解集用列举法可表示为( )【导学号:37102025】A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}B [由x -3<2可知x <5,又x ∈N *,故x 可以为1,2,3,4,故选B.] 2.若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4B [集合A 中有两个元素:(1,2),(3,4).] 3.如果A ={x |x >-1},那么( )【导学号:37102026】A .-2∈AB .{0}∈AC .-3∈AD .0∈AD [∵0>-1,故0∈A ,选D.]4.设集合A ={x |x 2-3x +a =0},若4∈A ,则集合A 用列举法表示为________. {-1,4} [∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2-3x -4=0}={-1,4}.] 5.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集;(2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.【导学号:37102027】[解] (1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集为{(4,-2)}.(2)集合用描述法表示为{x |x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x ,y )|y =x 2}.。
新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B版必修第一册
新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B版必修第一册新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B 版必修第一册(教师独具内容)课程标准:1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解空集的含义.4.能正确使用区间表示一些数集.教学重点:1.集合概念的正确理解.2.元素的三性(确定性、互异性、无序性).3.元素与集合关系的判定.4.集合常用的两种表示方法(列举法、描述法).5.区间的概念.教学难点:1.对元素的确定性的理解.2.描述法表示集合.【情境导学】(教师独具内容)一位渔民非常喜欢数学,但他怎么也想不明白集合的意义.于是他请教一位数学家:“先生,您能告诉我,集合是什么吗?”由于集合是不定义的概念,数学家很难向那位渔民讲清楚.直到有一天,数学家来到渔民的船上,看到渔民撒下渔网,然后轻轻一拉,许多鱼虾在网中跳动.数学家非常激动,高兴地对渔民说:“这就是集合!”你能理解这位数学家的话吗?【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A ,B ,C ,…表示集合,用英文小写字母a ,b ,c ,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a 是集合A 的元素,就记作□01a ∈A ,读作“a 属于A ”.(2)“不属于”:如果a 不是集合A 的元素,就记作□02a ?A ,读作“a 不属于A ”.知识点三空集一般地,我们把不含任何元素的集合称为□01空集(empty set),记作□02?. 知识点四集合中元素的三个特性 (1)确定性; (2)互异性;(3)无序性.知识点五集合的分类(1)有限集;(2)无限集.知识点六几个常用数集的固定字母表示知识点七集合的表示方法03描述法、□04“区间”(以及后面将集合常见的表示方法有:□01自然语言、□02列举法、□要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素□05一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个□06特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间01(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负实数集R可以用区间表示为□无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,x>a,x≤b,x<b的实数x< bdsfid="137" p=""></b的实数x<> 02[a,+∞),(a,+∞),(-∞,b],(-∞,b).的集合分别表示为□可以看出,区间实质上是一类特殊数集(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【新知拓展】1.元素和集合关系的判断(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可.此时应先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.此时应先明确已知集合的元素具有什么特征,即该集合中元素要满足哪些条件.2.集合的三个特性(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”“线”“面”等概念一样都只是描述性的说明.(2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物,甚至一个集合也可以是某集合的一个元素.3.使用列举法表示集合时需注意的几点(1)元素之间用“,”隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.( )(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a?A,二者必居其一且只居其一.( )(3)对于数集A={1,2,x2},若x∈A,则x=0.( )(4)对于区间[2a,a+1],必有a<0.( )(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.( )答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是( )A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,?)填空.0________?,0________{0},0________N,-2________N *,13________Z ,2________Q ,π________R .(3)不等式2x -1≥3的解集可以用区间表示为________.答案 (1)A (2)? ∈ ∈ ? ? ? ∈ (3)[2,+∞)题型一集合概念的理解例1 下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a ,b ,a ,c .[解析] ①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.⑦不能构成集合.因为两个a 是重复的,不符合集合元素的互异性. [答案] ①④⑤ 金版点睛判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.[跟踪训练1] 判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误. (3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确. 题型二元素与集合关系的判断与应用例2 (1)下列所给关系正确的个数是( ) ①π∈R ;②3?Q ;③0∈N *;④|-4|?N *. A .1B .2C .3D .4(2)集合A 中的元素x 满足66-x ∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)∵π是实数,3是无理数,∴①②正确;∵N *表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N ,x ∈N ,∴66-x ≥0,x ≥0,即?6-x >0,x ≥0,∴0≤x <6,∴x =0,1,2,3,4,5. 当x 分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5. [答案] (1)B (2)0,3,4,5 金版点睛1.常用数集之间的关系2.确定集合中元素的三个注意点1判断集合中元素的个数时,注意集合中的元素必须满足互异性. 2集合中的元素各不相同,也就是说集合中的元素一定要满足互异性. 3 若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.[跟踪训练2] (1)用符号“∈”或“?”填空.①0________N *;②1________N ;③1.5________Z ;④22________Q ;⑤4+5________R ;⑥若x 2+1=0,则x ________R . (2)设x ∈R ,集合A 中含有三个元素3,x ,x 2-2x . ①求实数x 应满足的条件;②若-2∈A ,求实数x 的值.答案(1)①? ②∈ ③? ④? ⑤∈ ⑥? (2)见解析解析(1)①∵0不是正整数,∴0?N *. ②∵1是自然数,∴1∈N .③∵1.5是小数,不是整数,∴1.5?Z . ④∵22是无理数,∴22?Q .⑤∵4+5是无理数,无理数是实数,∴4+5∈R . ⑥∵满足x 2+1=0的实数不存在,∴x 为非实数,∴x ?R .(2)①根据集合元素的互异性,可知x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0,且x ≠3且x ≠-1.②∵x 2-2x =(x -1)2-1≥-1,且-2∈A ,∴x =-2. 题型三集合中元素的特性例3 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值;(2)若x 2∈B ,求实数x 的值.[解] (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求.得a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. 金版点睛利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.[跟踪训练3] 已知集合A 包含三个元素:a -2,2a 2+5a,12,且-3∈A ,求a 的值.解因为A 包含三个元素a -2,2a 2 +5a,12,且-3∈A ,所以a -2=-3或2a 2+5a =-3,解得a =-1或a =-32.当a =-1时,A 中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去.当a =-32时,A 中三个元素为:-72,-3,12,满足题意.故a =-32.题型四集合的分类例4 下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集. (1)非负奇数;(2)小于18的既是正奇数又是质数的数;(3)在平面直角坐标系中所有第三象限的点;(4)在实数范围内方程(x 2-1)(x 2+2x +1)=0的解集;(5)在实数范围内方程组?x 2-x +1=0,x +y =1的解构成的集合.[解] (1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集. (5)由x 2-x +1=0的判别式Δ=-3<0,方程无实根,由此可知方程组x 2-x +1=0,x +y =1无解,能构成集合,是空集.金版点睛集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.[跟踪训练4] 指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解 (1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五用列举法表示集合例5 用列举法表示下列集合:(1)方程x 2-4x +2=0的所有实数根组成的集合;(2)不大于10的质数集;(3)一次函数y =x 与y =2x -1图像的交点组成的集合.[解] (1)方程x 2-4x +2=0的实数根为2,故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由?y =x ,y =2x -1,解得?x =1,y =1.故一次函数y =x 与y =2x -1图像的交点组成的集合为{(1,1)}.金版点睛用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素. (2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素.[跟踪训练5] 用列举法表示下列集合:(1)不等式组?2x -6>0,1+2x ≥3x -5的整数解组成的集合;(2)式子|a |a +|b |b(a ≠0,b ≠0)的所有值组成的集合.解 (1)由?2x -6>0,1+2x ≥3x -5得3<="">又x 为整数,故x 的取值为4,5,6,组成的集合为{4,5,6}.(2)∵a ≠0,b ≠0,∴a 与b 可能同号也可能异号,则:①当a >0,b >0时,|a |a +|b |②当a <0,b <0时,|a |a+|b |b=-2;③当a >0,b <0或a <0,b >0时,|a |a +|b |b=0.故所有值组成的集合为{-2,0,2}. 题型六用描述法表示集合例6 用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合; (2)所有被3除余1的整数的集合; (3)使y =1x 2+x -6有意义的实数x 的集合.[解] (1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x ,y )|xy ≤0,x ∈R ,y ∈R }.(2)因为被3除余1的整数可表示为3n +1,n ∈Z ,所以所有被3除余1的整数的集合为{x |x =3n +1,n ∈Z }.(3)要使y =1x 2+x -6有意义,则x 2+x -6≠0.由x 2+x -6=0,得x 1=2,x 2=-3. 所以使y =1x 2有意义的实数x 的集合为{x |x ≠2且x ≠-3,x ∈R }.金版点睛用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.[跟踪训练6] 试用描述法表示下列集合:(1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解 (1)方程x 2-x -2=0的解可以用x 表示,它满足的条件是x 2-x -2=0,因此,方程的解集用描述法表示为{x ∈R |x 2-x -2=0}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z ,且-1<7,<="" bdsfid="371" p=""> 因此,该集合用描述法表示为{x ∈Z |-1<="" 题型七="">例7 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .[解] ①当k =0时,原方程为16-8x =0,∴x =2,此时A ={2},符合题意.②当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根.即Δ=64-64k =0,即k =1,从而x 1=x 2=4,∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.[条件探究] 把本例条件“只有一个元素”改为“有两个元素”,求实数k 取值范围的集合.解由题意可知方程kx 2-8x +16=0有两个不等的实根.∴?k ≠0,Δ=64-64k >0,解得k <1且k ≠0.∴k 的取值范围的集合为{k |k <1且k ≠0}.金版点睛分类讨论思想在集合中的应用(1)①本题在求解过程中,常因忽略讨论k 是否为0而漏解.②由kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0两种情况,注意做到不重不漏.(2)解答与集合描述法有关的问题时,明确集合中的代表元素及其共同特征是解题的切入点.[跟踪训练7] (1)设集合B =?x ∈N62+x∈N .①试判断元素1,2与集合B 的关系;②用列举法表示集合B .(2)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值.解(1)①当x =1时,62+1=2∈N .当x =2时,62+2=32?N .所以1∈B,2?B .②∵62+x ∈N ,x ∈N ,∴2+x 只能取2,3,6,∴x 只能取0,1,4.∴B ={0,1,4}.(2)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系,得2+3=a ,2×3=b ,因此a =5,b =6.题型八集合中的新定义问题例8 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3B .6C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B 中的元素有9个,故选D. [答案] D 金版点睛本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表含树形图使用.[跟踪训练8]定义A*B={z|z=xy,x∈A,y∈B},设A={1,2},B ={0,2},则集合A*B中的所有元素之和为( )A.0 B.2C.3 D.6答案 D解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知A*B={0,2,4},故集合A*B 中所有元素之和为0+2+4=6,故选D.1.下列所给的对象不能组成集合的是( )A.我国古代的四大发明B.二元一次方程x+y=1的解C.我班年龄较小的同学D.平面内到定点距离等于定长的点答案 C解析C项中“年龄较小的同学”的标准不明确,不符合确定性.故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为( )A.2 B.2或4C.4 D.0答案 B解析集合A中含有三个元素2,4,6,且当a∈A时,有6-a∈A.当a=2∈A时,6-a =4∈A,∴a=2符合题意;当a=4∈A时,6-a =2∈A,∴a=4符合题意;当a=6∈A时,6-a=0?A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是( ) A.1 B.2C.3 D.4答案 B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,?)填空.(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.解A={x|(x-1)(x-a)=0},当a=1时,A={1};当a≠1时,A ={1,a}.。
广东省新高考高中数学必修一第一章《1.1集合》全套教案
广东省新高考高中数学必修一第一章《1.1集合》全套教案§1.1.1集合的含义与表示一、教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二、教学目标l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.三、重难点四、课时安排1课时五、教学过程作业1.下列所给对象不能构成集合的是( )A.一个平面内的所有点B.所有大于零的正数C.某校高一(4)班的高个子学生D.某一天到商场买过货物的顾客2.下列各组对象中不能构成集合的是( )A.高一(1)班全体女生B.高一(1)班全体学生家长C.高一(1)班开设的所有课程D.高一(1)班身高较高的男同学3.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z};(5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.4.用适当的形式表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)所有被3整除的数组成的集合;(3)方程(3x-5)(x+2)(x2+3)=0实数解组成的集合;(4)一次函数y=x+6图象上所有点组成的集合.5.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的取值范围.6.用适当的方法表示下列集合: (1)方程组⎩⎨⎧=+=82y 3x 14,3y -2x 的解集;(2)1000以内被3除余2的正整数所组成的集合;(3)直角坐标平面上在第二象限内的点所组成的集合;(4)所有正方形;(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.【补充练习】1.下列对象能否组成集合:(1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点;(3)满足3x-2>x+3的全体实数;(4)所有直角三角形;(5)美国NBA的著名篮球明星;(6)所有绝对值等于6的数;(7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员;(9)参加2020年奥运会的中国代表团成员.答案:(1)(2)(3)(4)(6)(7)(9)能组成集合,(5)(8)不能组成集合.2.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.答案:(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.3.用符号∈或 填空:(1)1______N,0______N,-3______N,0.5______N,2______N;(2)1______Z,0______Z,-3______Z,0.5______Z,2______Z;(3)1______Q ,0______Q ,-3______Q ,0.5______Q ,2______Q ; (4)1______R ,0______R ,-3______R ,0.5______R ,2______R . 答案:(1)∈ ∈ ∉ ∉ ∉ (2)∈ ∈ ∈ ∉ ∉ (3)∈ ∈ ∈ ∈ ∉ (4)∈ ∈ ∈ ∈ ∈ 4.判断正误:(1)所有属于N 的元素都属于N *. ( ) (2)所有属于N 的元素都属于Z . ( ) (3)所有不属于N *的数都不属于Z . ( ) (4)所有不属于Q 的实数都属于R . ( ) (5)不属于N 的数不能使方程4x=8成立. ( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ 5.分别用列举法、描述法表示方程组⎩⎨⎧==+273y -2x 2,y 3x 的解集.解:因⎩⎨⎧==+273y -2x 2,y 3x 的解为⎩⎨⎧==-7.y 3,x用描述法表示该集合为{(x,y)|⎩⎨⎧==+273y -2x 2y 3x };用列举法表示该集合为{(3,-7)}. 拓展提升问题:集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系. 活动:学生先思考元素与集合之间有什么关系,书写过程,将元素x 化为a+2b 的形式,再判断a 、b 是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可. 解:由于x=a+b 2,a ∈Z ,b ∈Z , ∴当a=b=0时,x=0.∴0∈A. 又121-=2+1=1+2,当a=b=1时,a+b 2=1+2,∴121-∈A.又231-=3+2,当a=3,b=1时,a+b 2=3+2,而3∉Z, ∴231-∉A.∴0∈A,121-∈A,231-∉A.点评:本题考查集合的描述法表示以及元素与集合间的关系.§1.1.2集合间的基本关系一、教材分析1.类比实数的大小关系引入集合的包含与相等关系2.了解空集的含义二、教学目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 23
1.1集合
适用学科 数学 适用年级
高三
适用区域 新课标 课时时长(分钟) 60
知 识 点
集合的概念;集合中元素的性质(确定性、无序性、互异性);属于与不属于的应用;常用数集及其记法;
列举法;描述法;Venn图法;两个集合相等的含义;证明集合相等的方法;子机、真子集、空集;包含
关系与属于关系的区别;子集个数问题;不包含关系的含义;并集、交集、补集;交、并、补的混合运
算
学习目标
1.集合的含义与表示
(1)了解集合的含义,体会元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述
法)描述不同的具体问题.
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集
的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
学习重点
集合的概念和集合的运算、Venn图
学习难点
集合的运算、Venn图
2 / 23
学习过程
一、课堂导入
有一位牧民非常喜欢数学,但他怎么也想不明白集合的意义,于是他请教一位数学家:“尊敬的先生,请你告诉我集
合是什么?”集合是不定义的概念,数学家很难回答.一天,他看到牧民正在向羊圈里赶羊,等到牧民把羊全赶进羊圈并
关好门.数学家突然灵机一动,高兴地告诉牧民:“这就是集合”.你能理解集合了吗?集合就是把需要的东西拿到一起.
3 / 23
二、复习预习
1.自然数的集合包含:零和 ;有理数的集合包含:整数和
2.在平面上,到一个定点的距离等于定长的点的集合
3.到一条线段的两个端点距离相等的点的集合是这条线段的
4 / 23
二、知识讲解
考点1 元素与集合
(1)集合元素的特性:确定性、互异性、无序性.
(2)集合与元素的关系:若a属于A,记作a∈A;若b不属于A,记作b∉A.
(3)集合的表示方法:列举法、描述法、图示法.
(4)常见数集及其符号表示
数集 自然数集 正整数集 整数集 有理数集 实数集
符号 N N*或N+
Z Q R
5 / 23
考点2 集合间的基本关系
表示
关系
文字语言 符号语言
相等 集合A与集合B中的所有元素都相同
A⊆B且B⊆A⇔A
=B
子集 A中任意一个元素均为B中的元素 A⊆B或B⊇A
真子集 A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素 AB或BA
空集 空集是任何集合的子集,是任何非空集合的真子集 ∅⊆A∅B(B≠∅)
6 / 23
考点3 集合的基本运算
集合的并集 集合的交集 集合的补集
符号表示 A∪B
A∩B
若全集为U,则集
合A的补集为∁UA
图形表示
意义 {x|x∈A,或x∈B} {x|x∈A,且x∈B}
∁UA={x|x∈U,且
x∉A}
7 / 23
四、例题精析
【例题1】
【题干】(1)已知非空集合A={x∈R|x2=a-1},则实数a的取值范围是________.
(2)已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.
8 / 23
【答案】(1)[1,+∞) (2)(-∞,1]
【解析】(1)∵集合A={x∈R|x2=a-1}为非空集合,
∴a-1≥0,即a≥1.
(2)∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},
即1-2+a≤0,∴a≤1.
9 / 23
【例题2】
【题干】若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A⊆B,则实数a的取值范围是________.
10 / 23
【答案】[-2,2)
【解析】(1)若A=∅,则Δ=a2-4<0,解得-2(2)若1∈A,则12+a+1=0,解得a=-2,此时A={1},符合题意;
(3)若2∈A,则22+2a+1=0,解得a=-52,此时A=2,12,不合题意.
综上所述,实数a的取值范围为[-2,2)
11 / 23
【例题3】
【题干】
已知全集U=R,函数y=1x2-4的定义域为M,N={x|log2(x-1)<1},则如图所示阴影部分所表示的集合是( )
A.{x|-2≤x<1} B.{x|-2≤x≤2}
C.{x|1
【答案】C
【解析】集合M=(-∞,-2)∪(2,+∞),∁UM=[-2,2],集合N=(1,3),所以∁UM∩N=(1,2].
13 / 23
【例题4】
【题干】若x∈A,且11-x∈A,则称集合A为“和谐集”.已知集合M=-2,-1,-12,0,1,12,23,2,3,则
集合M的子集中,“和谐集”的个数为( )
A.1 B.2
C.3 D.4
14 / 23
【答案】C
【解析】当x=-2时,11-x=13∉M,故-2不是“和谐集”中的元素;
当x=-1时,11-x=12∈M;
当x=12时,11-x=2∈M;
当x=2时,11-x=-1∈M.
所以-1,12,2可以作为“和谐集”中的一组元素;
当x=-12时,11-x=23∈M;
当x=23时,11-x=3∈M;
当x=3时,11-x=-12∈M.
所以-12,23,3可以作为“和谐集”中的一组元素;
15 / 23
当x=0时,11-x=1∈M,但x=1时,11-x无意义,
所以0,1不是“和谐集”中的元素.
所以集合M的子集为“和谐集”,其元素只能从两组元素:-1,12,2与-12,23,3中选取一组或两组,
故“和谐集”有-1,12,2,-12,23,3,-1,12,2,-12,23,3三个.
16 / 23
五、课堂运用
【基础】
1.(2012·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁UA)∩(∁UB)=( )
A.{5,8} B.{7,9}
C.{0,1,3} D.{2,4,6}
17 / 23
2.已知集合A={1,3,m},B={1,m},A∪B=A,则m=( )
A.0或3 B.0或3
C.1或3 D.1或3
18 / 23
3.(2012·湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B={x|0
A.1 B.2
C.3 D.4
19 / 23
【巩固】
4.若1∈a-3,9a2-1,a2+1,-1,则实数a的值为________.
20 / 23
5.(2013·合肥模拟)对于任意的两个正数m,n,定义运算⊙:当m,n都为偶数或都为奇数时,m⊙n=m+n2,当m,
n为一奇一偶时,m⊙n=mn,设集合A={(a,b)|a⊙b=6,a,b∈N*},则集合A中的元素个数为________.
21 / 23
【拔高】
6.设全集U=R,A={x|-x2-3x>0},B={x|x<-1},则图中阴影部分表示的集合为( )
A.{x|x>0}
B.{x|-3
22 / 23
7.已知集合A={x|x2-6x+8<0},B={x|(x-a)·(x-3a)<0}.
(1)若A⊆B,求a的取值范围;
(2)若A∩B=∅,求a的取值范围;
(3)若A∩B={x|3
课程小结
1、在集合的运算关系和两个集合的包含关系之间往往存在一定的联系,在一定的情况下,集合的运算关系和包含
关系之间可以相互转化,如A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB⇔A∩(∁UB)=∅,在解题中运用这种转化能有效简化解
题过程.
2、解答集合题目应注意的问题
(1)认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.
(2)要注意区分元素与集合的从属关系;以及集合与集合的包含关系.
(3)要注意空集的特殊性,在写集合的子集时不要忘了空集和它本身.
(4)运用数轴图示法要特别注意端点是实心还是空心.
(5)在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.