3.1.2共线向量与共面向量2

合集下载

2018-2019学年高二数学苏教版选修2-1讲义:第1部分 第3章 3.1 3.1.2 共面向量定理

2018-2019学年高二数学苏教版选修2-1讲义:第1部分 第3章 3.1 3.1.2 共面向量定理

3.1.2 共面向量定理[对应学生用书P50]如图,在平行六面体ABCD -A 1B 1C 1D 1中,观察下列几组向量,回答问题.问题1:AB 、AD 、11A C 可以移到一个平面内吗?提示:可以,因为AC =11A C ,三个向量可移到平面ABCD 内. 问题2:1AA ,AC ,1AC 三个向量的位置关系? 提示:三个向量都在平面ACC 1A 1内.问题3:1BB 、1CC 、1DD 三个向量是什么关系? 提示:相等.1.共面向量一般地,能够平移到同一平面内的向量叫做共面向量. 2.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数组(x ,y ),使得p =x a +y b .1.空间中任意两个向量都是共面的,空间中任意三个向量可能共面,也可能不共面. 2.向量共面不具有传递性.3.共面向量定理给出了平面向量的表示式,说明两个不共线的向量能确定一个平面,它是判定三个向量是否共面的依据.[对应学生用书P51][例1]给出以下命题:①用分别在两条异面直线上的两条有向线段表示两个向量,则这两个向量一定不共面;②已知空间四边形ABCD,则由四条线段AB、BC、CD、DA分别确定的四个向量之和为零向量;③若存在有序实数组(x,y)使得OP=x OA+y OB,则O、P、A、B四点共面;④若三个向量共面,则这三个向量的起点和终点一定共面;⑤若a,b,c三向量两两共面,则a,b,c三向量共面.其中正确命题的序号是________.[思路点拨]先紧扣每个命题的条件,再充分利用相关概念做出正确的判断.[精解详析]①错:空间中任意两个向量都是共面的;②错:因为四条线段确定的向量没有强调方向;③正确:因为OP、OA、OB共面,∴O、P、A、B四点共面;④错:没有强调零向量;⑤错:例如三棱柱的三条侧棱表示的向量.[答案]③[一点通]共面向量不一定在同一个平面内,但可以平移到同一个平面内.判定向量共面的主要依据是共面向量定理.1.下列说法正确的是________(填序号).①以三个向量为三条棱一定可以作成一个平行六面体;②设平行六面体的三条棱是AB、1AA、AD,则这一平行六面体的对角线所对应的向量是AB+1AA+AD;③若OP=12(PA+PB)成立,则P点一定是线段AB的中点;④在空间中,若向量AB与CD是共线向量,则A、B、C、D四点共面.⑤若a,b,c三向量共面,则由a,b所在直线所确定的平面与由b,c所在直线确定的平面是同一个平面.解析:①②③⑤不正确,④正确.答案:④2.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b +22c,试问向量p、q、r是否共面?解:设r =x p +y q ,则-7a +18b +22c =x (a +b -c )+y (2a -3b -5c ) =(x +2y )a +(x -3y )b +(-x -5y )c , ∴⎩⎪⎨⎪⎧x +2y =-7,x -3y =18,-x -5y =22.解得⎩⎪⎨⎪⎧x =3,y =-5,∴r =3p -5q . ∴p 、q 、r 共面.[例2] 如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:1AC 与AE 、AF 共面.[思路点拨] 由共面向量定理,只要用AE 、AF 线性表示出1AC 即可. [精解详析] ∵1AC =AB +AD +1AA =AB +AD +131AA +231AA=(AB +131AA )+(AD +231AA )=AB +BE +AD +DF =AE +AF ,∴1AC 与AE 、AF 共面.[一点通] 利用向量法证明向量共面问题,关键是熟练的进行向量的表示,恰当应用向量共面的充要条件.解题过程中注意区分向量所在的直线的位置关系与向量的位置关系,解答本题,实质上是证明存在惟一一对实数x ,y 使向量1AC =x AE +y AF 成立,也就是用空间向量的加、减法则及运算律,结合图形,用AE 、AF 表示1AC .3.如图,正方体ABCD -A1B 1C 1D 1中,E ,F 分别为BB 1和A 1D 1的中点.证明:向量1A B ,1B C ,EF 是共面向量.证明:法一:EF =EB +1BA +1A F =121B B -1A B +1211A D =12(1B B +BC -1A B=121B C -1A B . 由向量共面的充要条件知,1A B ,1B C ,EF 是共面向量.法二:连接A1D ,BD ,取A 1D 中点G ,连结FG ,BG ,则有FG 綊12DD 1,BE 綊12DD 1,∴FG 綊BE .∴四边形BEFG 为平行四边形. ∴EF ∥BG .BG ⊆平面A 1BD ,EF 平面A 1BD∴EF ∥平面A 1BD .同理,B 1C ∥A 1D ,∴B 1C ∥平面A 1BD , ∴1A B ,1B C ,EF 都与平面A 1BD 平行. ∴1A B ,1B C ,EF 是共面向量.4.已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM =k 1AC ,BN =k BC (0≤k ≤1).求证:MN 与向量AB ,1AA 共面.证明: 如图,在封闭四边形MABN 中,MN =MA +AB +BN .① 在封闭四边形MC 1CN 中,MN =1MC +1C C +CN ②∵AM =k 1AC , ∴AM =k (AM +1MC )∴(1-k )AM =k 1MC ,即(1-k )MA +k 1MC =0, 同理(1-k )BN +k CN =0.①×(1-k )+②×k 得MN =(1-k )AB +k 1C C , ∵1C C =-1AA ,∴MN =(1-k )AB -k 1AA , 故向量MN 与向量AB ,1AA 共面.[例3] 如图所示,已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明BD ∥平面EFGH .[思路点拨] (1)要证E ,F ,G ,H 四点共面,根据共面向量定理的推论,只要能找到实数x ,y ,使EG =x EF +y EH 即可.(2)要证BD ∥平面EFGH ,只需证向量BD 与向量FH 、EG 共面即可. [精解详析] (1)如图所示,连接BG ,EG ,则:EG =EB +BG =EB +12(BC +BD )=EB +BF +EH =EF +EH . 由共面向量定理知E ,F ,G ,H 四点共面. (2)设AB =a ,AC =b ,AD =c , 则BD =AD -AB =c -a .EG =EA +AG =-a 2+12(c +b )=-12a +12b +12c , HF =HA +AF =-12c +12(a +b )=12a +12b -12c .假设存在x ,y ,使BD =x EG +y HF . 即c -a =x ⎝⎛⎭⎫-12a +12b +12c +y ⎝⎛⎭⎫12a +12b -12c =⎝⎛⎭⎫y 2-x 2a +⎝⎛⎭⎫x 2+y 2b +⎝⎛⎭⎫x 2-y 2c . ∵a ,b ,c 不共线.∴⎩⎪⎨⎪⎧y 2-x2=-1,x 2+y2=0,x 2-y 2=1,解得⎩⎪⎨⎪⎧x =1,y =-1.∴BD =EG -HF .∴BD 、EG 、HF 是共面向量, ∵BD 不在平面EFGH 内. ∴BD ∥平面EFGH . [一点通]1.空间一点P 位于平面MAB 内的充分必要条件是存在实数对x 、y ,使MP =x MA +y MB .满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式,这个充要条件常用来证明四点共面.在许多情况下,可以用“若存在有序实数组(x ,y ,z )使得对于空间任意一点O ,有OP =x OA +y OB +z OC ,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据.2.用共面向量定理证明线面平行的关键是: (1)在直线上取一向量;(2)在平面内找出两个不共线的向量,并用这两个不共线的向量表示直线上的向量; (3)说明直线不在面内,三个条件缺一不可.5.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点.求证:B 1C ∥平面ODC 1.证明:设11C B =a ,11C D =b ,1C C =c ,则1B C =c -a ,又O 是B 1D 1的中点,所以1OD =1211B D =12(b -a ).因为D 1D 綊C 1C ,所以1D D =c ,OD =1OD +1D D =12(b -a )+c .1OC =-12(a +b ),假设存在实数x ,y ,使1B C =x OD +y 1OC ,所以c -a =x ⎣⎡⎦⎤12(b -a )+c -y ·12(a +b ) =-12(x +y )a +x c +⎝⎛⎭⎫x 2-y 2b ,且a ,b ,c 不共线, 所以x =1,12(x +y )=1,且x -y 2=0,即x =1,y =1.所以1B C =OD +1OC ,所以1B C ,OD ,1OC 是共面向量,又因为1B C 不在OD ,1OC 所确定的平面ODC 1内,所以B 1C ∥平面ODC 1.6.如图,已知P 是平面四边形ABCD 所在平面外一点,连结P A 、PB 、PC 、PD ,点E 、F 、G 、H 分别为△P AB 、△PBC 、△PCD 、△PDA 的重心.求证:E 、F 、G 、H 四点共面.证明:分别延长PE 、PF 、PG 、PH 交平面四边形ABCD 各边于M 、N 、Q 、R . ∵E 、F 、G 、H 分别是所在三角形的重心,∴M 、N 、Q 、R 为所在边的中点,顺次连结M 、N 、Q 、R 所得四边形为平行四边形,且有PE =23PM ,PF =23PN ,PG =23PQ ,PH =23PR .∵MNQR 为平行四边形,∴EG =PG -PE =23PQ -23PM =23MQ=23(MN +MR ) =23(PN -PM )+23(PR -PM ) =23·⎝⎛⎭⎫32 PF -32 PF +23⎝⎛⎭⎫32 PH -32 PF =EF +EH .∴由共面向量定理得E 、F 、G 、H 四点共面.向量e 1,e 2,e 3共面⇔存在三个不全为0的实数λ,μ,γ,使得λe 1+μe 2+γe 3=0. 若e 1,e 2,e 3是不共面的三个向量,且λe 1+μe 2+γe 3=0(其中λ,μ,γ∈R ),则λ=μ=γ=0.空间一点P 位于平面MAB 内的充要条件是存在惟一的有序实数对x ,y ,使MP =x MA +y MB .[对应课时跟踪训练(十九)]1.下列结论中,正确的是________(填序号). ①若a 、b 、c 共面,则存在实数x ,y ,使a =x b +y c ; ②若a 、b 、c 不共面,则不存在实数x ,y ,使a =x b +y c ;③若a 、b 、c 共面,b 、c 不共线,则存在实数x 、y ,使a =x b +y c .解析:要注意共面向量定理给出的是一个充要条件.所以第②个命题正确.但定理的应用又有一个前提:b 、c 是不共线向量,否则即使三个向量a 、b 、c 共面,也不一定具有线性关系,故①不正确,③正确.答案:②③2.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由向量OP =15OA +23OB +λOC 确定的点P 与A ,B ,C 共面,那么λ=________.解析:∵P 与A ,B ,C 共面, ∴AP =αAB +βAC ,∴AP =α(OB -OA )+β(OC -OA ), 即OP =OA +αOB -αOA +βOC -βOA =(1-α-β)OA +αOB +βOC , ∴1-α-β+α+β=1. 因此15+23+λ=1.解得λ=215.答案:2153.如图,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1,若EF =x AB +y AD +zAA 1,则x +y +z =________.解析:EF =AF -AE=AD +DF -(AB +BE )=AD +231DD -AB -131BB=AD -AB +131AA∴x =-1,y =1,z =13.∴x +y +z =13.答案:134.i ,j ,k 是三个不共面的向量,AB =i -2j +2k ,BC =2i +j -3k ,CD =λi +3j -5k ,且A 、B 、C 、D 四点共面,则λ的值为________.解析:若A 、B 、C 、D 四点共面,则向量AB 、BC 、CD 共面,故存在不全为零的实数a ,b ,c ,使得a AB +b BC +c CD =0.即a (i -2j +2k )+b (2i +j -3k )+c (λi +3j -5k )=0. ∴(a +2b +λc )i +(-2a +b +3c )j +(2a -3b -5c )k =0. ∵i ,j ,k 不共面, ∴⎩⎪⎨⎪⎧a +2b +λc =0,-2a +b +3c =0,2a -3b -5c =0.∴⎩⎪⎨⎪⎧a =c ,b =-c ,λ=1.答案:15.命题:若A 、B 、C 三点不共线,O 是平面ABC 外一点,OM =13OA +13OB +13OC ,则点M 一定在平面ABC 上,且在△ABC 内部是________命题(填“真”或“假”).解析:AM =OM -OA =-23OA +13OB +13OC=13(OB -OA )+13(OC -OA )=13(AB +AC ). 令BC 中点为D ,则AM =23AD ,∴点M 一定在平面ABC 上,且在△ABC 内部,故命题为真命题.答案:真6.已知A ,B ,C 三点不共线,平面ABC 外的一点O 满足OM =13OA +13OB +13OC .判断MA ,MB ,MC 三个向量是否共面.解:(1)由已知得OA +OB +OC =3OM , ∴OA -OM =(OM -OB )+(OM -OC ), 即MA =BM +CM =-MB -MC , ∴MA ,MB ,MC 共面.7.若e 1,e 2,e 3是三个不共面的向量,试问向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面,并说明理由.解:法一:令x (3e 1+2e 2+e 3)+y (-e 1+e 2+3e 3)+z (2e 1-e 2-4e 3)=0,亦即(3x -y +2z )e 1+(2x +y -z )e 2+(x +3y -4z )e 3=0, 因为e 1,e 2,e 3是三个不共面的向量, 所以⎩⎪⎨⎪⎧3x -y +2z =0,2x +y -z =0,x +3y -4z =0,解得⎩⎪⎨⎪⎧x =-1,y =7,z =5,从而a =7b +5c ,a ,b ,c 三个向量共面. 法二:令存在λ,μ,使a =λb +μ c 成立,即3e 1+2e 2+e 3=λ(-e 1+e 2+3e 3)+μ(2e 1-e 2-4e 3), 因为e 1,e 2,e 3是三个不共面向量, 所以⎩⎪⎨⎪⎧3=-λ+2μ,2=λ-μ,1=3λ-4μ.解这个方程组得λ=7,μ=5,从而a =7b +5c ,即a ,b ,c 三向量共面.8.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB .证明:因为H 为BC 的中点,所以FH =12(FB +FC )=12(FE +EB +FE +ED +DC )=12(2FE +EB +ED +DC ).因为EF ∥AB ,CD 綊AB ,且AB =2EF , 所以2FE +DC =0,所以FH =12(EB +ED )=12EB +12ED .又EB 与ED 不共线,根据向量共面的充要条件可知FH ,EB ,ED 共面.由于FH 不在平面EDB 内, 所以FH ∥平面EDB。

高中数学教学 共线向量与共面向量

高中数学教学 共线向量与共面向量

点M、N分别在BD,AE上,且分别是距B点、A点较近
的三等分点,求证:MN//平面CDE
F
E
N A
B
M
D C
例:已知空间任意一点 O 和不共线的三点 A、B 、C , uuur uuur uuur uuur
满 足 向 量 关 系 式 OP xOA yOB zOC ( 其 中 x y z 1 )的点 P 与点 A、B 、C 是否共面?
∴ OP (1 t )OA tOB

A
、B
、P
三点共线,且
uuur OP
uuur
OA

uuur
OB

O
为直线
AB
外一点,故
uuur OA
uuur 、OB
不共线
∴由平面向量基本定理可知 1 t , t
∴ 1
uuur uuur uuur
反过来,如果已知 OP OA OB ,且 1 ,
即空间直线由空间一点及直线的方向向量唯一确定.
例1 已知A、B、P三点共线,O为直线外
uuur uuur uuur
一点,且OP OA OB,求 的值.
解:∵
A
、B
、P
三点共线,∴ t
uuur R ,使OP

uuur OA
uuur t AB
uuur
uuur uuur
那么 A 、B 、P 三点共线吗?
平面向量基本定理:
ur uur 如果是 e1,e2 同一平面内两个不共线的 向量r 量ar ,,ur那有么且对只uur于有这一一对平实面数内1,的任2,一使向
a 1e1 2e2

2018版高中数学第三章空间向量及其运算3.1.2空间向量的数乘运算学案新人教A版

2018版高中数学第三章空间向量及其运算3.1.2空间向量的数乘运算学案新人教A版

3.1.2 空间向量的数乘运算学习目标 1.掌握空间向量数乘运算的定义及数乘运算的运算律.2.了解平行(共线)向量、共面向量的意义,掌握它们的表示方法.3.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.知识点一空间向量的数乘运算思考实数λ和空间向量a的乘积λa的意义是什么?向量的数乘运算满足哪些运算律?答案λ>0时,λa和a方向相同;λ<0时,λa和a方向相反;λa的长度是a的长度的|λ|倍.空间向量的数乘运算满足分配律及结合律:①分配律:λ(a+b)=λa+λb,②结合律:λ(μa)=(λμ)a.梳理(1)实数与向量的积与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算,记作λa,其长度和方向规定如下:①|λa|=|λ||a|.②当λ>0时,λa与向量a方向相同;当λ<0时,λa与向量a方向相反;当λ=0时,λa=0.(2)空间向量数乘运算满足以下运算律①λ(μa)=(λμ)a;②λ(a+b)=λa+λb;③(λ1+λ2)a=λ1a+λ2a(拓展).知识点二共线向量与共面向量思考1 回顾平面向量中关于向量共线的知识,给出空间中共线向量的定义.答案如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.思考2 空间中任何两个向量都是共面向量,这个结论是否正确?答案正确.根据向量相等的定义,可以把向量进行平移,空间任意两个向量都可以平移到同一平面内,成为共面向量.梳理(1)平行(共线)向量(2)共面向量类型一 向量共线问题例1 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线. 证明 设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1―→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c .∴EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →.∴E ,F ,B 三点共线.反思与感悟 判定向量a ,b (b ≠0)共线,只需利用已知条件找到x ,使a =x b 即可.证明点共线,只需证明对应的向量共线.跟踪训练1 如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF →与AD →+BC →是否共线?解 设AC 中点为G ,连接EG ,FG , ∴GF →=12AD →,EG →=12BC →,又∵GF →,EG →,EF →共面,∴EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →),∴EF →与 AD →+BC →共线.类型二 空间向量的数乘运算及应用例2 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→.解 (1)AP →=AD 1→+D 1P →=(AA 1→+AD →)+12AB →=a +c +12b .(2)A 1N →=A 1A →+AN →=-AA 1→+AB →+12AD →=-a +b +12c .(3)MP →+NC 1→=(MA 1→+A 1D 1→+D 1P →)+(NC →+CC 1→) =12AA 1→+AD →+12AB →+12AD →+AA 1→ =32AA 1→+32AD →+12AB →=32a +12b +32c . 引申探究若把本例中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,如何表示AP →?解 AP →=AD 1→+D 1P →=AA 1→+AD →+23AB →=a +c +23b .反思与感悟 利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.跟踪训练2 如图,在空间四边形OABC 中,M ,N 分别是对边OA ,BC 的中点,点G 在MN 上,且MG =2GN ,如图所示,记OA →=a ,OB →=b ,OC →=c ,试用向量a ,b ,c 表示向量OG →.解 OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →)=12a +23[-12a +c +12(b -c )]=16a +13b +13c . 类型三 空间向量共面问题例3 如图所示,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使OE OA =OF OB =OG OC =OHOD=k ,求证:E ,F ,G ,H 四点共面.证明 因为OE OA =OF OB =OG OC =OHOD=k ,所以OE →=kOA →,OF →=kOB →, OG →=kOC →,OH →=kOD →.由于四边形ABCD 是平行四边形, 所以AC →=AB →+AD →.因此EG →=OG →-OE →=kOC →-kOA →=kAC →=k (AB →+AD →)=k (OB →-OA →+OD →-OA →) =OF →-OE →+OH →-OE →=EF →+EH →.由向量共面的充要条件知E ,F ,G ,H 四点共面. 反思与感悟 (1)利用四点共面求参数向量共面的充要条件的实质是共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值. (2)证明空间向量共面或四点共面的方法①向量表示:设法证明其中一个向量可以表示成另两个向量的线性组合,即若p =x a +y b ,则向量p ,a ,b 共面.②若存在有序实数组(x ,y ,z )使得对于空间任一点O ,有OP →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P ,A ,B ,C 四点共面.③用平面:寻找一个平面,设法证明这些向量与该平面平行.跟踪训练3 (1)已知A ,B ,C 三点不共线,平面ABC 外一点M ,满足OM →=13OA →+13OB →+13OC →,判断MA →,MB →,MC →三个向量是否共面. 解 MA →,MB →,MC →三个向量共面. 因为OM →=13OA →+13OB →+13OC →,所以3OM →=OA →+OB →+OC →,化简,得(OA →-OM →)+(OB →-OM →)+(OC →-OM →)=0, 即MA →+MB →+MC →=0,即MA →=-MB →-MC →,故MA →,MB →,MC →共面.(2)如图,已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点,且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:①A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; ②AC →∥EG →;③OG →=kOC →.证明 ①∵AC →=AD →+mAB →,∴A 、B 、C 、D 四点共面. ∵EG →=EH →+mEF →,∴E 、F 、G 、H 四点共面. ②∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB →=k (AD →+mAB →)=kAC →,∴AC →∥EG →. ③OG →=OE →+EG →=kOA →+kAC →=k (OA →+AC →)=kOC →.1.对于空间的任意三个向量a ,b ,2a -b ,它们一定是( ) A.共面向量 B.共线向量C.不共面向量D.既不共线也不共面的向量答案 A解析 ∵2a -b =2·a +(-1)·b ,∴2a -b 与a ,b 共面.2.已知空间四边形ABCD ,点E 、F 分别是AB 与AD 边上的点,M 、N 分别是BC 与CD 边上的点,若AE →=λAB →,AF →=λAD →,CM →=μCB →,CN →=μCD →,则向量EF →与MN →满足的关系为( ) A.EF →=MN → B.EF →∥MN → C.|EF →|=|MN →| D.|EF →|≠|MN →| 答案 B解析 AE →-AF →=λAB →-λAD →=λDB →,即FE →=λDB →.同理NM →=μDB →.因为μDB →∥λDB →, 所以FE →∥NM →,即EF →∥MN →.又λ与μ不一定相等,故|MN →|不一定等于|EF →|.3.设e 1,e 2是平面内不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则k =________.答案 -8解析 ∵BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2, 又A 、B 、D 三点共线,由共线向量定理得AB →=λBD →, ∴12=-4k .∴k =-8. 4.以下命题:①两个共线向量是指在同一直线上的两个向量; ②共线的两个向量互相平行;③共面的三个向量是指在同一平面内的三个向量; ④共面的三个向量是指平行于同一平面的三个向量. 其中正确命题的序号是________. 答案 ②④解析 根据共面与共线向量的定义判定,易知②④正确.5.已知A ,B ,M 三点不共线,对于平面ABM 外的任意一点O ,判断在下列各条件下的点P 与点A ,B ,M 是否共面. (1)OB →+OM →=3OP →-OA →; (2)OP →=4OA →-OB →-OM →.解 方法一 (1)原式可变形为OP →=OM →+(OA →-OP →)+(OB →-OP →)=OM →+PA →+PB →. 由共面向量定理的推论知,点P 与点A ,B ,M 共面. (2)原式为OP →=2OA →+OA →-OB →+OA →-OM →=2OA →+BA →+MA →.由共面向量定理的推论,可知点P 位于平面ABM 内的充要条件是OP →=OA →+xBA →+yMA →. 而OP →=2OA →+BA →+MA →,∴点P 与点A ,B ,M 不共面. 方法二 (1)原式可变形为OB →=3OP →-OA →-OM →. ∵3+(-1)+(-1)=1,∴点B 与点P ,A ,M 共面, 即点P 与点A ,B ,M 共面. (2)原式为OP →=4OA →-OB →-OM →.∵4+(-1)+(-1)=2≠1,∴点P 与点A ,B ,M 不共面.1.四点P ,A ,B ,C 共面⇔对空间任意一点O ,都有OP →=xOA →+yOB →+zOC →,且x +y +z =1. 2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量惟一确定.3.证明(或判断)三点A 、B 、C 共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明三点A 、B 、C 共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.40分钟课时作业一、选择题1.给出下列几个命题:①向量a ,b ,c 共面,则它们所在的直线共面; ②零向量的方向是任意的;③若a ∥b ,则存在惟一的实数λ,使a =λb . 其中真命题的个数为( ) A.0 B.1 C.2 D.3 答案 B解析 ①假命题.三个向量共面时,它们所在的直线在平面内,或与平面平行; ②真命题.这是关于零向量的方向的规定; ③假命题.当b =0时,则有无数多个λ使之成立.2.设点M 是△ABC 的重心,记BC →=a ,CA →=b ,AB →=c ,且a +b +c =0,则AM →等于( ) A.b -c2B.c -b2C.b -c3D.c -b3答案 D解析 设D 是BC 边的中点, ∵M 是△ABC 的重心,∴AM →=23AD →.而AD →=12(AB →+AC →)=12(c -b ),∴AM →=13(c -b ).3.设空间四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( ) A.点P 一定在直线AB 上 B.点P 一定不在直线AB 上C.点P 可能在直线AB 上,也可能不在直线AB 上D.AB →与AP →的方向一定相同 答案 A解析 已知m +n =1,则m =1-n ,OP →=(1-n )OA →+nOB →=OA →-nOA →+nOB →⇒OP →-OA →=n (OB →-OA →)⇒AP →=nAB →.因为AB →≠0,所以AP →和AB →共线,即点A ,P ,B 共线.故选A.4.对于空间一点O 和不共线三点A ,B ,C ,且有6OP →=OA →+2OB →+3OC →,则( ) A.O ,A ,B ,C 四点共面 B.P ,A ,B ,C 四点共面 C.O ,P ,B ,C 四点共面 D.O ,P ,A ,B ,C 五点共面 答案 B解析 由6OP →=OA →+2OB →+3OC →, 得OP →-OA →=2(OB →-OP →)+3(OC →-OP →), 即AP →=2PB →+3PC →, ∴AP →,PB →,PC →共面, 又它们有公共点P ,∴P ,A ,B ,C 四点共面.故选B.5.已知点M 在平面ABC 内,并且对空间任意一点O ,有OM →=xOA →+13OB →+13OC →,则x 的值为( )A.1B.0C.3D.13答案 D解析 ∵OM →=xOA →+13OB →+13OC →,且M ,A ,B ,C 四点共面, ∴x +13+13=1,∴x =13.故选D.6.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A.A 、B 、D B.A 、B 、C C.B 、C 、D D.A 、C 、D 答案 A解析 ∵AB →=a +2b ,BD →=BC →+CD →=2a +4b =2(a +2b ),∴AB →∥BD →,又∵它们有公共点B ,∴A 、B 、D 三点共线.7. 已知A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P 、A 、B 、C 四点( )A.不共面B.共面C.不一定共面D.无法判断是否共面 答案 B解析 OP →=34OA →+18OB →+18OC →=34OA →+18(OA →+AB →)+18(OA →+AC →)=OA →+18AB →+18AC →,∴OP →-OA →=18AB →+18AC →,∴AP →=18AB →+18AC →.由共面的充要条件知P ,A ,B ,C 四点共面. 二、填空题8.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC →确定的一点P与A ,B ,C 三点共面,则λ=________. 答案215解析 由P ,A ,B ,C 四点共面可知:15+23+λ=1,故λ=215.9.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________. 答案 0解析 延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=AF →-AF →=0.10.已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2x ·BO →+3y ·CO →+4z ·DO →,则2x +3y +4z =________. 答案 -1解析 OA →=(-2x )·OB →+(-3y )·OC →+(-4z )·OD →,由A 、B 、C 、D 四点共面,则有-2x -3y-4z =1,即2x +3y +4z =-1.三、解答题11.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,当OP →=2OA →-OB →-OC →时,点P 是否与A 、B 、C 共面?并给出证明.解 点P 与A 、B 、C 三点不共面,证明如下:若点P 与A 、B 、C 共面,则存在惟一的实数对(x ,y ),使AP →=xAB →+yAC →,于是对平面ABC 外一点O ,有OP →-OA →=x (OB →-OA →)+y (OC →-OA →),∴OP →=(1-x -y )OA →+xOB →+yOC →,比较原式得⎩⎪⎨⎪⎧ 1-x -y =2,x =-1,y =-1,此方程组无解,这样的x ,y 不存在,所以A 、B 、C 、P 四点不共面.12.已知点E 、F 、G 、H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)证明:E ,F ,G ,H 四点共面;(2)证明:BD ∥平面EFGH .证明 如图,连接EG ,BG .(1)EG →=EB →+BG →=EB →+12(BC →+BD → )=EB →+BF →+EH →=EF →+EH →, 由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)方法一 ∵EH →=AH →-AE →=12AD →-12AB →=12BD →,∴EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH ,∴BD ∥平面EFGH .方法二 ∵BD →=BA →+AD →=2EA →+2AH →=2EH →=2(EG →+GH →)=2EG →+2GH →,又EG →,GH →不共线,∴BD →与EG →,GH →共面.又BD ⊄平面EFGH ,∴BD ∥平面EFGH .13.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点,求证:B 1C →,OD →,OC 1→是共面向量.证明 设C 1B 1→=a ,C 1D 1―→=b ,C 1C ―→=c ,∵四边形B 1BCC 1为平行四边形,∴B 1C →=c -a ,又O 是B 1D 1的中点,∴C 1O →=12(a +b ), ∴OC 1→=-12(a +b ), OD 1→=C 1D 1―→-C 1O →=b -12(a +b )=12(b -a ).∵D 1D →綊C 1C →,所以D 1D →=c ,∴OD →=OD 1→+D 1D →=12(b -a )+c . 若存在实数x 、y ,使B 1C →=xOD →+yOC 1→ (x ,y ∈R )成立,则c -a =x [12(b -a )+c ]+y [-12(a +b )]=-12(x +y )a +12(x -y )b +x c . ∵a 、b 、c 不共线,∴⎩⎪⎨⎪⎧ 12(x +y )=1,12(x -y )=0,x =1,得⎩⎪⎨⎪⎧ x =1,y =1. ∴B 1C →=OD →+OC 1→,∴B 1C →,OD →,OC 1→是共面向量.。

3.1共面向量定理

3.1共面向量定理

作业: P74练习4
§3.1.2 共面向量定理
• 学习目标: 1.了解向量共面的含义,理解共面向量定理; 2.能运用共面向量定理证明有关线面平行和点共 面的问题。 • 自学指导: 1.什么叫做共面向量? 2.空间向量中的共面向量定理与平面基本定理在 形式和本质上有区别吗? 3.共面向量定理的作用是什么? 4.是否可以用几何方法解决例1? 5.学习平面向量时有类似于例2的结论吗? •自学检测:P74练习1
如图在长方体A1B1C1D1 ABCD中, A1B1 AB A1D1 AD, 而 AB, AD, AC在同一平面内, 此时 我们称 A1B1 , A1D1 , AC是同面向量 一般地,能平移到同一平面内 的向量叫做共面向量
F N A M B C
E
D
例2 设空间任意一点O和不共线三点A,B,C,若 点P满足向量关系 OP xOA yOB zOC (其中x y z 1) 试问:P,A,B,C四点是否共面
• 分层训练: • 必做题:P74练习2,3 • 思考题:对于空间四边形,试证明它的一 对对边的中点的连线与另一对对边平行于 同一平面。
反过来,空间三个向量p, b, 其中a, a, b不共线,如果 存在有序实数(x,y)组,使得 p xa yb 那么,向量p与a, b共面吗 ?
实际上, 如果存在有序实数(x,y)组, 使得, p xa yb,那么,在空间任取一点M , 作 MA a, MB b,MA xa, 过点A作 AP yb, 则 MP MA AP xa yb p 所以点P在平面MAB内, 从而MP, MA, MB共面, 即向量 p与向量a, b共面.

第二课时共线向量与共面向量

第二课时共线向量与共面向量
子为平面 MAB 的向量表示式.
问题探究
1.空间一点 O 和不共线的三点 A、B、C,若 P 在 △ ABC 表示的平面内且O→P=xO→A+yO→B+zO→C,那 么 x,y,z 满足什么关系?
提示:x+y+z=1.因为O→P=O→A+mA→B+nA→C=O→A +m(O→B-O→A)+n(O→C-O→A) =(1-m-n)O→A+mO→B+nO→C. ∴x+y+z=(1-m-n)+m+n=1.
第二课时 共线向量与共面向量
课前自主学习
课标研读 1.了解共线向量、共面向量的概念;掌握共 线向量定理和共面向量定理;会利用共线向 量定理和共面向量定理解决相关问题. 2.重点是共线向量定理、共面向量定理,难 点是共线向量、共面向量的判定.
温故夯基
1.平面向量a与b共线,即存在非零实数λ,使 得___a_=__λ_b_(b_≠_0_)___. 2.空间向量的加减法仍可根据__三__角__形__法则 和_平__行__四__边__形__法则进行. 3.空间向量的加法交换律为_a_+__b_=__b_+__a_,加 法结合律为_(_a_+__b_)+__c_=__a_+__(_b_+__c_)_,数乘分配 律为__λ_(a_+__b_)_=__λ_a_+__λ_b__.
例2 正方体 ABCD A1B1C1D1 中,E、F 分别为 BB1 和 A1D1 的中点.证明:向量A→1B、B→1C、E→F是 共面向量.
【思路点拨】 解答本题可利用向量共面的充要 条件证明,也可利用向量共面的定义证明.
【证明】 法一:如图①所示. E→F=E→B+B→A1+A→1F=12B→1B-A→1B+12A→1D1 =12(B→1B+B→C)-A→1B=12B→1C-A→1B.
例1 如果点O为平行六面体ABCD—A1B1C1D1 中AC1的中点,求证:B1、O、D三点共线. 【思路点拨】 寻求O→B1与O→D的等式关系. 【证明】 如图所示,连结OB1、OD.

高中数学人教B版选修2-1第三章《3.1.2 空间向量的基本定理》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版选修2-1第三章《3.1.2 空间向量的基本定理》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版选修2-1第三章《3.1.2 空间向量的基本定理》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.知识与技能
通过本节学习理解向量共线的条件,共面向量定理和空间向量基本定理.
能够判定空间向量是否共面.
了解基向量、基底的概念、空间任意三个不共面的向量都可构成空间的一个基底.
2.过程与方法
通过对空间向量基本定理的学习,让学生体验数学定理的产生、形成过程,体验定理所蕴含的数学思想.
3.情感态度与价值观
事物之间可以相互转化,渗透由特殊到一般的思想,通过对空间向量基本定理的运用,增强学生的应用意识.
2学情分析
立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。

但很多学好这部分的同学,又觉得这部分很简单。

立体几何中抓住向量这个重要工具
如点到直线的距离,抓住直线的方向向量;找二面角的平面角而不是二面角,二面角的平面角等于二面角的大小.具体你可以,比如先求平面的法向量,那么两个平面的法向量的夹角的大小就是二面角的大小。

求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。

对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。

不断总结,才能不断高。

3重点难点
重点:共线向量定理、共面向量定理和空间向量分解定理.
难点:空间向量分解定理.。

平面向量的共线和共面关系

平面向量的共线和共面关系平面向量是数学中的一个重要概念,它们在几何学、物理学等领域中有着广泛的应用。

在研究平面向量时,我们经常会涉及到共线和共面的关系。

本文将介绍平面向量的共线和共面关系,并探讨它们的性质和应用。

一、共线关系在平面几何中,如果有两个向量的方向相同或相反,且它们的长度也成等比例关系,那么这两个向量就是共线的。

1.1 共线向量的定义设有两个向量⁠⁠→,⁠→,如果存在实数⁠,使得⁠→=⁠⁠→ (⁠≠0),那么⁠→与⁠→是共线的。

此时,我们可以称⁠→是与⁠→共线的,也可以称⁠→是与⁠→共线的。

1.2 共线向量的性质共线向量具有以下性质:(1)共线向量的方向相同或相反;(2)共线向量的长度成等比例关系;(3)共线向量的终点在一条直线上。

1.3 共线向量的判定判断两个向量是否共线,可以通过以下方法:(1)比较两个向量的方向是否相同或相反;(2)比较两个向量的长度是否成等比例关系;(3)验证两个向量的终点是否在同一条直线上。

二、共面关系在三维空间中,如果有三个向量的起点都相同,或者起点都在同一平面上,并且这三个向量所在的平面没有其他向量,那么这三个向量就是共面的。

2.1 共面向量的定义设有三个向量⁠⁠→,⁠→,⁠→,如果存在实数⁠,⁠,⁠,使得⁠→=⁠⁠→+⁠⁠→ (⁠≠0,⁠≠0),那么我们可以称⁠→,⁠→,⁠→为共面向量。

此时,我们可以称⁠→是由⁠→与⁠→共面确定的向量,也可以称⁠→与⁠→共面确定的向量是⁠→。

2.2 共面向量的性质共面向量具有以下性质:(1)共面向量所在的平面上,任意两个向量也是共线的;(2)共面向量的线性组合仍然在同一平面上;(3)共面向量的终点在同一个平面上。

2.3 共面向量的判定判断三个向量是否共面,可以通过以下方法:(1)比较三个向量的起点是否相同或在同一平面上;(2)验证三个向量是否可以表示为一个向量的线性组合;(3)验证三个向量的终点是否在同一平面上。

三、共线和共面关系的应用共线和共面关系在几何学和物理学中有着广泛的应用。

共线向量与共面向量-高中数学知识点讲解

共线向量与共面向量1.共线向量与共面向量【知识点的认识】1.定义(1)共线向量与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行→ 向量,记作 푎∥→ →푏.0与任意向量是共线向量.(2)共面向量平行于同一平面的向量叫做共面向量.2.定理(1)共线向量定理→ → →→ 对于空间任意两个向量 푎、푏(푏 ≠ 0),푎 ∥ → → →푏的充要条件是存在实数 λ,使得푎 = 휆푏. (2)共面向量定理→→ → → →→ 如果两个向量 푎、푏不共线,则向量푝与向量푎、푏共面的充要条件是存在唯一的有序实数对(x ,y ),使得푝 = 푥 → →푎 +푦푏.【解题方法点拨】空间向量共线问题:→ →(1)判定向量共线就是充分利用已知条件找到实数 λ,使푎 = 휆푏成立,或充分利用空间向量的运算法则,结合具→ → →体图形,通过化简、计算得出푎 = 휆푏,从而푎 ∥→푏.→ (2)푎 ∥→ → →푏表示푎与푏所在的直线平行或重合两种情况.空间向量共面问题:(1)利用向量法证明点共面、线共面问题,关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过 程中注意直线与向量的相互转化.→ → →(2)空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x,y),使푀푃=푥푀퐴+푦푀퐵.满足这个关系式的点P 都在平面MAB 内,反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.1/ 3证明三个向量共面的常用方法:(1)设法证明其中一个向量可表示成另两个向量的线性组合;(2)寻找平面α,证明这些向量与平面α平行.【命题方向】1,考查空间向量共线问题→→→→例:若푎=(2x,1,3),푏=(1,﹣2y,9),如果푎与푏为共线向量,则()A.x=1,y=1 B.x =12,y =―12C.x =16,y =―32D.x =―16,y =32→→分析:利用共线向量的条件푏=휆푎,推出比例关系求出x,y 的值.→→解答:∵푎=(2x,1,3)与푏=(1,﹣2y,9)共线,2푥故有1=1―2푦=39.∴x =16,y =―32.故选C.点评:本题考查共线向量的知识,考查学生计算能力,是基础题.2.考查空间向量共面问题例:已知A、B、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A、B、C 一定共面的是()→A.푂푀=→푂퐴+→푂퐵+→→→푂퐶B.푂푀=2푂퐴―→푂퐵―→→푂퐶C.푂푀=→푂퐴+12→푂퐵+13→→푂퐶D.푂푀=13→푂퐴+13→푂퐵+13→푂퐶→分析:根据共面向量定理푂푀=푚⋅→푂퐴+푛⋅→푂퐵+푝⋅→푂퐶,푚+푛+푝=1,说明M、A、B、C共面,判断选项的正误.→解答:由共面向量定理푂푀=푚⋅→푂퐴+푛⋅→푂퐵+푝⋅→푂퐶,푚+푛+푝=1,说明M、A、B、C 共面,可以判断A、B、C 都是错误的,则D 正确.2/ 3故选D.点评:本题考查共线向量与共面向量,考查学生应用基础知识的能力.是基础题.3/ 3。

空间向量共线共面

共线向量和共面向量
一、复习:平面共线向量: a // b 1.平面向量共线: 记作:
平面内,两个向量方向相同或相反的非零向量 零向量与任意向量共线.
2.平面向量共线定理:

向量 a 与非零向量b 共线的充要条件 是有且只有一个实数 使 a b

一、共线向量: 1.空间共线向量:如果表示空间向量的
C.在平面内共线的向量在空间一定不共线
D.在空间共线的向量在平面内一定共线
E.在平面内,任意两个向量一定共线
判断:点P在直线AB上的四个条件:
(1)存 在 实 数 t, 使AP t AB ( 2)存 在 实 数 t, 使OP OA t AB ( 3)存 在 实 数 t, 使OP (1 t ) OA t OB (4)存 在 实 数 x , y, 使OP x OA y OB 其 中x y 1
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行
2.空间共线向量定理:
向 量a 与 非 零 向 量 b 共线的充要条件 是存在实数 使 a b

1.下列说法正确的是:D
A.在平面内共线的向量在空间不一定共线
B.在空间共线的向量在平面内不一定共线
O
xOA yOB (1 x y )OM
问题:四点P,A,B,M共面的条件?
练习1:
已知A、B、C三点不共线,对于平面
ABC外的任一点O,确定在下列各条件下,
点P是否与A、B、C一定共面?
2 1 2 (1) OP OA OB OC ; (2) OP 2OA 2OB OC ; 5 5 5
(3)OB OC 3OP OA
注意: 空间四点P、C、A、B共面 PC x PA y PB 存在唯一 实数对 ( x, y)使得

空间向量的共线与共面



OP=13
→→
2
OA+βOB,则 β=____3____.
二、共面向量:
1.共面向量:平行于同一平面的向量,叫
做共面向量.
b
d
c
a
注意:空间任意两个向量是共面的,但空间 任意三个向量 既可能共面,也可能不共面
那么什么情况下三个向量共面呢?
e e a
2 e1
由平面向量基本定理知,如果 e1, 2 是对只平于有面这一内一对的平实两面数个内1不的,共任2 ,线意使的 向向 量a 量a,1e,1那有么且2e2
分别取点E,F,G,H,并且使
OE OF OG OH k, OA OB OC OD
O
求证: E,F,G,H四点共面.
DC
A
B
H
G
E
F
B.充分不必要条件 D.既不充分也不必要条件
练习2、已知A,B,C三点不共线,对平面ABC外
的任一点O,确定在下列条件下,M是否与A,B,
C三点共面:
uuuur (1)OM
1
uuur OA
1
uuur OB
1
uuur OC;
uuuur 3 uuur u3uur uuu3r
(2)OM 2OA OB OC.
p xa yb在a,b确定的平面内,即p与a,b共面
a 2.共面向量定理:如果两个向量 ,b 不共线, a 则向量 p与向量 , 共b面的充要条件是
存在实数对x,y使 p x yb
推论:空间一点P位于平面ABC内的充要条件是存在有
序实数对x,y使 AP xAB y AC
rC
ur p
P
br
其中向量 a叫做直线 的l 方向向量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档