换多目标函数优化设计有关离散变量优化设计问题优化方PPT课件
第七章多目标函数的优化设计

第七章多目标函数的优化设计在实际问题的解决过程中,往往会面临多个目标的优化设计。
传统的优化方法常常只关注单一目标的优化,无法同时兼顾多个目标的需求。
因此,多目标函数的优化设计成为了一个重要的研究领域。
多目标函数的优化设计涉及到多个目标函数的最优化问题,称为多目标优化问题。
多目标优化问题的解决方法有两类:一类是将多目标优化问题转化为单目标优化问题,另一类是直接解决多目标优化问题。
第一种方法是将多目标优化问题转化为单目标优化问题。
这种方法通常会使用一些合成目标函数或加权目标函数的方式来将多个目标函数合并为一个单目标函数。
常用的方法有加权和法、Tchebycheff法、罚函数法等。
但是这种方法不仅涉及到目标函数之间的比重问题,而且通常只能得到近似解,并不能完全解决多目标优化问题。
第二种方法是直接解决多目标优化问题。
这种方法通常会利用一些优化算法来求解多目标优化问题,如遗传算法、粒子群算法、蚁群算法等。
这些算法通常是基于群体智能的思想,通过不断的迭代来寻找最优解的近似解。
这些算法通常会生成一组近似最优解,即所谓的帕累托解集。
帕累托解集是多目标优化问题的解集,其中的解称为帕累托解。
帕累托解的定义是指在解集中没有其他解能够改进一个解的一些目标函数值而不损害其他目标函数值的解。
帕累托解集的大小和分布会影响多目标优化问题的解决质量。
因此,如何有效地生成帕累托解集成为了多目标优化问题研究的一个重要方向。
除了解决多目标优化问题的方法外,还需要考虑如何对多目标优化问题的解进行评价。
常用的评价指标有全局评价指标和局部评价指标。
全局评价指标能够反映整个帕累托解集的性能,常用的指标有最小距离、全局适应度值、发散度等。
局部评价指标用于评价帕累托解集中的个体解的性能,常用的指标有支配关系、可行性等。
总结起来,多目标函数的优化设计是一个重要的研究领域,涉及到多个目标函数的最优化问题。
解决多目标函数的优化设计可以采用将多目标优化问题转化为单目标优化问题的方法或者直接解决多目标优化问题的方法。
工程设计中的优化方法教学课件PPT

(4)数学模型 建立数学模型是解决优化设计的关键 优化设计的数学模型是实际设计的数学抽象。
任何一个优化设计问题可归结为如下描述:
在给定的约束条件下,选择适当的设计变量X, 使其目标函数 f (X)达到最优值。
其数学表达式(数学模型)为
设计变量
X= (x1, x2, ···, xn)T X∈Rn
在满足约束方程
无约束优化方法的特点和适用范围
计算方法
消去 黄金分割法 法 Fibonacci
直 插值 二次插值法
接 搜
法
三次插值法
索 爬山 坐标轮换法
法
法非导
共轭方向法
数法 单纯形法
最速下降法
间 接 寻 优 法
爬山 法导数 法
共轭梯度法 牛顿法
变尺度法
特点及适用范围
黄金分割法计算过程简单,收敛较快,应用较广
二次插值法算法成熟,收敛较快,应用广。函数性态较好时, 其效果比消去法好
所用数据为:F1=120kN, F2=12kN,[σ]=140MPa
表5-1 箱形梁设计结果比铰
跨度 l(cm)
常规设计(mm)
x1
x2
x3
x4
1050 760 340 6 10 1350 880 390 6 10 1650 1010 440 6 10
优化设计(mm)
x1
x2
x3
x4
790 310 5
计算简单,占内存少,收敛慢,可靠性差,适用于维数n<10 收敛较快,可靠性较好,占用内存少,特别适用于n<10-20 的二次函数 计算简单,收敛快,效果好,适用于中小型设计问题 计算简单,占用内存少,对初始点的选择要求低。最初几步 迭代函数值下降很快,但越靠近极值点越慢。和他法混用 所用公式结构简单,收敛速度较快,要求内存量少。适用于 多维优化问题求解 算法复杂,计算是大,对初始点要求高。一定条件下收敛速 度很快。高维优化问题不宜采用 收敛速度快,稳定性好,是目前最有效的方法之一,适用于 求解多维优化问题8Βιβλιοθήκη 870 380 66
《多目标函数》课件

实际应用中的挑战与解决方案
约束处理
研究如何有效处理多目标优化问题中的各种约束条件,如线性约束 、非线性约束等。
决策变量连续性
研究连续决策变量的多目标优化问题,以解决更多实际应用问题。
多目标优化与其他领域的结合
将多目标优化方法应用于其他领域,如机器学习、控制系统等。
多目标函数与其他领域的交叉研究
机器学习与多目标优化
粒子群优化算法的主要步骤包括 初始化粒子群、计算粒子的适应 度值、更新粒子的速度和位置以 及更新粒子的个体和全局最优解 。通过这些步骤,粒子群优化算 法能够在解空间中搜索并找到一 组最优解。
粒子群优化算法的优点在于其简 单易实现、全局搜索能力强和鲁 棒性好。然而,粒子群优化算法 也存在一些缺点,如易陷入局部 最优解、对初始解依赖性强和参 数设置主观性强等。
特点
多目标函数具有多个目标,每个目标都有自己的优先级和约束条件,需要综合 考虑多个因素,以达到最优的决策结果。
多目标函数的重要性
实际应用
多目标函数在实际生活中有着广泛的应用,如资源分配、生 产计划、金融投资等。在这些领域中,往往需要权衡多个目 标,如成本、质量、时间等,以达到最优的效果。
决策科学
多目标函数是决策科学的重要组成部分,它能够帮助决策者 综合考虑多个因素,制定更加科学、合理的决策方案。
生产调度中的多目标优化
资源分配
在生产调度中,多目标优化用于 优化资源分配,以平衡生产成本 、交货时间和产品质量等多个目
标。
工艺流程
通过多目标优化,可以找到最优的 工艺流程配置,以提高生产效率、 降低能耗和减少废品率。
供应链管理
在供应链管理中,多目标优化用于 协调供应商、制造商和分销商之间 的利益,以实现整体效益最大化。
3.多目标优化决策方法(共19张PPT)

min f ( x)
定理(dìnglǐ)1的改
对于
s.t .
gi ( x) 0, i 1,, p
进:
hj ( x) 0, j 1,,q
1、gi ( x),iI在x*处可微 2、hj ( x), jJ在x*处连续可微
3、gi ( x),iI( x* ),hj ( x), jJ线性无关
若x*是局部(júbù)最优解,则
第八页,共十九页。
gi ( x* ) 0,i 1,, p有两种情况:
1、gi ( x* ) 0 2、gi ( x* ) 0
若x*有变化(biànhuà),则约束条件可能没有破
坏
若x*有变化,则约束条件一定(yīdìng)被破坏
使gi ( x* ) 0的约束条件gi ( x) 0称为x*的积极约束
令J表示MP的全部等式约束的下标(xià biāo)集合,即J={1,2…q}, I表示MP的全部不等式约束的下标集合,即I={1,2…p}
转化所得到的单目标规划是非线性规划。
第五页,共十九页。
非线性规划 问题 (guīhuà)
➢无约束非线性规划(guīhuà)问题
利用微积分中,有关(yǒuguān)函数极值的充要条件进行求解。 例:
min f (x) (x1 1)2 (x2 2)2 x1* 1, x2* 2
第六页,共十九页。
j =1
xj ≥ 0 ,
dk- ,dk+ ≥ 0 ,
j =1,2,…,n k =1,2,…,K
第三页,共十九页。
目标规划 方法 (guīhuà)
目标规划(guīhuà)的求解
目标规划图解法
目标规划单纯形法
第四页,共十九页。
多目标 规划 (mùbiāo)
多目标及离散变量优化方法-文档资料

min F ( x) wi fi ( x)
i 1
l
wi——加权因子 (wi≥0,i=1,2,…,l ) 加权因子取值对计算结果的正确性影响较大。
第六章 第二节 多目标优化方法
加权因子wi确定的方法: ①将各分目标转化后加权 为消除各分目标在量级上的差别,先将分目标函数fi(x) 转化为无量纲等量级目标函数 f i ( x) (i 1,2,...,l ) ( f i ( x) 1) 再组成统一目标函数。 l F ( x) wi f i ( x)
第六章
结束
第一节 多目标优化问题
机械设计中,同时要求几项设计指标达到最优的问题 ——多目标优化设计问题
T .. ( x ) [ f ( x ), f ( x ) f ( x )] F 2 l min min 1 n
s.t. g j ( x) 0 ( j 1,2,...,m)
x R
x R n
第二节 一、主要目标法
多目标优化方法
基本思想:多个目标中选择一个目标作为主要目标, 而其它目标则只需满足一定的要求即可,即 将目标转化为约束条件 目标函数转化为:
f k ( x) min (k ) x(D k) D x | f i min f i ( x) f i max (i 1,2,...,k 1, k 1,...l , x D)
式中,f imin和f imax为第i个目标函数的上、下限。 一般 f i ( x) 只有问题,通过一定方法转化为 统一目标函数或综合目标函数作为多目标优 化问题的评价函数。
第六章 第二节 多目标优化方法
常用的方法有:线性加权法、理想点法(目标规划法) 、 功效系数法和极大极小法等。
多目标优化问题的求解算法34页PPT

谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
多目标优化问题的求解算法
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律ห้องสมุดไป่ตู้也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
数学建模离散优化模型与算法设计PPT课件
现以矩阵拟阵为例,对定义9.1作一说明。 对矩阵拟阵的每一实例,E={e1,…en}为矩阵列向量的集合,γ为E的线性无 关子集构成的系统,称为独立系统,其元素被称为独立子集。由于E的任一 线性无关子集的子集也是E的线性无关子集,故独立系统γ是封闭的。又由 于这一离散优化问题的任一实例都可用贪婪法求解,故构成一拟阵,被称 为矩阵拟阵。例9.1被称为图拟阵,例9.3被称为划分拟阵。
现在可以看出,找最大匹配的关键在于找增广路。读者不难用顶点标号 的办法(由未盖点出发),作出一个求解两分图匹配的增广路算法。此 算法稍加改动,还可以用于非两分图的情况。
三、网络流问题
网络流问题是又一类具有广泛应用前景的P问题,本节将介绍一些有关 网络流问题的基本理论与算法。
1、最大流问题(MFP)
得如下的约束条件,i ,有
v 若 is
(i,j) (i,j) 0 若 is.t
(i,j)Ai
(i,j)Ai
v 若 it
其(9中.1是)式A表i 指示As发中出以流顶为点i为,起t点收的入孤的集流,为
A
i
是指A中以 i为终点的孤集, ,其余各点只起中转作用,
既不增加也不消耗流量。根据边容量限止,还应有
(注:| ·|表示元素个数)
(条件2) AE 若I、I‘均为A的两个极大独立集,则|I|=|I’|。
二、两分图匹配问题与增广路算法
在上一小节中我们已经看到,有些P问题可以用极为简单的贪婪法求解。 但对绝大多数的P问题来说,这一结果并不成立,只能根据其本身的结构, 去寻找求解它的独特算法。下面,我们将介绍几个这样的P问题。
拟阵问题(或称拟阵结构)有一个明显而又本质的特性,其任一极大独立 子集中包含着相同个数的元素,从而可以引入基的概念。例如,矩阵列向 量的所有线性无关极大组均具有相同的向量个数,这就导出了基——即矩 阵列秩的概念。对于图拟阵,每一极大独立集均为一生成树,其边数均为 |V|-1。对于划分拟阵,孤集被划分成个|V|个子集,每一子集由指向同一 顶点的孤组成。显然,任一极大独立集应在每一子集中取一条孤,故其基 数为顶点个数。
多目标优化问题的求解算法PPT课件
本文中,为每个目标设定一个目标阀值,各种群都在该工程的施工网络 可靠性框图上进行搜索,把每个种群每搜索得到的新解(一个实施方案的工序 组合)依次代入目标函数中,所得值和预先设定阀值进行比较分析。
产生以下几种情况: ①若四个种群搜索的解对应的函数值都优于目标值的,就把把该解加到入 解集中,再按照公式(4-15)进行更新。若搜索出的解和非支配解集中的某个解相 同,就对这条路径上的信息素进行一定比例减少,防止陷入局部最优。 ②若有三个目标函数值优于设定的目标值,就将这三个目标种群在其对应 的路径上选取其中某段路径,对此路径上的信息素进行变异处理。
2021
(5)路径对蚂蚁的吸引程度
2021
(6)非支配解集的构造
在求解多目标优化问题时,在向Pareto前沿逼近 的过程中往往需要构造非支配解集,即利用多目标 优化算法不断寻找最优和收敛的过程。群体进化过 程中形成的最优个体集合就构成了非支配解集。因 此,求解多目标优化问题的Pareto最优解,可理解成 是构造非支配解集的过程。
2021
4.多目标优化问题的基本方法
现有的研究多目标优化问题的基本方法往往是把各个目标通过带权重系数 的 方式转化为单目标优化问题,如线性加权法、约束法、目标规划法、分层序列 法 等。
这几种方法存在一些局限性,如有些方法计算效率较低,无法逐一与所有 可 行解的目标值进行比较,有些方法需要进行多次优化,加权值法带有较强的主
本文把协同进化的思想引入到多种群蚁群算法中,从而解决基于多种种群的 蚁群算法的多目标优化问题。
2021
本文采用的是多种群蚁群算法,考虑到每个种群存在不同的搜索目标, 彼此之间相互影响,例如在起初寻找最低成本的路径和最高质量的路径的进 化方向就是相反的,为了避免各目标向目标的反方向进行,从协同进化的角 度考虑,把各种群搜索求得的解,分别代入四个目标函数中求解出对应的函 数值,并与目标值进行比较,当存在种群的目标函数值不满足目标值时,对 满足的路径上的信息素可以进行交叉或者变异操作,防止已经满足要求的种 群“背道而驰”,使得后续迭代的种群能够朝着有利路径逼近最优解。
离散变量优化问题共48页文档
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
70离散优化数学建模PPT课件
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2008年B题 高等教育学费标准探讨
请你们根据中国国情,收集诸如国家生均拨款、培养费用、 家庭收入等相关数据,并据此通过数学建模的方法,就几类 学校或专业的学费标准进行定量分析,得出明确、有说服力 的结论。数据的收集和分析是你们建模分析的基础和重要组 成部分。你们的论文必须观点鲜明、分析有据、结论明确。 最后,根据你们建模分析的结果,给有关部门2)如何化标准形式
目标函数的转换
如果是求极小值即 mzin , 则cj可xj将目标函数乘以(-1),可化
为求极大值问题。
即 mza x z cjxj
也就是:令 z ,z可得到上式。
变量的变换
若存在取值无约束的变量 x,可j 令 其中:xj, xj 0
xj xj xj
线性规划问题的数学模型
赛题发展的特点:
➢1.对选手的计算机能力提出了更高的要求: 赛题的解决依赖计算机,题目的数据较多,手工计算 不能完成; 某些问题需要使用计算机软件,如01A; 问题的数据读 取需要计算机技术,如04A(数据库数据,数据库方法 ,统计软件包)。 计算机模拟和以算法形式给出最终结果,如09B,11B。 ➢ 2. 赛题的开放性增大 :题意的开放性,思路的开放性, 方法的开放性,结果的开放性。 开放性还表现在对模 型假设和对数据处理上。如10B
s.t
n j1
aij
xj
bi
(i 1,2, ,m)
(2)
xj 0, j 1,2, ,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。