2015年第13届“希望杯”全国数学邀请赛试卷(五年级第1试)

合集下载

(完整)最新五年级希望杯近几年试题

(完整)最新五年级希望杯近几年试题

(完整)最新五年级希望杯近⼏年试题2010年第⼋届⼩学“希望杯”全国数学邀请赛五年级第1试试题1、计算 10.37×3.4+1.7×19.26=。

2、已知1.08÷1.2÷2.3=10.8÷□,其中□表⽰的数是。

3、计算:1.825gg-0.8g=。

(8、5、8的上⾯有循环点)4、有三个⾃然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11。

则c b ,得到的余数是。

5、已知300=2×2×3×5×5,则300⼀共有不同的约数。

6、在99个连续的⾃然数中,最⼤的数是最⼩的数的25.5倍,那么这99个⾃然数的平均数是。

7、要往码头运28个同样⼤⼩的集装箱,每个集装箱的质量是1560千克。

现安排⼀辆载重6吨的卡车运送这些集装箱,卡车车厢的⼤⼩最多可以容纳5个集装箱,则这辆卡车⾄少需往返趟。

8、⼩晴做道菜:“⾹葱炒蛋”,需7道⼯序,时间如下:洗葱,切葱花打蛋搅拌蛋液和葱花洗锅烧热锅烧热油烧菜1分钟半分钟 1分钟半分钟半分钟半分钟 2分钟做好这道菜⾄少要分钟。

9、⼀项特殊的⼯作必须⽇夜有⼈看守,如果安排8⼈轮流值班,当值⼈员为3⼈,那么,平均每⼈每天⼯作⼩时。

10、甲、⼄两商店中某商品的定价相同。

甲商店按定价销售这种商品,销售额是7200元;⼄商店按定价的⼋折销售,⽐甲商店多售出15件,销售额与甲商店相同。

则甲商店售出件这种商品。

11、夜⾥下了⼀场⼤雪,早上,⼩龙和爸爸⼀起步测花园⾥⼀条环形⼩路的长度,他们从同⼀点同向⾏⾛。

⼩龙每步长54厘⽶,爸爸每步长72厘⽶,两⼈各⾛完⼀圈后⼜都回到出发点,这时雪地上只留下60个脚印。

那么这条⼩路长⽶。

12、⼀艘客轮在静⽔中的航⾏速度是26千⽶/时,往返于A 、B 两港之间,河⽔的流速是6千⽶/时。

如果客轮在河中往返4趟公⽤13⼩时,那么A 、B 两港之间相距千⽶。

2015年第十三届小学“希望杯”全国数学邀请赛六年级第1试真题

2015年第十三届小学“希望杯”全国数学邀请赛六年级第1试真题

第十三届小学“希望杯”全国数学邀请赛六年级 第1试试题2015年3月15日 上午8:30至10:001、计算:321161814121++++_____________。

2、将99913化成小数,小数部分在第2015位上的数字是_______________。

3、若四位数72AB 能被13整除,则两位数AB 的最大值是_____________。

4、若一个分数的分子减少%20,并且分母增加%28,则新分数比原来的分数减少了______%。

5、若120151201412013120121201111+<++++<a a ,则自然数a =______________。

6、定义:符号{}x 表示x 的小数部分,如{}14.0143=,,{}5.05.0=,那么, =⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧5412431532015_______________。

(结果用小数表示) 7、甲、乙、丙三人共同制作了一批零件,甲制作了总数的%30,乙、丙制作的件数之比是4:3,已知丙制作了20件,则甲制作了_________件。

8、已知9x ,15y ,14z 都是最简真分数,并且它们的乘积是61,则=++z y x ____________。

9、如图一,有三只小老鼠发现一堆花生米,商量好第二天来平分。

第二天,第一只老鼠最早来到,它发现花生米无法平分,就吃了一粒,余下的恰好可以分成三份,它拿着自己的一份走了,第二只和第三只老鼠随后依次来到,遇到同样的问题,也采取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份,那么,这堆花生米至少有_________粒。

10、如图2,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作41圆,若图中的两个阴影部分的面积相等,则此长方形的长与宽的比值是____________。

11、六年级甲班的女生人数是男生人数的910倍,新年联欢会中,52的女生和31的男生参加了演出,则参加演出的人数占全班人数的__________。

(完整)五年级下册数学试题第15届希望杯邀请赛第1试试卷通用版

(完整)五年级下册数学试题第15届希望杯邀请赛第1试试卷通用版

2019年小学第十五届“希望杯”全国数学邀请赛五年级第1试试题以下每题6分,共120分。

1、计算:1.25×6.21×16+5.8=。

2、观察下面数表中的规律,可知x=。

3、图1是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。

4、非零数字a,b,c能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中的任意一个数都被9整除。

(填“能”或“不能”)5、将4个边长为2的正方形如图2放置在桌面上,则它们在桌面上所能覆盖的面积是。

6、6个大于零的连续奇数的乘积是135135,则这6个数中最大的是。

7、A,B两桶水同样重,若从A桶中倒2.5千克到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么桶B中原来有水千克。

8、图3是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a—b×c的值是。

9、同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人,若两样都带的人数是所有参加春游人数的一半,则参加春游的同学有人。

10、如图4,小正方形的面积是1,则图中阴影部分的面积是。

11、6个互不相同的非零自然数的平均数是12,若将其中一个两位数ab换成ba,(a,b是非零数字),这6个数的平均数变成15,所有满足条件的两位数ab共有个。

12、如图5,在△ABC中,D,E,分别是AB,AC的中点,且图中两个阴影部分(甲和乙)的面=。

积差是5.04,则S△ABC13、松鼠A,B,C共有松果若干个,松鼠A原有松果26颗,从中拿出10颗平均分给B,C,然后松鼠B拿出自己的18颗松果平均分给A,C,最后松鼠C把自己现有的松果的一半平分给A,B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗。

14、已知α是锐角,β是钝角,4位同学在计算0.25(α+β)时,得到的结果依次是15.2°,45.3°,78.6°,112°,其中可能正确的是。

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:,得.2.(5分)某商品单价先上调,再下降20%才能降回原价.该商品单价上调了%.3.(5分)请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.4.(5分)若(n是大于0的自然数),则满足题意的n的值最小是.5.(5分)小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.6.(5分)2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.7.(5分)已知两位数与的比是5:6,则=.8.(5分)如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.9.(5分)某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.10.(5分)将1至2015这2015个自然数依次写出,得到一个多位数123456789…20142015,这个多位数除以9,余数是.11.(5分)如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水立方分米.12.(5分)王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.二、解答题(每小题15分,共60分.)每题都要写出推算过程.13.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数11111011111 转化为十进制数,是多少?14.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?16.(15分)如图,点M、N分别是边长为4分米的正方形ABCD的一组对边AD、BC的中点,P、Q两个动点同时从M出发,P沿正方形的边逆时针方向运动,速度是1米/秒;Q沿正方形的边顺时针方向运动,速度是2米/秒.求:(1)第1秒时△NPQ的面积;(2)第15秒时△NPQ的面积;(3)第2015秒时△NPQ的面积.2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:,得.【分析】这道题比较难,根据拆项公式:,把各个加数进行变式然后计算.【解答】解:==)=2×()=2×()=【点评】本题比较难,考查了学生的综合能力.计算时要观察算式的特征,发现规律进行计算,计算量比较大,要细心计算.2.(5分)某商品单价先上调,再下降20%才能降回原价.该商品单价上调了25%.【分析】把原价看作单位“1”,设上调了x,上调后是1+x,再下降20%后是(1+x)×(1﹣20%),也就是原价1,据此解答.【解答】解:把原价是1.设单价上调了x.(1+x)×(1﹣20%)=1(1+x)×0.8=11+x=1.25x=1.25﹣1x=0.25x=25%.答:该商品单价上调了25%.故答案为:25.【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,根据求一个数是另一个数的方法求解.3.(5分)请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是3.【分析】设这个数是a,根据题意列出算式[(a+5)×2﹣4]÷2﹣a,计算出结果即可.【解答】解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.【点评】本题考查了有理数的加减,关键是根据题意列出代数式.4.(5分)若(n是大于0的自然数),则满足题意的n的值最小是3.【分析】当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;从而得解.【解答】解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:3【点评】本题主要考查对于2的次幂以及分数的计算.5.(5分)小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有100页.【分析】一本书中间的某一张被撕掉了,这两页的页码数字和应为奇数.余下的各页码数之和是4979,所以这本书的页码总和为偶数.设这本书n页,则n (n+1)÷2>4979,可推出n=100,据此解答即可.【解答】解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.【点评】根据等差数列公式列出关系式进行分析是完成本题的关键.6.(5分)2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是1.【分析】先列出算式为2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣),然后求出各个括号内的得数,这时可以通过约分,即可得出答案.【解答】解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.【点评】对于此类问题,应仔细审题,发现规律后再进行计算.7.(5分)已知两位数与的比是5:6,则=45.【分析】因为两位数与的比是5:6,即(10a+b):(10b+a)=5:6,根据比例的性质推出55a=44b,即a=b,所以b只能为5,则a=4.解决问题.【解答】解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.【点评】此题由所给的条件入手,推出a与b之间的关系,是解答此题的关键.8.(5分)如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于20.【分析】设D的面积为x,因为A和B,C和D的长一定,所以A和B,C和D 的面积之比相等,于是有9:12=15:x,解比例即可.【解答】解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.【点评】此题解答的关键在于根据“A和B,C和D的长一定”,推出A和B,C和D的面积之比也相等.9.(5分)某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用70天.【分析】应先算出一个人的工作效率,进而算出12个人的工作效率,还需要的天数=剩余的工作量÷12个人的工作效率,把相关数值代入即可求得还需要的天数,再加35天即可.【解答】解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.【点评】得到剩余工作量和12个人的工作效率是解决本题的关键;用到的知识点为:时间=工作总量÷工作效率.10.(5分)将1至2015这2015个自然数依次写出,得到一个多位数123456789…20142015,这个多位数除以9,余数是0.【分析】“连续n(奇数)个自然数的数字和必是n的倍数”,2015÷9=223…8,余数是8,先取出前8位,从9开始后面的数字和正好是9的倍数,12345678的数字和是36,也是9的倍数,所以这个多位数就是9的倍数,由此求解.【解答】解:连续9个自然数的数字和必是9的倍数,2015÷9=223…8,所以可以取出前8位,从9开始后面的数字和正好是9的倍数,12345678的数字和是:1+2+3+4+5+5+7+8=36,12345678也能被9整除,所以:多位数123456789…20142015除以9的余数是0.故答案为:0.【点评】本题主要是依据“连续n个自然数的数字和必是n的倍数”这个规律来完成的.11.(5分)如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.【分析】水面上升的体积是圆柱体积的(﹣),也就是三个半径都是1分米的小球的体积和,由此先求得半径都是1分米的小球的体积,再进一步利用分数除法的意义列式解答即可.【解答】解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.【点评】掌握球的体积计算公式,得出上升水的体积和圆柱体积之间的关系是解决问题的关键.12.(5分)王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距330千米.【分析】设总路程为x千米,已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=60千米/小时,可得去时用的时间为×x+×x=x;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时,可得返回用的时间为×x+×x=x;再由“结果返回时比去时少用31分钟”,列方程为x﹣x=,解方程即可.【解答】解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.【点评】此题解答的关键在于设出未知数,表示出往返的时间,再根据等量关系“结果返回时比去时少用31分钟”,列方程解答即可.二、解答题(每小题15分,共60分.)每题都要写出推算过程.13.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数11111011111 转化为十进制数,是多少?【分析】二进制转换为十进制方法:按权相加法,即将二进制每位上的数乘以权(即该数位上的1表示2的多少次方),然后相加之和即是十进制数,据此解答即可.【解答】解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.【点评】本题主要考查了十进制与二进制的相互转换,要熟练地掌握其转化方法,属于基础题.14.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?【分析】(1)互助啮合的两个齿轮转动方向是相反的,B与A转动的方向相反,C又与B转动的方向相反,即C与A转动的方向一致.(2)互助啮合的两个齿轮其半径(或直径或周长)与转速成反比,由A、B、C 的直径即可确定当A转动一圈时,C转动了几圈.【解答】解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.【点评】互助啮合的两个齿轮或交叉皮带链接的两个轮,转动方向都相反,平行皮带链接的两个轮转动方向相同,不论哪种情况,轮半径(或直径或周长)与转速成反比.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【分析】根据题意,可以切割成棱长为1~5的小正方体.大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.然后,分棱长为4、3、2、1的小正方体分类讨论,列方程组解答即可.【解答】解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.【点评】本题关键是根据表面积变化前后体积不变,确定小正方体的棱长的范围,然后分类讨论即可.16.(15分)如图,点M、N分别是边长为4分米的正方形ABCD的一组对边AD、BC的中点,P、Q两个动点同时从M出发,P沿正方形的边逆时针方向运动,速度是1米/秒;Q沿正方形的边顺时针方向运动,速度是2米/秒.求:(1)第1秒时△NPQ的面积;(2)第15秒时△NPQ的面积;(3)第2015秒时△NPQ的面积.【分析】(1)第1秒时,点P与点M的距离是1米,正方形的边长是分4分米,M为正方形边长的中点,点P运动到AM的中点,点Q运动到点D的位置,据此可求出三角形NPQ的底PQ,高是正方形边长,由此可求出此三角形的面积.(2)第15秒时,点P与点M的距离是1×15=15(分米),运动到MD的中点,点Q与点M的距离是2×15=30(分米),运动到点A的位置,此可求出三角形NPQ的底PQ,高是正方形边长,由此可求出此三角形的面积.(3)因为16÷1=16,16÷2=8,因此,第经过16秒,点P和点Q都回到出发点M,即16秒一个循环,用2015÷16,看有几个循环,又几秒,据此解答.【解答】解:(1)第1秒时,如图,△NPQ的面积:(1+2)×4÷2=3×4÷2=6(平方分米);(2)第15秒时,如图,△NPQ的面积:(2+1)×4÷2=3×4÷2=6(平方分米);(3)因为16÷1=16,16÷2=8,所以,第经过16秒,点P和点Q都回到出发点M,2015÷16=125…15(秒)所以第2015秒时点P、点Q与第15秒时相同,面积也是6平方分米.【点评】由题意比较容易看出点P、Q的位置,由已知条件即可求出三角形NPQ 的底PQ,高就是正方形的边长,由此即可求出此三角形的面积;经过的时间较多时,先规律,再根据规律解答.。

第十三届六年级希望杯决赛试题(2015年)

第十三届六年级希望杯决赛试题(2015年)

第十三届小学“希望杯”全国数学邀请赛六年级2015年3月15日 上午8:30-10:00以下每题6分,共120分。

1、计算:=++++321161814121 。

2、将99913化成小数,小数部分第2015位上的数字是 。

3、若7AB 2四位数能被13整除,则两位数AB 的最大值是 。

4、若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了 %。

5、若a <1a 20151201412013120121201111+++++<,则自然数a= 。

6、定义:符号{x}表示x 的小数部分,如:{3.14}=0.14,{0.5}=0.5。

那么,⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧5412431532015= 。

7、甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4。

已知丙制作了20件,则甲制作了 件。

8、已知9x ,15y ,14z 都是最简真分数,并且它们的乘积是61,则x+y+z= 。

9、如图1,有3只老师发现一堆花生米,商量好第二天来平分。

第二天,第一只老师最早来到,它发现花生米无法平分,就吃了一粒,余下的恰好可以分成3份,它拿了自己的一份走了。

第二只、第三只老鼠随后依次来到,遇到同样的问题,也采取了同样的方法,都是吃掉一粒后,把花生米分成3份,拿走其中的一份。

那么,这堆花生米至少有 粒。

10、如图2,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作41圆,若图中的两个阴影部分的面积相等,则此长方形的长与宽的比值是 。

11、六年级甲班的女生人数的910倍。

新年联欢会中,52的女生和31的男生参加了演出,则参加演出的人数占全班人数的 。

12、有80颗珠子。

5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完。

已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差 颗。

13、如图3,分班以B 、C 为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是 厘米。

第十三届六年级希望杯决赛试题(2015年)

第十三届六年级希望杯决赛试题(2015年)

第十三届小学“希望杯”全国数学邀请赛六年级2015年3月15日 上午8:30-10:00以下每题6分,共120分。

1、计算:=++++321161814121 。

2、将99913化成小数,小数部分第2015位上的数字是 。

3、若7AB 2四位数能被13整除,则两位数AB 的最大值是 。

4、若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了 %。

5、若a <1a 20151201412013120121201111+++++<,则自然数a= 。

6、定义:符号{x}表示x 的小数部分,如:{3.14}=0.14,{0.5}=0.5。

那么,⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧5412431532015= 。

7、甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4。

已知丙制作了20件,则甲制作了 件。

8、已知9x ,15y ,14z 都是最简真分数,并且它们的乘积是61,则x+y+z= 。

9、如图1,有3只老师发现一堆花生米,商量好第二天来平分。

第二天,第一只老师最早来到,它发现花生米无法平分,就吃了一粒,余下的恰好可以分成3份,它拿了自己的一份走了。

第二只、第三只老鼠随后依次来到,遇到同样的问题,也采取了同样的方法,都是吃掉一粒后,把花生米分成3份,拿走其中的一份。

那么,这堆花生米至少有 粒。

10、如图2,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作41圆,若图中的两个阴影部分的面积相等,则此长方形的长与宽的比值是 。

11、六年级甲班的女生人数的910倍。

新年联欢会中,52的女生和31的男生参加了演出,则参加演出的人数占全班人数的 。

12、有80颗珠子。

5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完。

已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差 颗。

13、如图3,分班以B 、C 为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是 厘米。

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、以下每题6分,共120分.1.(6分)计算:5.62×49﹣5.62×39+43.8=_________.2.(6分)规定a△b=a÷(a+b),那么,2△1.8=_________.3.(6分)若干个数的平均数是2013,增加一个数后,平均数仍为2013,则增加的这个数是_________.4.(6分)如果三位数3□2是4的倍数,那么□里能填的最小的数是_________,最大的数是_________.6.(6分)小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是_________.7.(6分)将100块糖分成5份,使每一份数量依次多2,那么最少的一份有糖_________块,最多的一份有糖_________块.8.(6分)一件商品,对原价打九折和打七折后的售价相差5.4元,那么此商品的原价是_________元.9.(6分)有26个连续的自然数,如果前13个数的和是247,那么后13个数的和是_________.10.(6分)在三位数253,257,523,527中,质数是_________.11.(6分)14个棱长为1的正方体在地面上堆成如图所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是_________.12.(6分)如图所示,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE的面积是_________平方厘米,梯形的下底BC长_________厘米.13.(6分)小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块,已知大礼盒比小礼盒少3个,则这些巧克力共有_________块.14.(6分)从甲地到乙地,小张走完全程要2小时,小李走完全程要1小时,如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李为走的路程的2倍,那么此时他们走了_________分钟.15.(6分)有16盒饼干,期中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称_________次就一定能找出这盒饼干.16.(6分)编号为1~10的10名篮球运动员轮流进行三人传球训练,第1轮由编号(1,2,3)的队员训练,然后,依次是编号(4,5,6)(7,8,9)(,10,1,2),…队员训练.当再次轮到编号(1,2,3)的队员时,将要进行的是第_________轮训练.17.(6分)将一个胶质的正方体扩大成另一个正方体,使新正方体的表面积是原正方体表面积的4倍,则新正方体的棱长是原正方体棱长的_________倍,体积是原正方体体积的_________倍.18.(6分)将55株杜鹃分成株数相同的若干份,32株月季也分成株数相同的若干份,然后将两种花逐份间隔,排成一列,并且两端都种杜鹃,如图所示,那么.每份杜鹃有_________株,每份月季有_________株.19.(6分)从1分,2分,5分硬币各有5枚的一堆硬币中取出一些,合成1角,共有不同的取法_________种.20.(6分)将1到2013中的偶数排成一列,然后按每组1,2,3,4,1,2,3,4,…个数的规律分组如下(每个括号为一组):(2)(4,6)(8,10,12),(14,16,18,20),(22),(24,26),…则最后一个括号内的各数之和是_________.二、附加题(每题10分)21.(10分)将1,2,3,4,5,6随意填入图中的小圆圈内,将相邻两数相乘,再将所得的6个乘积相加,则得到的和最小是_________.22.(10分)如图,5个等腰直角三角形叠放在一起,它们的斜边都在一条直线上,已知最小的等腰直角三角形的斜边长是4厘米,其余等腰三角形的斜边依次多4厘米,则图中阴影部分的面积_________是平方厘米.2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、以下每题6分,共120分.1.(6分)计算:5.62×49﹣5.62×39+43.8=100.2.(6分)规定a△b=a÷(a+b),那么,2△1.8=.2△+1.8故答案为:3.(6分)若干个数的平均数是2013,增加一个数后,平均数仍为2013,则增加的这个数是2013.4.(6分)如果三位数3□2是4的倍数,那么□里能填的最小的数是1,最大的数是9.6.(6分)小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是20.7.(6分)将100块糖分成5份,使每一份数量依次多2,那么最少的一份有糖16块,最多的一份有糖24块.8.(6分)一件商品,对原价打九折和打七折后的售价相差5.4元,那么此商品的原价是27元.9.(6分)有26个连续的自然数,如果前13个数的和是247,那么后13个数的和是416.10.(6分)在三位数253,257,523,527中,质数是523、257.11.(6分)14个棱长为1的正方体在地面上堆成如图所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是42.12.(6分)如图所示,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE的面积是56平方厘米,梯形的下底BC长32厘米.13.(6分)小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块,已知大礼盒比小礼盒少3个,则这些巧克力共有70块.14.(6分)从甲地到乙地,小张走完全程要2小时,小李走完全程要1小时,如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李为走的路程的2倍,那么此时他们走了24分钟.、,以小张未走的路程恰好是小李为走的路程的=15.(6分)有16盒饼干,期中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称3次就一定能找出这盒饼干.16.(6分)编号为1~10的10名篮球运动员轮流进行三人传球训练,第1轮由编号(1,2,3)的队员训练,然后,依次是编号(4,5,6)(7,8,9)(,10,1,2),…队员训练.当再次轮到编号(1,2,3)的队员时,将要进行的是第11轮训练.17.(6分)将一个胶质的正方体扩大成另一个正方体,使新正方体的表面积是原正方体表面积的4倍,则新正方体的棱长是原正方体棱长的2倍,体积是原正方体体积的8倍.18.(6分)将55株杜鹃分成株数相同的若干份,32株月季也分成株数相同的若干份,然后将两种花逐份间隔,排成一列,并且两端都种杜鹃,如图所示,那么.每份杜鹃有11株,每份月季有8株.19.(6分)从1分,2分,5分硬币各有5枚的一堆硬币中取出一些,合成1角,共有不同的取法7种.20.(6分)将1到2013中的偶数排成一列,然后按每组1,2,3,4,1,2,3,4,…个数的规律分组如下(每个括号为一组):(2)(4,6)(8,10,12),(14,16,18,20),(22),(24,26),…则最后一个括号内的各数之和是6030.二、附加题(每题10分)21.(10分)将1,2,3,4,5,6随意填入图中的小圆圈内,将相邻两数相乘,再将所得的6个乘积相加,则得到的和最小是58.22.(10分)如图,5个等腰直角三角形叠放在一起,它们的斜边都在一条直线上,已知最小的等腰直角三角形的斜边长是4厘米,其余等腰三角形的斜边依次多4厘米,则图中阴影部分的面积60是平方厘米.。

2015年第十三届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、填空题:1.(3分)计算:2468×629÷(1234×37)=.2.(3分)有一个除法算式,被除数和除数的和是136,商是7,则除数是.3.(3分)定义:a⊕b=a+b+ab,则(2⊕3)⊕4的值为.4.(3分)买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔支.5.(3分)王雷是国庆节那天出生的,若他年龄的3倍减去8刚好是他出生那月的总天数,则王雷今年岁.6.(3分)数一数,图中共有个三角形.7.(3分)某班30人参加跳绳比赛,开始时有4人迟到没有参加比赛,这时平均成绩为20个,后来这4位同学赶到了比赛场地,分别跳了26,27,28,29个.这时全班同学的平均成绩是个.8.(3分)明明临摹一本字帖练习毛笔字,临摹第一遍时,他每天写25个字,临摹第二遍时,他每天多写3个字,结果刚好比第一遍少用了3天,则这本字帖共有字.9.(3分)如图有16个1×1的小正方形组成,图中△ABC的面积是.10.(3分)乌龟和兔子在全长为1000米的赛道上比赛,兔子的速度是乌龟速度的15倍.但兔子在比赛的过程中休息了一会儿,醒来时发现乌龟刚好到达终点,而此时兔子还差100米才到终点.则兔子休息期间乌龟爬行了米.11.(3分)任意一个一位奇数与任意一个一位偶数相乘,不同的乘积有个.12.(3分)一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是平方厘米.13.(3分)爷爷,爸爸,小明的年龄分别是60岁,35岁,11岁,则再过年爷爷的年龄等于小明和爸爸年龄的和.14.(3分)一个长方形的长和宽都增加3厘米后,面积增加了90平方厘米,则原长方形的周长是厘米.15.(3分)甲筐和乙筐内原来分别放有54个和63个鸡蛋,若要使甲筐内的鸡蛋个数变为乙筐内的鸡蛋个数的两倍,那么应从乙筐内取出个鸡蛋放入甲筐.16.(3分)王蕾和姐姐从家步行去体育馆打羽毛球,已知姐姐每分钟比王蕾多走20米,25分钟后姐姐到体育馆,这时姐姐发现没有带球拍,于是立即按原路返回取球拍,在离体育馆300米的地方遇到了王蕾,则王蕾家到体育馆的路程是米.17.(3分)如图,用小正方形摆成下列图形,按摆放规律,第25个图形需要小正方形个.18.(3分)若abc+cba=1069,则这样的abc有个.19.(3分)某地希望杯组委会给参加希望杯考试的考生安排考场,若每个考场安排30名考生,则会有一个考场有26名考生;若每个考场安排26个考生,则会有一个考场有20名考生,并且要比前一种方案多用9个考场,则该地区参加考试的考生有个.20.(3分)如图有3个边长是6的正方形组成,则图中阴影部分的面积是.2015年第十三届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、填空题:1.(3分)计算:2468×629÷(1234×37)=34.【分析】根据除法的性质进行简便计算.【解答】解:2468×629÷(1234×37)=2468×629÷1234÷37=2468÷1234×(629÷37)=2×17=34故答案为:34.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.(3分)有一个除法算式,被除数和除数的和是136,商是7,则除数是17.【分析】方法一:被除数和除数的和是136,商是7,说明被除数是除数的7倍,被除数与除数的和就是除数的(7+1)倍,用136除以(7+1)即可求出除数,由此求解;方法二:根据被除数=商×除数,设除数是x,则被除数就是7x,再根据“被除数与除数的和是136”,列出方程并解方程即可.【解答】解:方法一:136÷(7+1)=136÷8=17答:除数是17.方法二:设除数是x,被除数是7x,由题意得:7x+x=1368x=136x=17答:除数是17.故答案为:17.【点评】解决本题可以看成和倍问题进行求解:两数和÷倍数和=1倍的数;也可以设出未知数,根据被除数、除数和商三者之间的关系找出等量关系列出方程求解.3.(3分)定义:a⊕b=a+b+ab,则(2⊕3)⊕4的值为59.【分析】根据题意得出a⊕b等于a加上b再加上a与b的积,由此利用此方法计算(2⊕3)⊕4的值,据此解答.【解答】解:(2⊕3)⊕4=(2+3+2×3)⊕4=11⊕4=11+4+11×4=59故答案为:59.【点评】先理解新运算的计算方法,然后按照先算小括号再算括号外的顺序带入数据计算即可.4.(3分)买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔8支.【分析】1元7角=1.7角,求用15元钱最多可以买这样的水彩笔多少支,就是求15里面有几个1.7,用除法解答即可.【解答】解:1元7角=1.7角15÷1.7≈8(支)答:用15元钱最多可以买这样的水彩笔8支.故答案为:8.【点评】本题考查了有余数除法应用题,要注意得数用“去尾法”求值.5.(3分)王雷是国庆节那天出生的,若他年龄的3倍减去8刚好是他出生那月的总天数,则王雷今年13岁.【分析】因为国庆节在10月,10月有31天,所以根据“他年龄的3倍减去8刚好是他出生那月的总天数,”知道王雷的年龄的3倍再减去8等于31,由此先求出王雷年龄的3倍,再求出王雷的年龄.【解答】解:(31+8)÷3=39÷3=13(岁);答:王雷今年13岁.故答案为:13.【点评】解答此题的关键是知道10月有31天,再根据“王雷的年龄的3倍再减去8等于31”这个数量关系解决问题.6.(3分)数一数,图中共有24个三角形.【分析】不在同一直线上三点可以确定一个三角形,据此即可求解.【解答】解:(5+1+1+1+1)+(4+2+2+1)+3+2+1=9+9+3+2+1=24(个)答:图中共有24个三角形.故答案为:24.【点评】本题主要考查了三角形的认识,按正确的顺序计算三角形的个数是解决本题的关键.7.(3分)某班30人参加跳绳比赛,开始时有4人迟到没有参加比赛,这时平均成绩为20个,后来这4位同学赶到了比赛场地,分别跳了26,27,28,29个.这时全班同学的平均成绩是21个.【分析】根据30人参加跳绳比赛,开始时有4人迟到没有参加比赛,这时平均成绩为20个,先算出30﹣4=26人的成绩,(30﹣4)×20=520,然后再加上26、27、28、29,再除以30即可解答.【解答】解:(30﹣4)×20=520(个)520+26+27+28+29=630(个)630÷30=21(个)答:这时全班同学的平均成绩是21个.故答案为:21.【点评】本题考查了平均数的含义以及应用.8.(3分)明明临摹一本字帖练习毛笔字,临摹第一遍时,他每天写25个字,临摹第二遍时,他每天多写3个字,结果刚好比第一遍少用了3天,则这本字帖共有700字.【分析】设临摹第一遍时,用了x天,则临摹第二遍时用了x﹣3天,根据等量关系:临摹第一遍的时间×每天写25个字=临摹第二遍的时间×第二遍时每天写的字,列方程解答即可得临摹第一遍时天数,再求这本字帖共有多少页即可.【解答】解:设临摹第一遍时,用了x天,25x=(25+3)×(x﹣3)25x=28x﹣843x=84x=28,28×25=700(字)答:这本字帖共有700字.故答案为:700.【点评】本题考查了列方程解应用题,关键是根据等量关系:临摹第一遍的时间×每天写25个字=临摹第二遍的时间×第二遍时每天写的字,列方程.9.(3分)如图有16个1×1的小正方形组成,图中△ABC的面积是7.【分析】正方形减去边上三个直角三角形的面积即可求解;正方形的边长4,左上角三角形的底是4,高是2;右下角三角形的底是1,高是4;左下角三角形的底是3,高是2,把这些数据代入正方形和三角形的面积公式求解即可.【解答】解:4×4﹣4×2÷2﹣4×1÷2﹣3×2÷2=16﹣4﹣2﹣3=7答:图中△ABC的面积是7.故答案为:7.【点评】此题解答的关键在于把要求三角形的面积转化成正方形的面积与另外三个三角形的面积差,再分别根据它们的面积公式求解.10.(3分)乌龟和兔子在全长为1000米的赛道上比赛,兔子的速度是乌龟速度的15倍.但兔子在比赛的过程中休息了一会儿,醒来时发现乌龟刚好到达终点,而此时兔子还差100米才到终点.则兔子休息期间乌龟爬行了940米.【分析】根据题意,兔子一共跑了1000﹣100=900(米),因为兔子的速度是乌龟的15倍,所以在兔子跑的同时乌龟跑了900÷15=60(米),而实际乌龟跑了1000米,所以它在兔子睡着的时候乌龟跑了1000﹣60=940(米),解决问题.【解答】解:1000﹣(1000﹣100)÷15=1000﹣900÷15=1000﹣60=940(米);答:兔子休息期间乌龟爬行了940米.故答案为:940.【点评】此题的解答思路:先求出兔子一共跑的路程,再根据兔子速度是乌龟的5倍,求出在兔子跑的同时乌龟跑的路程,进而解决问题.11.(3分)任意一个一位奇数与任意一个一位偶数相乘,不同的乘积有19个.【分析】因为0是最小的偶数,5个奇数(1,3,5,7,9)乘4个偶数(2、4、6、8)一共是4×5=20个数,去掉得数是18和得数是6的两个相同的,还有18个,再加上0,就是19个,据此解答.【解答】解:5个奇数(1,3,5,7,9)乘偶数(2、4、6、8)一共是5×4=20个得数,去掉3×6=2×9,2×3=1×6两个相同的,还有18个,再加上0,就是19个;答:不同的乘积有19个;故答案为:19.【点评】关键是别忘记把相同的乘积给减去,注意0是偶数.12.(3分)一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是384平方厘米.【分析】放入一张长为32厘米宽为28厘米的相片,则被照片覆盖的部分的面积是这张相片的面积,分别求出相框和相片的面积,然后用相框的面积减去相片的面积即可.【解答】解:40×32﹣32×28=32×(40﹣28)=32×12=384(平方厘米)答:相框中没有被照片覆盖的部分的面积是384平方厘米.故答案为:384.【点评】此题考查了长方形面积公式的灵活运用.13.(3分)爷爷,爸爸,小明的年龄分别是60岁,35岁,11岁,则再过14年爷爷的年龄等于小明和爸爸年龄的和.【分析】设经过x年后爷爷的年龄等于小明和爸爸年龄的和,那么经过x年后,爷爷,爸爸,小明的年龄分别是:60+x,35+x,11+x,根据“爷爷的年龄等于小明和爸爸年龄的和”列出方程解答即可【解答】解:设经过x年后爷爷的年龄等于小明和爸爸年龄的和,由题意得:35+x+11+x=60+x2x+46=60+xx=14,答:经过14年后爷爷的年龄等于小明和爸爸年龄的和.故答案为:14.【点评】本题等量关系明显,用方程较易解决.14.(3分)一个长方形的长和宽都增加3厘米后,面积增加了90平方厘米,则原长方形的周长是54厘米.【分析】根据题意,长和宽分别增加了3厘米,这个长方形的面积就增加了90平方米(如下图):增加的面积包括2部分,下面的长方形,面积是3(3+a),右上角的小长方形,面积是3b,它们的和是3(3+a)+3b等于90,求出a+b的和,再用(a+b)×2计算即可.【解答】解:设长方形原来的长是a厘米,宽是b厘米,现在的长是a+3厘米,宽是b+3厘米,图下图:3(3+a)+3b=909+3a+3b=90a+b=2727×2=54(平方厘米)答:原长方形的周长是54厘米.【点评】此题主要考查长方形周长的计算,关键是求出原来长方形的长与宽的和,再根据长方形的公式解答.15.(3分)甲筐和乙筐内原来分别放有54个和63个鸡蛋,若要使甲筐内的鸡蛋个数变为乙筐内的鸡蛋个数的两倍,那么应从乙筐内取出24个鸡蛋放入甲筐.【分析】甲筐和乙筐内原来分别放有54个和63个鸡蛋,总共有54+63=117个鸡蛋;若要使甲筐内的鸡蛋个数变为乙筐内的鸡蛋个数的两倍,这两筐的鸡蛋总数不变,还是117个,根据和倍公式求出这时乙筐的鸡蛋个数,即117÷(2+1)=39个,那么乙筐比原来少的就是放入甲筐的个数,即63﹣39=24个.【解答】解:54+63=117(个)117÷(2+1)=117÷3=39(个);63﹣39=24(个).答:应从乙筐内取出24个鸡蛋放入甲筐.故答案为:24.【点评】本题关键是两筐鸡蛋总个数不变,根据倍数关系,由和倍公式求出后来乙筐鸡蛋的个数,然后再进一步解答.16.(3分)王蕾和姐姐从家步行去体育馆打羽毛球,已知姐姐每分钟比王蕾多走20米,25分钟后姐姐到体育馆,这时姐姐发现没有带球拍,于是立即按原路返回取球拍,在离体育馆300米的地方遇到了王蕾,则王蕾家到体育馆的路程是1500米.【分析】在离图书馆300米处相遇时,王蕾和姐姐的路程差为300×2=600米,由于姐姐每分钟比王蕾多走20米,因此两人相遇时经历的时间是=30分钟,然后可得姐姐走300米的时间,进而可得姐姐的速度,从而可求得王蕾家到图书馆的路程.【解答】解:在离图书馆300米处相遇时,王蕾和姐姐的路程差为300×2=600(米),两人相遇时经历的时间==30(分钟),姐姐返回走的300米花费的时间=30﹣25=5(分钟),姐姐的速度==60(米/分钟),王雷家到图书馆的路程=60×25=1500(米)答:王蕾家到体育馆的路程是1500米.故答案为:1500.【点评】本题考查了相遇问题,关键在于能根据相遇时两人的路程差求出相遇时经历的时间.17.(3分)如图,用小正方形摆成下列图形,按摆放规律,第25个图形需要小正方形625个.【分析】观察得知:第一个图有1个正方形形组成,即12个;第二个图有1+3=4个正方形形组成,即22个;第三个图有1+3+5=9个正方形形组成,即32个;第四个图有1+3+5+7=16个正方形形组成,即42个;…以此类推:第n个图有1+3+5+7+…+.2n﹣1=n2个正方形形组成.据此解答即可.【解答】解:由分析可得:第25个图形需要小正方形:1+3+5+7+…+49=252=625(个)答:第25个图形需要小正方形625个.故答案为:625.【点评】解答本题的关键是:正确找出第几个图与所含正方形形个数的关系,进而得出它们之间的关系.18.(3分)若abc+cba=1069,则这样的abc有8个.【分析】解:(1)abc+cba=100a+10b+c+100c+10b+a=101a+101c+20b=101×(a+c)+20b=1069;(2)根据101×(a+c)+20b=1069的个位数字9可知:a+c 的个位一定是9;又因为a、c最大值均不超过9,因此a+c=9,可得b一定是8;(3)分析a+c=9有多少种情况:因为a、c 都出现在第一位上,因此均不可能为0.然后推出当a=1、2、3、4、5、6、7、8 时c的值,解决问题.【解答】解:(1)由abc+cba=1069,可得abc+cba=100a+10b+c+100c+10b+a=101a+101c+20b=101×(a+c)+20b=1069;(2)因为101×(a+c)+20b=1069的个位数字9,a+c 的个位一定是9;又因为a、c最大值均不超过9,因此a+c=9,可得b一定是8;(3)因为a+c=9,因为a、c 都出现在第一位上,因此均不可能为0.当a=1 时,c=8;当a=2 时,c=7;当a=3时,c=6;当a=4时,c=5;当a=5时,c=4;当a=6时,c=3;当a=7时,c=2;当a=8时,c=9;因此每种组合对应着一种情况,故abc存在8个不同的数.综上,这样的abc有8个.故答案为:8.【点评】此题由关系式入手,101×(a+c)+20b=1069的个位数字9,从而得出a+c 的个位一定是9,这是解题的关键.19.(3分)某地希望杯组委会给参加希望杯考试的考生安排考场,若每个考场安排30名考生,则会有一个考场有26名考生;若每个考场安排26个考生,则会有一个考场有20名考生,并且要比前一种方案多用9个考场,则该地区参加考试的考生有1736个.【分析】首先分析把题意转换为标准的盈亏问题,转换为30人的考场则少4人,26人的考场则多26×8+20=228人即可求解.【解答】解:依题意可知:题意转换为30人的考场则少4人,26人的考场则多26×8+20=228人.考场个数为(228+4)÷(30﹣26)=58(场).学生共58×30﹣4=1736(人)故答案为:1736【点评】本题考查对盈亏问题的理解和运用,关键问题是分析出两次的盈亏数字,问题解决.20.(3分)如图有3个边长是6的正方形组成,则图中阴影部分的面积是36.【分析】如图,灰色小长方形加上灰色直角三角形加上阴影部分正好是一个梯形.梯形的上底等于小正方形边长的,下底和高都等于正方形边长的2倍,由此可求出梯形的面积;灰色长方形的长等于小正方形的边长,宽等于长的一半,由此可求出小长方形的面积;灰色直角三角形的面积两直角边分别是小正方形边长的2倍、小正方形边长,由此可求出这个直角三角形的面积;梯形面积﹣灰色长方形面积﹣灰色三角形面积=阴影部分面积.【解答】解:如图,(6×+6×2)×(6×2)÷2﹣6××6﹣6×2×6÷2=(3+12)×12÷2﹣6××6﹣6×2×6÷2=15×12÷2﹣6××6﹣6×2×6÷2=90﹣18﹣36=36,故答案为:36.【点评】此题是考查组成图形的面积,通过辅助部分组成一直角梯形,面积可求,两辅助部分面积也可求,梯形面积减去两辅助部分面积就是阴影部分面积.。

五年级“希望杯”全国数学邀请赛参考答案及评分标准

第十二届小学 希望杯 全国数学邀请赛参考答案及评分标准五年级㊀㊀第2试一㊁填空题(每小题5分㊂其中第4题,每空2.5分㊂)题号123456789101112答案12619102014;40266808.251569.7517284813㊀㊀二㊁解答题13.(1)最初,圆周上有3个数㊂第1次操作后,圆周上有3+3=6(个)数;第2次操作后,圆周上有6+6=12(个)数;第3次操作后,圆周上有12+12=24(个)数㊂(8分)(2)每次操作,新增的数是原来相邻的两个数的和,而原来的数各被加了2次,则新增的数的和是原来的数的和的2倍,即操作后圆周上的数的和是原来的3倍㊂最初,圆周上的3个数的和是1ˑ3=3㊂第1次操作后,圆周上的数的和是3ˑ3=9;第2次操作后,圆周上的数的和是3ˑ9=27;第3次操作后,圆周上的数的和是3ˑ27=81㊂(15分)14.(1)甲走一圈用360ː30=12(分),丙走一圈用㊀360ː90=4(分)㊂12和4的最小公倍数是12,所以,12分钟后,甲㊁丙第一次同时回到出发点㊂(5分)(2)丙走一圈用360ː50=7.2(分)㊂被12,7.2,4除,商都是大于零的整数,满足此条件的被除数最小是36㊂所以,36分钟后,三人第一次同时回到出发点㊂(10分)(3)当三人第一次同时到达同一地点时,他们各自走过的路程除以360所得的余数相同㊂设三人走了x 分钟,根据同余性质,有360∣(50x -30x ),18∣x ;360∣(90x -50x ),9∣x ;360∣(90x -30x ),6∣x ㊂18,9,6的最小公倍数是18㊂所以,18分钟后三人第一次同时到达同一地点㊂(15分)15.解法1㊀因为胜者加分,负者减同样的分,所以两队积分的和不变㊂(5分)若甲队胜,则甲队的积分是乙队的3倍,可知两队的积分和是4的倍数;若乙队胜,则甲队的积分是乙队的2倍,可知两队的积分和也是3的倍数㊂所以,两队的积分和是3ˑ4=12的倍数,即可能是12,24,36,48分㊂讨论如下:(10分)(1)两队的积分和是12分在甲队胜的情况下,甲队的积分是12ː4ˑ3=9(分);在乙队胜的情况下,甲队的积分是12ː3ˑ2=8(分),那么,本场比赛加分或减分的分值是(9-8)ː2=0.5(分),不符合题意㊂(2)两队的积分和是24分在甲队胜的情况下,甲队的积分是24ː4ˑ3=18(分);在乙队胜的情况下,甲队的积分是24ː3ˑ2=16(分),那么,本场比赛加分或减分的分值是(18-16)ː2=1(分),赛前甲队的积分是18-1=17(分),乙队的积分是24-17=7(分)㊂(3)两队的积分和是36分在甲队胜的情况下,甲队的积分是36ː4ˑ3=27(分),在乙队胜的情况下,甲队的积分是36ː3ˑ2=24(分),那么,本场比赛加分或减分的分值是(27-24)ː2=1.5(分),不符合题意㊂(4)两队的积分和是48分在乙队胜的情况下,甲队的积分是48ː3ˑ2=32(分),甲队赛前积分大于32分,不符合题意㊂综上可知,赛前甲队㊁乙队的积分分别是17分和7分㊂(15分)解法2㊀设甲队赛前积分为x分,乙队赛前积分为y分,本场比赛加分或减分的分值为n分(x,y,n都是整数)㊂根据题设条件,得x+n=3(y-n),①x-n=2(y+n),②(8分)①-②,得2n=3y-3n-2y-2n,解得y=7n,x=17n㊂(10分)因为赛前两队的积分都少于25分,所以n 只能取1㊂即赛前甲队积分为17分,乙队积分为7分㊂(15分)16.甲每秒游100ː200=0.5(米),乙每秒游100ː160=0.625(米),乙每秒比甲多游0.625-0.5=0.125(米),乙第1次追上甲,用40ː0.125=320(秒),(5分)在这个时间内,甲游了320ˑ0.5=160(米),还剩1000-160-40=800(米);乙第2次追上甲(距离差是100米),用100ː0.125=800(秒),(10分)在这个时间内,甲游了800ˑ0.5=400(米),此时,甲还剩800-400=400(米),到此,可知乙还可再追上甲1次㊂综上可知,甲被乙追上3次㊂(15分)。

2015年第十三届小学“希望杯”全国数学邀请赛试卷(四年级第2试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷
(四年级第2试)
一、填空题(共12小题,每小题5分,满分60分)
1.(5分)计算:[(55×45﹣37×43)﹣(3×221+1)]÷22=.2.(5分)五个数中最大的是59,最小的是7,其余3个是连续的自然数,若这五个数的平均数是27,则连续的那三个数分别是、、.3.(5分)小明有100元钱,买了3支相同的钢笔后还剩61元,则他最多还可以买支相同的钢笔.
4.(5分)如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.
5.(5分)如图,∠1=∠2=∠3=∠4=∠5=∠6=30°,则图中所有锐角度数的和是.
6.(5分)商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.7.(5分)围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.
8.(5分)一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?
9.(5分)若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.
10.(5分)3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年第13届“希望杯”全国数学邀请赛试卷(五年级第1试)一、以下每题6分,共120分1.(6分)计算:=.2.(6分)9个13相乘,积的个位数字是.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有个.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是厘米.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有个.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是平方米.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是.(π取3.14)9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要个小正方体.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有个.13.(6分)两位数和都是质数,则有个.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e=.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体个.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是个.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是分.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有盏.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在岁.2015年第13届“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)计算:=890.【解答】解:=﹣﹣=1000﹣100﹣10=890.故答案为:890.2.(6分)9个13相乘,积的个位数字是3.【解答】解:因为1个3是3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,…,即个位数依次为3、9、7、1、3、…,即每4个为一周期,9÷4=2…1,所以9个13相乘的积与1个13相乘积的个位数相同,是3;故答案为:3.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是1.【解答】解:设a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15[14(x+y+z)+15]÷14=x+y+z+1…1,故答案为:1.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有25个.【解答】解:根据题意分析可知:为了让得到的偶数最多,则按照一奇一偶的排列,如,3、4、5…25、2、1,然后依次和1,2,3,…,25相减,则是:奇数﹣奇数=偶数,偶数﹣偶数=偶数所以最多25个偶数.故答案为:25.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是60厘米.【解答】解:[16+(8+8÷2+8÷2÷2)]×2=(16+14)×2=60(厘米)答:这个图形的周长是60厘米.故答案为:60.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有3个.【解答】解:a+b+c=c+d+e=c+f+g,即为a+b=d+e=f+g,只能出现3种情况:①1+7=2+6=3+5,此时c=4;②2+7=3+6=4+5,此时c=1;③1+6=2+5=3+4,此时c=7;所以c的可能取值有1、4、7,共3个.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是96平方米.【解答】解:因为拿走一个小正方体,就等于减少了三个面,同时又增加了三个面,则拿走8个顶点上的小正方体,就减少了24个面,同时又增加了24个面,所以说表面积相比没有变,64=4×4×4,表面积是4×4×6=96(平方米).故此时的几何体的表面积是96平方米.故答案为:96.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是212.(π取3.14)【解答】解:最小的质数2,那么百位数字是2,0.3+π×13=41.12,那么十位上是1,三位数中能被17整除的最小数是102,那么个位上是2,这个三位数是212.故答案为:212.9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是9060.【解答】解:循环小数0.04285每6位数一个循环,小数部分第一位是0,后面小数部分的2014位数字共有2014÷6=335(个)…4,余数是4,所以在第336个周期的第4个数是8,即小数部分前2015位数字和是:(1+4+2+8+5+7)×335+1+4+2+8=27×335+15=9045+15=9060;答:和是9060.故答案为:9060.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要10个小正方体.【解答】解:由题意可知正方体的个数:8+2=10(个)答:一共有10个小正方体组成的.故答案为:10.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?【解答】解:根据题意可得,a、b中有一个为4,另一个为4、20或100,故有3种可能:①a=4,b=4,②a=4,b=20;③a=4,b=100;对于a、b的这3组取值,c可取25,50,100;因此,满足以上条件的自然数a、b、c有:3×3=9(组).答:满足条件的自然数a、b、c共有9组.12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有36个.【解答】解:1+2+3=6,1+2+4=7,1+2+5=8,1+3+4=8,1+3+5=9,1+4+5=10,2+3+4=9,2+3+5=10,2+4+5=11,3+4+5=12,其中不能被3整除的数有7、8、10,11,那么由数字1、2、4,1、2、5,2、3、5组成的三位数不是3的倍数,即不能被3整除的数有:124、142、214、241、412、421;125、152、215、251、512、521;134,143,314,341,413,431;145,154,415,451,514,541;235、253、325、352、523、532;245,254,425,452,524,542;共36个.故答案为:36.13.(6分)两位数和都是质数,则有9个.【解答】解:两位数的质数有:11,13,31,17,71,37,73,79,97,共9个.答:有9个.故答案为:9.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e= 35.【解答】解:由题意知,一个两位数与一个三位数的和等于1079∴c=9,a+d=17,b+e=9,∴a+b+c+d+e=35.故答案为:35.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是347.【解答】解:a×(b+c)=33=3×11,只有一种可能,a=3;b(a+c)﹣a(b+c)=40﹣33=7,即c×(b﹣a)=7,又7=1×7,所以c×(b﹣a)=1×7,只有一种可能,c=7;所以3×(b+7)=33b+7=11b=4所以这个三位数是347.故答案为:347.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体24个.【解答】解:﹙长×宽+长×高+宽×高﹚=52÷2﹙长×宽+长×高+宽×高﹚=264×3+4×2+3×2=26(4×3×2)÷(1×1×1)=24个需要24棱长1的小正方体;故答案为:24.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是215个.【解答】解:设原计划的工作量是每天生产x个零件,由题意得:(x﹣3)×31+60=(x+3)×25﹣6031x﹣93+60=25x+75﹣606x=48x=8(8﹣3)×31+60=5×31+60=215(个)答:原计划的零件生产定额是215个.故答案为:215.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是938分.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到85.3的数值范围是:(大于等于85.25和小于85.35之间)所以这11名同学的总分大于或等于85.25×11=937.75分和小于85.35×11=938.85之间,∵每个学生的分数都是整数,∴得分总和也是整数,在937.75和838.85之间只有938是整数,∴这11名同学的总得分是938分.故答案为:938.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有1006盏.【解答】解:在1到2015这2015个数中,2的倍数有:2015÷2≈1007(个)3的倍数有:2015÷3≈671(个)5的倍数有:2015÷5=403(个)2和3的倍数有:2015÷(2×3)≈335(个)2和5的倍数有:2015÷(2×5)≈201(个)3和5的倍数有:2015÷(3×5)=≈134(个)2、3、5的倍数有:2015÷(2×3×5)≈67(个)可知,拉过三次的有:67盏,拉过二次的有:(335﹣67)+(201﹣67)+(134﹣67)=268+134+67=469(盏)拉过一次的有:(1007﹣268﹣134﹣67)+(671﹣268﹣67﹣67)+(403﹣134﹣67﹣67)=538+269+135=942(盏)被拉灭的灯有:942+67=1009(盏)所以,亮着的灯为:2015﹣1009=1006(盏).答:这时,亮着的灯有1006盏.故答案为:1006.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在22或4岁.【解答】解:假设小明是2000年前出生的,设出生日期为19xy,根据题意可得:2015﹣(1900+10x+y)=1+9+x+y115﹣10x﹣y=10+x+y11x+2y=105因为x与y是个位数,解得:x=9,y=3也就是小明是1993年出生的,今年是:1+9+9+3=22(岁)假设小明是2000年后出生的,设出生日期为20xy,x要小于2根据题意可得:2015﹣(2000+10x+y)=2+0+x+y15﹣10x﹣y=2+x+y11x+2y=13因为x与y是个位数,解得:x=1,y=1也就是小明是2011年出生的,今年是:2+0+1+1=4(岁)答:小明今年22岁或4岁.故答案为:22或4.参与本试卷答题和审题的老师有:晶优;TGT;wdzyzlhx;liufh;WX321;齐敬孝;春暖花开;忘忧草;ZGR;zhuyum;姜运堂;lqt(排名不分先后)菁优网2017年2月23日第11页(共11页)。

相关文档
最新文档