(浙江版)2019年高考数学一轮复习 专题10.6 二项分布及其应用(练)

合集下载

2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 第3讲 二项式定理

2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 第3讲  二项式定理

第3讲二项式定理板块一知识梳理·自主学习[必备知识]考点1二项式定理的内容1.(a+b)n=C0n a n+C1n a n-1b1+…+C r n a n-r b r+…+C n n b n(n∈N*).2.第r+1项,T r+1=C r n a n-r b r.3.第r+1项的二项式系数为C r n(r=0,1,…,n).考点2二项式系数的性质的关系是相等.1.0≤k≤n时,C k n与C n-kn3.各二项式系数和:C0n+C1n+C2n+…+C n n=2n,C0n+C2n+C4n+…=2n-1,C1n+C3n+C5n+…=2n-1.[必会结论]1.二项展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由0逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,…一直到C n -1n ,C nn .2.二项式系数与项的系数二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C nn ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k .当然,在某些二项展开式中,各项的系数与二项式系数是相等的.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k na n -kb k是二项展开式的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( ) (5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )答案 (1)× (2)× (3)√ (4)× (5)×2.[课本改编]若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.3.[课本改编]二项式⎝ ⎛⎭⎪⎫x -1x 6的展开式中常数项为( )A .-15B .15C .-20D .20答案 B解析 依题意,二项展开式的通项公式T r +1=C r 6x6-r·(-x -12 )r =(-1)r C r6x 6-r -r 2 ,令6-r -r 2=0,得r =4,所以常数项为(-1)4C 46=15.4.[2018·抚州模拟]若⎝ ⎛⎭⎪⎫x 2-1x n展开式的二项式系数之和为128,则展开式中x 2的系数为( )A .-21B .-35C .35D .21答案 C解析 由已知得2n=128,n =7,所以T r +1=C r 7x 2(7-r )·⎝⎛⎭⎪⎫-1xr =C r 7(-1)r x 14-3r ,令14-3r =2,得r =4,所以展开式中x 2的系数为C 47(-1)4=35.故选C.5.[2017·山东高考]已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________.答案 4解析 (1+3x )n 的展开式的通项为T r +1=C r n (3x )r.令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4.6.[2018·吉林模拟](x +2)10(x 2-1)的展开式中x 10的系数为________.答案 179解析 (x +2)10(x 2-1)=x 2(x +2)10-(x +2)10,本题求x 10的系数,只要求(x +2)10展开式中x 8及x 10的系数T r +1=C r 10x 10-r ·2r 取r =2,r =0得x 8的系数为C 210×22=180,x 10的系数为C 010=1, ∴所求系数为180-1=179.板块二 典例探究·考向突破考向二项展开式中特定项或系数问题例 1 (1)(x y -y x )4的展开式中,x 3y 3项的系数为________.答案 6解析 由二项展开式的通项可得T r +1=C r 4(x ·y )4-r ·(-y x )r =(-1)r C r4x4-r 2 ·y2+r2.令⎩⎪⎨⎪⎧4-r 2=32+r 2=3解得r =2,所以展开式中x 3y 3的系数为(-1)2C 24=6.(2)[2016·山东高考]若⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.答案 -2 解析 T r +1=a5-r C r5x10-52r,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.触类旁通求二项展开式中的项或项的系数的方法(1)展开式中常数项、有理项的特征是通项式中未知数的指数分别为零和整数.解决这类问题时,先要合并通项式中同一字母的指数,再根据上述特征进行分析.(2)有关求二项展开式中的项、系数、参数值或取值范围等,一般要利用通项公式,运用方程思想进行求值,通过解不等式(组)求取值范围.【变式训练1】 (1)[2018·广东测试]⎝ ⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( )A .-54B.54C .-1516 D.1516答案 D解析 T r +1=C r 6(x 2)6-r ⎝⎛⎭⎪⎫-12x r =⎝⎛⎭⎪⎫-12r C r 6x12-3r ,令12-3r =0,解得r =4.∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D.(2)⎝ ⎛⎭⎪⎪⎫x -124x 8的展开式中的有理项共有________项.答案 3解析 ∵T r +1=C r8(x )8-r ⎝ ⎛⎭⎪⎪⎫-124x r =⎝⎛⎭⎪⎫-12r C r 8x 16-3r4 ,∴r 为4的倍数,故r =0,4,8共3项.考向二项式系数的和或各项系数的和例 2 二项式(2x -3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)各项系数绝对值之和.解 设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9.(1)二项式系数之和为C 09+C 19+C 29+…+C 99=29.(2)各项系数之和为a 0+a 1+a 2+…+a 9,令x =1,y =1,得a 0+a 1+a 2+…+a 9=(2-3)9=-1. (3)由(2)知a 0+a 1+a 2+…+a 9=-1,①令x =1,y =-1,得a 0-a 1+a 2-…-a 9=59,②①+②得a 0+a 2+a 4+a 6+a 8=59-12,此即为所有奇数项系数之和.(4)|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-…-a 9,令x =1,y =-1,得|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-…-a 9=59,此即为各项系数绝对值之和.触类旁通二项式定理中赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. 【变式训练2】 (1)[2018·温州调研]已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20答案 D解析 令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.(2)在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为________.答案 9解析 令x =1,得各项系数的和为4n ,而各项的二项式系数的和等于2n ,根据已知,得方程4n +2n =72,解得n =3.所以二项展开式的通项T r +1=C r 3(x )3-r ⎝ ⎛⎭⎪⎫3xr=3r C r 3x 32-32r ,显然当r =1时,T r +1是常数项,值为3C 13=9.考向项的系数的最值问题例 3 [2018·宜昌高三测试]已知(x23 +3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.解 令x =1,则展开式中各项系数和为(1+3)n =22n . 又展开式中二项式系数和为2n.∴22n 2n =2n=32,n =5.(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项,∴T 3=C 25(x23 )3(3x 2)2=90x 6,T 4=C 35(x23 )2(3x 2)3=270x 223.(2)设展开式中第k +1项的系数最大,则由T k +1=C k5(x23 )5-k (3x 2)k =3k C k 5x 10+4k 3 ,得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,∴72≤k ≤92,∴k =4, 即展开式中系数最大的项为T 5=C 45(x23 )(3x 2)4=405x263 .触类旁通1.求二项式系数最大项(1)如果n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n 2+1项)的二项式系数最大; (2)如果n 是奇数,那么中间两项(第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项)的二项式系数相等并最大.2.求展开式系数最大项如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得.【变式训练3】 (1)若⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中只有第6项的二项式系数最大,则展开式中的常数项是( )A .180B .120C .90D .45答案 A解析 只有第6项的二项式系数最大,可知n =10,于是展开式通项为T r +1=C r 10(x )10-r ⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 5-5r2,令5-5r2=0,得r =2,所以常数项为22C 210=180.故选A.(2)若x ∈(0,+∞),则(1+2x )15的二项展开式中系数最大的项为第________项.答案 11解析 T r +1=C r 152r x r,由⎩⎪⎨⎪⎧C r -1152r -1≤C r 152r,C r +1152r +1≤C r 152r, 解得293≤r ≤323,故r =10,所以第11项的系数最大.考向二项式定理的应用命题角度1 n 个多项式积的展开式问题例 4 [2017·全国卷Ⅰ]⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35答案 C解析 因为(1+x )6的通项为C r 6x r,所以⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4.因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为30. 故选C.【变式训练4】 [2017·全国卷Ⅲ](x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80答案 C解析 因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40, x 3y 3=y ·(x 3y 2),其系数为C 25·23=80. 所以x 3y 3的系数为80-40=40.故选C. 命题角度2 与整除有关的问题例 5 [2018·潍坊模拟]设a ∈Z ,且0≤a <13,若512018+a 能被13整除,则a =( )A .0B .1C .11D .12答案 D解析 由于51=52-1,(52-1)2018=C 020********-C 12018522017+…-C 20172018521+1,又由于13整除52,所以只需13整除1+a ,0≤a <13,a ∈Z ,所以a =12.命题角度3 求近似值的问题例 6 求0.9986的近似值,使误差小于0.001.解 0.9986=(1-0.002)6=1+6×(-0.002)+15×(-0.002)2+…+(-0.002)6,∵T3=15×(-0.002)2=0.00006<0.001,即第3项以后的项的绝对值都小于0.001,∴从第3项起,以后的项可以忽略不计,即0.9986=(1-0.002)6≈1+6×(-0.002)=0.988.触类旁通二项式定理应用的题型及解法(1)对于多项式积的特定项问题,可通过“搭配”解决,但要注意不重不漏.(2)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(3)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.【变式训练5】99100+1除以1000的余数是________.答案 2解析99100+1=(100-1)100+1=C0100×100100+(-C1100×10099)+…+(-C99100×100)+C100100×1+1=100100-100×10099+…-10000+2,从第一项到倒数第二项都能被1000整除,∴余数是2.核心规律1.二项展开式的通项T k+1=C k n a n-k b k是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数时,要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以,在解题时,根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.满分策略1.注意(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题.2.解题时,要注意区别二项式系数和项的系数的不同、项数和项的不同.3.切实理解“常数项”“有理项(字母指数为整数)”“系数最大的项”等概念.板块三启智培优·破译高考题型技法系列17——拆分法破解三项展开式中特定项(系数)问题[2015·全国卷Ⅰ](x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60解题视点利用拆分法,(x2+x+y)5=[(x2+x)+y]5,将(x2+x)看作一项,应用二项式定理求解.解析由二项展开式通项易知T r+1=C r5(x2+x)5-r y r,令r=2,则T3=C25(x2+x)3y2,对于二项式(x2+x)3,由T t+1=C t3(x2)3-t·x t=C t3x6-t,令t=1,所以x5y2的系数为C25C13=30.故选C.答案 C答题启示二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.跟踪训练(1)(x2-x+1)10展开式中x3项的系数为()A.-210 B.210C.30 D.-30答案 A解析 (x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.故选A.(2)[2018·安徽安庆模拟]将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________. 答案 -160解析 ⎝ ⎛⎭⎪⎫x +4x -43=⎝ ⎛⎭⎪⎫x -2x 6展开后的通项是C k 6(x )6-k·⎝ ⎛⎭⎪⎫-2x k =(-2)k ·C k 6(x )6-2k. 令6-2k =0,得k =3.所以常数项是C 36(-2)3=-160.板块四 模拟演练·提能增分[A 级 基础达标]1.已知⎝ ⎛⎭⎪⎫a +1a n (n ∈N *)的展开式中含a 3的项为第3项,则n 的值为( )A .2B .6C .12D .24答案 C 解析 ∵T 3=C 2n a n -22 ⎝ ⎛⎭⎪⎫1a 2=C 2n a n2-3 ,∴n 2-3=3,得n =12.故选C.2.[2018·湖北模拟]若二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.24 答案 C解析T r +1=C r 7·(2x )7-r ·⎝ ⎛⎭⎪⎫a xr =27-r C r 7a r·1x2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1.故选C.3.(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .168答案 D解析 因为(1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.故选D.4.已知(1-2x )n 展开式中,奇数项的二项式系数之和为64,则(1-2x )n (1+x )的展开式中含x 2项的系数为( )A .71B .70C .21D .49答案 B解析 因为奇数项的二项式系数之和为2n -1,所以2n -1=64,n=7,因此(1-2x )n (1+x )的展开式中含x 2项的系数为C 27(-2)2+C 17(-2)=70.故选B.5.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴⎝ ⎛⎭⎪⎫2x -1x 5的通项为T r +1=C r 5·(2x )5-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r ·C r 5·x 5-2r. 令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3· 22·C 35=80-40=40.6.[2018·遵义四中月考](2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .2答案 B解析 二项式的通项T k +1=C k 828-k (-1)k (x )k =C k 828-k·(-1)k x k 2,令k =8,则T 9=C 88(-1)8x 4=x 4,∴x 4的系数为1,令x =1,得展开式的所有项系数和为(2-1)8=1,∴不含x 4项的系数的和为0.选B.7.[2018·衡水模拟]已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( )A .180B .90C .-5D .5答案 A解析 (1+x )10=[2-(1-x )]10,其通项公式为T r +1=C r 10210-r·(-1)r (1-x )r ,a 8是r =8时,第9项的系数.∴a 8=C 81022(-1)8=180.故选A.8.设a =⎠⎛0πsin x d x ,则二项式⎝ ⎛⎭⎪⎫a x -1x 6展开式中的常数项是________.答案 -160解析 a =⎠⎛0πsin x d x =(-c os x )|π0=2,T r +1=C r 6(2x )6-r ⎝⎛⎭⎪⎫-1x r =C r 626-r (-1)r x 3-r, 令3-r =0,则r =3.所以二项展开式中常数项为-C 36·23=-160. 9.[2018·唐山模拟]S =C 127+C 227+…+C 2727除以9的余数为________.答案 7解析 依题意S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9×(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.10.[2015·全国卷Ⅱ](a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.答案 3解析 设f (x )=(a +x )(1+x )4,则其展开式的所有项的系数和为f (1)=(a +1)·(1+1)4=(a +1)×16,∵展开式中x 的奇数次幂项的系数和为12[f (1)-f (-1)],又f (-1)=0,∴12×(a +1)×16=32,∴a =3.[B 级 知能提升]1.[2018·山西四校联考]若⎝ ⎛⎭⎪⎫x 6+1x x n 的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6答案 C 解析T r +1=C r n (x 6)n -r ⎝⎛⎭⎪⎫1x x r =C rn x 6n -15r 2 ,当T r +1是常数项时,6n-15r 2=0,即n =5r4,又n ∈N *,故n 的最小值为5.故选C.2.[2018·福建厦门联考]在⎝ ⎛⎭⎪⎫1+x +1x 201810的展开式中,x 2的系数为( )A .10B .30C .45D .120答案 C解析 因为⎝ ⎛⎭⎪⎫1+x +1x 201810=⎣⎢⎡⎦⎥⎤(1+x )+1x 201810=(1+x )10+C 110(1+x )91x2018+…+C 1010⎝ ⎛⎭⎪⎫1x201810,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C.3.[2017·浙江高考]已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.答案 16 4解析 a 4是x 项的系数,由二项式的展开式得a 4=C 33·C 12·2+C 23·C 22·22=16;a 5是常数项,由二项式的展开式得a 5=C 33·C 22·22=4.4.已知⎝ ⎛⎭⎪⎫x +12x n 的展开式中前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项. 解 (1)由题设,得C 0n +14·C 2n =2×12·C 1n ,即n 2-9n +8=0,解得n =8,n =1(舍去).(2)设第r +1的系数最大,则⎩⎨⎧12r C r 8≥12r +1C r +18,12r C r 8≥12r -1C r -18.即⎩⎨⎧18-r ≥12(r +1),12r ≥19-r ,解得2≤r ≤3.所以系数最大的项为T 3=7x 5,T 4=7x72 .5.[2018·焦作模拟]已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含x32的项;(3)求展开式中二项式系数最大的项. 解 由题意知,第五项系数为C 4n ·(-2)4, 第三项的系数为C 2n ·(-2)2,则有C 4n ·(-2)4C 2n ·(-2)2=101,化简得n 2-5n -24=0, 解得n =8或n =-3(舍去).(1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式T k +1=C k 8·(x )8-k ·(-2x 2)k =C k 8·(-2)k·x 8-k2-2k ,令8-k 2-2k =32,则k =1.故展开式中含x32的项为T 2=-16x32 .(3)由n =8知第五项二项式系数最大, 此时T 5=1120x -6.。

高考一轮复习:二项分布及其应用

高考一轮复习:二项分布及其应用

第5讲二项分布及其应用【2015年高考会这样考】1.考查条件概率和两个事件相互独立的概念.2.考查n次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题.【复习指导】复习时要把事件的独立性、事件的互斥性结合起来,会对随机事件进行分析,即把一个随机事件分拆成若干个互斥事件之和,再把其中的每个事件分拆成若干个相互独立事件之积,同时掌握好二项分布的实际意义及其概率分布和数学期望的计算方法.基础梳理1.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=P(AB) P(A).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB) n(A).(2)条件概率具有的性质:①0≤P(B|A)≤1;②如果B和C是两互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件.(2)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)·P(A)=P(A)·P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.独立重复试验与二项分布(1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.一种关系可先定义条件概率P (B |A )=P (AB )P (A ),当P (B |A )=P (B )即P (AB )=P (A )P (B )时,事件B 与事件A 独立.但是要注意事件A 、B 、C 两两独立,但事件A 、B 、C 不一定相互独立.两种算法 计算条件概率有两种方法.(1)利用定义P (B |A )=P (AB )P (A ); (2)若n (C )表示试验中事件C 包含的基本事件的个数,则P (B |A )=n (AB )n (A ). 双基自测1.(2011·广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ).A.34B.23C.35D.12解析 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34. 答案 A2.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227解析 所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.答案 A3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ).A .0.960B .0.864C .0.720D .0.576解析 P =0.9×[1-(1-0.8)2]=0.864.答案 B4.如果X ~B ⎝ ⎛⎭⎪⎫15,14,则使P (X =k )取最大值的k 值为( ). A .3 B .4 C .5 D .3或4解析 采取特殊值法.∵P (X =3)=C 315⎝ ⎛⎭⎪⎫143⎝ ⎛⎭⎪⎫3412,P (X =4)=C 415⎝ ⎛⎭⎪⎫144·⎝ ⎛⎭⎪⎫3411,P (X =5)=C 515⎝ ⎛⎭⎪⎫145⎝ ⎛⎭⎪⎫3410, 从而易知P (X =3)=P (X =4)>P (X =5).答案 D5.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).A.12B.14C.16D.18我爱学习网 高中数学学习网/gaozhong/shuxue/解析 法一 P (B |A )=P (AB )P (A )=1412=12. 法二 A 包括的基本事件为{正,正},{正,反},AB 包括的基本事件为{正,正},因此P (B |A )=12. 答案 A考向一 条件概率【例1】►(2011·辽宁)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ). A.18 B.14 C.25 D.12[审题视点] 利用条件概率的计算公式P (B |A )=P (AB )P (A )计算.解析 P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110. 由条件概率计算公式,得P (B |A )=P (A ∩B )P (A )=110410=14. 答案 B(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ). 【训练1】 (2011·湖南高考)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.解析圆的面积是π,正方形的面积是2,扇形的面积是π4,根据几何概型的概率计算公式得P(A)=2π,根据条件概率的公式得P(B|A)=P(AB)P(A)=12π2π=14.答案2π14考向二独立事件的概率【例2】►(2011·全国)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.[审题视点] 准确把握“至少”与“恰”等字眼的意义,从而借助于独立事件的的概率知识求解.解(1)设“购买甲种保险”事件为A,“购买乙种保险”事件为B由已知条件P(A)=0.5,P(BA)=0.3,∴P(B)P(A)=0.3,P(B)=0.3P(A)=0.6,因此,1位车主至少购买甲、乙两种保险中的一种的概率为1-P(A B)=1-P(A)P(B)=1-(1-0.5)(1-0.6)=0.8.(2)一位车主两种保险都不购买的概率为P=P(A B)=0.2,因此3位车主中恰有1位车主甲、乙两种保险都不购买的概率为C13×0.2×0.82=0.384.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.【训练2】(2011·山东)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B,丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P(D)=0.4,P(E)=0.5,P(F)=0.5.红队至少两人获胜的事件有:DEF,DEF,DEF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知DEF,DEF,DEF是两两互斥事件,且各盘比赛的结果相互独立,因此P(ξ=0)=P(DEF)=0.4×0.5×0.5=0.1,P(ξ=1)=P(DEF)+P(DEF)+P(DEF)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P(ξ=3)=P(DEF)=0.6×0.5×0.5=0.15.由对立事件的概率公式得P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=0.4.所以ξ的分布列为:ξ012 3P 0.10.350.40.15因此E(ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.考向三独立重复试验与二项分布【例3】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列;(2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.[审题视点] 首先判断分布的类型,再根据X ,Y 的取值所对应的事件意义求解.解 (1)将通过每个交通岗看做一次试验,则遇到红灯的概率为13,且每次试验结果是相互独立的,故X ~B ⎝ ⎛⎭⎪⎫6,13.所以X 的分布列为P (X =k )=C k 6⎝ ⎛⎭⎪⎫13k ·⎝ ⎛⎭⎪⎫236-k ,k =0,1,2,3,4,5,6.(2)由于Y 表示这名学生在首次停车时经过的路口数,显然Y 是随机变量,其取值为0,1,2,3,4,5,6.其中:{Y =k }(k =0,1,2,3,4,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,故各概率应按独立事件同时发生计算.P (Y =k )=⎝ ⎛⎭⎪⎫23k ·13(k =0,1,2,3,4,5), 而{Y =6}表示一路没有遇上红灯.故其概率为P (Y =6)=⎝ ⎛⎭⎪⎫236, 因此Y 的分布列为: Y0 1 2 3 P13 13·23 13·⎝ ⎛⎭⎪⎫232 13·⎝ ⎛⎭⎪⎫233Y4 5 6 P 13·⎝ ⎛⎭⎪⎫234 13·⎝ ⎛⎭⎪⎫235 ⎝ ⎛⎭⎪⎫236 (3)这名学生在途中至少遇到一次红灯的事件为{X ≥1}={X =1或X =2或…或X =6},所以其概率为P (X ≥1)=∑k =16P (X =k )=1-P (X =0) =1-⎝ ⎛⎭⎪⎫236=665729. 独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【训练3】 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.解 (1)任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且P (A )=0.6,P (B )=0.75.所以,该下岗人员没有参加过培训的概率是P (A B )=P (A )·P (B )=(1-0.6)(1-0.75)=0.1.∴该人参加过培训的概率为1-0.1=0.9.(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X 服从二项分布X ~B (3,0.9),P (X =k )=C k 30.9k ×0.13-k ,k =0,1,2,3, ∴X 的分布列是 X1 2 3 P0.001 0.027 0.243 0.729阅卷报告18——对二项分布理解不准致误问题诊断】 二项分布是高中概率中最重要的概率分布模型,是近年高考非常重要的一个考点.二项分布概率模型的特点是“独立性”和“重复性”,事件的发生都是独立的、相互之间没有影响,事件又在相同的条件之下重复发生.但在试题中,有的问题是局部的二项分布概率模型问题,解题时要注意这种特殊情况.【防范措施】 要记住二项分布概率模型的特点,在解题时把符合这种特点的概率问题归结到二项分布模型上面,直接根据二项分布概率模型的公式解决.【示例】► 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.错因 解本题容易出错的地方,一是对“恰有2次”、“至少有2次”理解错误,误用二项分布;二是对随机事件“5次预报中恰有2次准确,且其中第3次预报准确”的意义理解错误,不能把问题归结为只要在第1,2,4,5次预报中预报1次准确即可,出现仍然用5次独立重复试验二项分布模型解决问题的错误.实录 设“5次预报中恰有2次准确”为事件A ,“5次预报中至少有2次准确”为事件B ,“5次预报中恰有2次准确,且其中第3次预报准确”为事件C .(1)P (A )=C 25⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-453≈0.05, (2)P (B )=1-C 05⎝ ⎛⎭⎪⎫450·⎝ ⎛⎭⎪⎫1-455-C 15×45⎝ ⎛⎭⎪⎫1-454≈0.99; (3)P (C )=C 25⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-453·45≈0.04. 正解 设“5次预报中恰有2次准确”为事件A ,“5次预报中至少有2次准确”为事件B ,“5次预报恰有2次准确,且其中第3次预报准确”为事件C .(1)P (A )=C 25⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-453=10×1625×1125≈0.05. (2)P (B )=1-C 05⎝ ⎛⎭⎪⎫450⎝ ⎛⎭⎪⎫1-455-C 15×45⎝ ⎛⎭⎪⎫1-454≈0.99. (3)P (C )=C 14×45⎝ ⎛⎭⎪⎫1-453×45≈0.02. 【试一试】 某次乒乓球比赛的决赛在甲、乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23. (1)求比赛三局甲获胜的概率;(2)求甲获胜的概率.解 记甲n 局获胜的概率为P n ,n =3,4,5,(1)比赛三局甲获胜的概率是:P 3=C 33⎝ ⎛⎭⎪⎫233=827. (2)比赛四局甲获胜的概率是:P 4=C 23⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13=827; 比赛五局甲获胜的概率是:P 5=C 24⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫132=1681. ∴甲获胜的概率是:P 3+P 4+P 5=6481.。

2019届高三数学课标一轮复习考点规范练: 55二项分布及其应用

2019届高三数学课标一轮复习考点规范练: 55二项分布及其应用

5.0.72 设种子发芽为事件 A,种子成长为幼苗为事件 B(发芽又成活为幼苗).
依题意 P(B|A)=0.8,P(A)=0.9.
根据条件概率公式 P(AB)=P(B|A)·P(A)=0.8×0.9=0.72,即这粒种子能成长为幼苗的
概率为 0.72.
( ) ( ) ( ) . 5

1
1
1
������(������������) ������(������)
=
4 1
=
1.
2
1.A 由古典概型知 P(A)=2,P(AB)=4,则由条件概率知 P(B|A)=
2
1,1,1. 2.B 因甲、乙、丙去北京旅游的概率分别为3 4 5 因此,他们不去北京旅游的概率
2,3,4
2 × 3 × 4 = 3.
则 3 次摸球中,恰有 1 次中奖的概率为:
f(p)=������13p(1-p)2=3p3-6p2+3p(0<p<1),
因为 f'(p)=9p2-12p+3=3(p-1)(3p-1),
( ) ( ) 所以 f(p)在 0,13 上是增函数,在 13,1 上是减函数,
1
所以当 p=3时,f(p)取得最大值. ������2 - ������ + 2 = 1
3
红球的概率为8,
( ) ( ) 所以
P(X=12)=������191
3 8

5 2 × 3. 8 8 故选 D.
( ) ( ) 13.24403 P=������35
1 3
3
2 3
2 = 40 .
243
.3 14 4 记“小球落入甲袋中”为事件 A,“小球落入乙袋中”为事件 B,则事件 A 的对立

21版高考数学人教A版浙江专用大一轮复习 10.6 二项分布及其应用

21版高考数学人教A版浙江专用大一轮复习 10.6 二项分布及其应用

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

核心考点·精准研析考点一条件概率、事件的独立性1.市场调查发现,大约的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经工商局抽样调查发现网上购买的家用小电器合格率约为,而实体店里的家用小电器的合格率约为.现工商局12315电话接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是( )A. B. C. D.2.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传四个项目,每人限报其中一项,记事件A为“4名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(A|B)的值为( )A. B. C. D.3.甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为,乙每次投中的概率为,求:乙投篮次数不超过1次的概率.【解析】1.选A.不合格小电器在网上购买的概率为×=,不合格小电器在实体店购买的概率为×=,所以这台被投诉的家用小电器是在网上购买的可能性是=.2.选C.因为P(B)=,P(AB)=,所以P(A|B)==.3.记“甲投篮投中”为事件A,“乙投篮投中”为事件B.“乙投篮次数不超过1次”包括三种情况:一种是甲第1次投篮投中,另一种是甲第1次投篮未投中而乙第1次投篮投中,再一种是甲、乙第1次投篮均未投中而甲第2次投篮投中,所求的概率是P=P(A+·B+··A)=P(A)+P(·B)+P(··A)=P(A)+P()·P(B)+P()·P()·P(A)=+×+××=.所以乙投篮次数不超过1次的概率为.1.条件概率的3种求法定义法先求P(A)和P(AB),再由P(B|A)=求P(B|A)基本事件法借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简2.相互独立事件同时发生的概率的两种求法(1)直接法:利用相互独立事件的概率乘法公式.(2)间接法:从对立事件入手计算.考点二独立重复试验、二项分布命题精解读考什么:(1)考查n次独立重复试验恰好发生k次的概率.(2)考查二项分布下的期望、方差怎么考:以古典概型为背景考查n次独立重复试验发生k次的概率,常以解答题的形式出现.二项分布也常与期望、方差结合,以选择题或填空题的形式出现. 新趋势:结合新背景,与古典概型、随机变量的期望与方差结合.学霸好方法1.熟记有关的概率公式n次独立重复试验恰好发生k次的概率为p k(1-p)n-k.2.独立重复试验的特点(1)在每次试验中,事件发生的概率相同.(2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.3.交汇问题:解决该类问题要注意应用古典概型的概率公式计算.独立重复试验的概率【典例】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求乙以4比1获胜的概率.(2)求甲获胜且比赛局数多于5局的概率.【解析】(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是,记“乙以4比1获胜”为事件A,则A表示乙赢了3局甲赢了一局,且第五局乙赢,所以P(A)=·××=.(2)记“甲获胜且比赛局数多于5局”为事件B,则B表示甲以4比2获胜,或甲以4比3获胜.因为甲以4比2获胜,表示前5局比赛中甲赢了3局且第六局比赛中甲赢了,这时,无需进行第7局比赛,故甲以4比2获胜的概率为·××=.甲以4比3获胜,表示前6局比赛中甲赢了3局且第7局比赛中甲赢了, 故甲以4比3获胜的概率为·××=,故甲获胜且比赛局数多于5局的概率为+=.二项分布【典例】(2020·衢州模拟)某商场进行抽奖活动.已知抽奖箱中放有8个除颜色外,其他完全相同的彩球,其中仅有5个彩球是红色.现从抽奖箱中一个一个地拿出彩球,共取三次,拿到红色球的个数记为X.(1)若取球过程是无放回的,求事件“X=2”的概率.(2)若取球过程是有放回的,求X的概率分布列及数学期望E(X). 世纪金榜导学号【解析】(1)根据超几何分布可知:P(X=2)==.(2)随机变量X的可能取值为:0,1,2,3,且X~BP(X=k)=,k=0,1,2,3,所以分布列如下:X 0 1 2 3PE(X)=3×=.判断随机变量X服从二项分布X~B(n,p)的条件是什么?提示:(1)X的取值为0,1,2,3,…,n;(2)P(X=k)=p k(1-p)n-k(k=0,1,2,…,n,p为试验成功的概率).1.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是,质点P移动五次后位于点(2,3)的概率是( )A. B. C. D.【解析】选B.如图,由题可知,质点P必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验向右恰好发生2次的概率.所求概率为P=×2×3=×5=.2.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则P(η≥1)=________.【解析】P (ξ≥1)=1-P(ξ<1)=1-p0·(1-p)2=,所以p=,P(η≥1)=1-P(η=0)=1-04=1-=.答案:3.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为.设这4名考生中选做第15题的学生数为ξ,求ξ的分布列.【解析】随机变量ξ的可能取值为0,1,2,3,4,且ξ~B4,.所以P(ξ=k)=k1-4-k=4(k=0,1,2,3,4).所以变量ξ的分布列为ξ0 1 2 3 4P1.(2020·绍兴模拟)设随机变量X~B,则P(2<X≤4)=________.【解析】因为随机变量X~B,所以P(2<X≤4)=P(X=3)+P(X=4)=+=.答案:2.有9粒种子分别种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于________.【解析】由独立事件的概率乘法公式可知,3粒种子没有1粒发芽的概率为=,所以,一个坑需要补种的概率为,由独立重复试验的概率公式可得,需要补种的坑数为2的概率为··=.答案:3.(2020·杭州模拟)一个暗箱中有形状和大小完全相同的3个白球与2个黑球,每次从中取出一个球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3个球.(1)求甲三次都取得白球的概率.(2)求甲总得分ξ的分布列和数学期望.【解析】(1)由题意得,甲每次都取得白球的概率为,所以甲三次都取得白球的概率为=.(2)甲总得分情况有6,7,8,9四种可能,P(ξ=6)==,P(ξ=7)==,P(ξ=8)==,P(ξ=9)==.故ξ的分布列为ξ 6 7 8 9P甲总得分ξ的期望E(ξ)=6×+7×+8×+9×=.关闭Word文档返回原板块快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-5a Word版含解析

2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-5a Word版含解析

[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724 答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16 答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310B.25C.12D.35 答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79 答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47 答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564B.15128C.24125D.48125 答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线xa +yb =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14 答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14.故选D.9.某酒厂制作了3种不同的精美卡片,每瓶酒盒随机装入一张卡片,集齐3种卡片可获奖,现购买该种酒5瓶,能获奖的概率为( )A.3181B.3381C.4881D.5081 答案 D解析 假设5个酒盒各不相同,5个酒盒装入卡片的方法一共有35=243种,其中包含了3种不同卡片有两种情况:即一样的卡片3张,另外两种不同的卡片各1张,有C 35×2×3=60种方法,两种不同的卡片各2张,另外一种卡片1张,有C 15×3×C 24=15×6=90种,故所求的概率为90+60243=5081.故选D.10.(2018·淄博模拟)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-518,+∞ B.⎝ ⎛⎭⎪⎫-∞,718 C.⎝ ⎛⎭⎪⎫-718,518 D.⎝ ⎛⎭⎪⎫-518,718 答案 D解析 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118.两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可,∴P 2=3336=1112.∵点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,∴⎝ ⎛⎭⎪⎫118-m 2+⎝ ⎛⎭⎪⎫11122<137144, 解得-518<m <718,故选D. 二、填空题11.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 从正整数m ,n (m ≤7,n ≤9)中任取两数的所有可能结果有C 17C 19=63个,其中m ,n 都取奇数的结果有C 14C 15=20个,故所求概率为2063.12.(2018·武汉调研)某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________.答案 16 解析 由e =1+b 2a 2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16.13.(2018·湖南长沙模拟)抛掷两枚质地均匀的骰子,得到的点数分别为a ,b ,则使得直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为________.答案 19解析 根据题意,得到的点数所形成的数组(a ,b )共有6×6=36种,其中满足直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423,则圆心到直线的距离不小于13,即1>1a 2+b 2≥13,即1<a 2+b 2≤9的有(1,1),(1,2),(2,1),(2,2)四种,故直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为436=19.14.(2018·唐山模拟)无重复数字的五位数a1a2a3a4a5,当a1<a2,a2>a3,a3<a4,a4>a5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________.答案2 15解析∵a2>a1,a3;a4>a3,a5,∴a2只能是3,4,5.(1)若a2=3,则a4=5,a5=4,a1与a3是1或2,这时共有A22=2(个)符合条件的五位数.(2)若a2=4,则a4=5,a1,a3,a5可以是1,2,3,共有A33=6(个)符合条件的五位数.(3)若a2=5,则a4=3或4,此时分别与(1)(2)情况相同.∴满足条件的五位数有2(A22+A33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A55=120(个),故所求概率为16120=215.三、解答题15.为了解收购的每只小龙虾的重量,某批发商在刚从甲、乙两个水产养殖场收购的小龙虾中分别随机抽取了40只,得到小龙虾的重量的频数分布表如下.从甲水产养殖场中抽取的40只小龙虾的重量的频数分布表从乙水产养殖场中抽取的40只小龙虾的重量的频数分布表(1)试根据上述表格中的数据,完成从甲水产养殖场中抽取的40只小龙虾的重量的频率分布直方图;(2)依据小龙虾的重量,将小龙虾划分为三个等级:若规定二级以上(包括二级)的小龙虾为优质小龙虾,估计甲、乙两个水产养殖场的小龙虾哪个的“优质率”高?并说明理由;(3)从乙水产养殖场抽取的重量在[5,15),[15,25),[45,55]内的小龙虾中利用分层抽样的方法抽取6只,再从这6只中随机抽取2只,求至少有1只的重量在[15,25)内的概率.解(1)(2)若把频率看作相应的概率,则“甲水产养殖场的小龙虾为优质小龙虾”的概率为16+10+440=0.75,“乙水产养殖场的小龙虾为优质小龙虾”的概率为18+10+440=0.8,所以乙水产养殖场的小龙虾“优质率”高.(3)解法一:用分层抽样的方法从乙水产养殖场重量在[5,15),[15,25),[45,55]内的小龙虾中抽取6只,则重量在[5,15)内的有1只,在[15,25)内的有3只,在[45,55]内的有2只,记重量在[5,15)内的1只为x,在[15,25)内的3只分别为y1,y2,y3,在[45,55]内的2只分别为z1,z2,从中任取2只,可能的情况有(x,y1),(x,y2),(x,y3),(x,z1),(x,z2),(y1,y2),(y1,y3),(y1,z1),(y1,z2),(y2,y3),(y2,z1),(y2,z2),(y3,z1),(y3,z2),(z1,z2),共15种;记“任取2只,至少有1只的重量在[15,25)内”为事件A,则事件A包含的情况有(x,y1),(x,y2),(x,y3),(y1,y2),(y1,y3),(y1,z1),(y1,z2),(y2,y3),(y2,z1),(y2,z2),(y3,z1),(y3,z2),共12种.所以P (A )=1215=45.解法二:由解法一可知:重量在[15,25)内有3只,由题意可得P=1-C 23C 26=45.16.(2017·石景山区一模)“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801-2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:为了了解一批空气净化器(共2000台)的质量,随机抽取n 台机器作为样本进行估计,已知这n 台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图.(1)求n 的值及频率分布直方图中的x 值;(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P 2的空气净化器有多少台?(3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P 2的概率.解 (1)∵在(4,6]之间的数据一共有6个, 再由频率分布直方图得:落在(4,6]之间的频率为0.03×2=0.06, ∴n =60.06=100,由频率分布直方图的性质得: (0.03+x +0.12+0.14+0.15)×2=1, 解得x =0.06.(2)由频率分布直方图可知:落在(6,8]之间共:0.12×2×100=24台.又∵在(5,6]之间共4台, ∴落在(5,8]之间共28台,∴估计这批空气净化器(共2000台)中等级为P 2的空气净化器有560台.(3)设“恰好有1台等级为P 2”为事件B ,依题意落在(4,6]之间共6台,属于国标P 2级的有4台, 则从(4,6]中随机抽取2台,基本事件总数n =C 26=15,事件B 包含的基本事件个数m =C 14C 12=8,∴恰好有1台等级为P 2的概率P (B )=m n =815.。

2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-5a Word版含解析

2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-5a Word版含解析

[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724 答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16 答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310B.25C.12D.35 答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79 答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564B.15128C.24125D.48125 答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线xa +yb =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14 答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14.故选D.9.某酒厂制作了3种不同的精美卡片,每瓶酒盒随机装入一张卡片,集齐3种卡片可获奖,现购买该种酒5瓶,能获奖的概率为( )A.3181B.3381C.4881D.5081 答案 D解析 假设5个酒盒各不相同,5个酒盒装入卡片的方法一共有35=243种,其中包含了3种不同卡片有两种情况:即一样的卡片3张,另外两种不同的卡片各1张,有C 35×2×3=60种方法,两种不同的卡片各2张,另外一种卡片1张,有C 15×3×C 24=15×6=90种,故所求的概率为90+60243=5081.故选D.10.(2018·淄博模拟)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-518,+∞ B.⎝ ⎛⎭⎪⎫-∞,718 C.⎝ ⎛⎭⎪⎫-718,518 D.⎝ ⎛⎭⎪⎫-518,718 答案 D解析 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118.两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可,∴P 2=3336=1112.∵点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,∴⎝ ⎛⎭⎪⎫118-m 2+⎝ ⎛⎭⎪⎫11122<137144, 解得-518<m <718,故选D. 二、填空题11.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 从正整数m ,n (m ≤7,n ≤9)中任取两数的所有可能结果有C 17C 19=63个,其中m ,n 都取奇数的结果有C 14C 15=20个,故所求概率为2063.12.(2018·武汉调研)某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________.答案 16 解析 由e =1+b 2a 2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16.13.(2018·湖南长沙模拟)抛掷两枚质地均匀的骰子,得到的点数分别为a ,b ,则使得直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为________.答案 19解析 根据题意,得到的点数所形成的数组(a ,b )共有6×6=36种,其中满足直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423,则圆心到直线的距离不小于13,即1>1a 2+b 2≥13,即1<a 2+b 2≤9的有(1,1),(1,2),(2,1),(2,2)四种,故直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为436=19.14.(2018·唐山模拟)无重复数字的五位数a 1a 2a 3a 4a 5,当a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________.答案 215解析 ∵a 2>a 1,a 3;a 4>a 3,a 5,∴a 2只能是3,4,5.(1)若a 2=3,则a 4=5,a 5=4,a 1与a 3是1或2,这时共有A 22=2(个)符合条件的五位数.(2)若a 2=4,则a 4=5,a 1,a 3,a 5可以是1,2,3,共有A 33=6(个)符合条件的五位数.(3)若a 2=5,则a 4=3或4,此时分别与(1)(2)情况相同.∴满足条件的五位数有2(A 22+A 33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A 55=120(个),故所求概率为16120=215.三、解答题15.为了解收购的每只小龙虾的重量,某批发商在刚从甲、乙两个水产养殖场收购的小龙虾中分别随机抽取了40只,得到小龙虾的重量的频数分布表如下.从甲水产养殖场中抽取的40只小龙虾的重量的频数分布表从乙水产养殖场中抽取的40只小龙虾的重量的频数分布表(1)试根据上述表格中的数据,完成从甲水产养殖场中抽取的40只小龙虾的重量的频率分布直方图;(2)依据小龙虾的重量,将小龙虾划分为三个等级:若规定二级以上(包括二级)的小龙虾为优质小龙虾,估计甲、乙两个水产养殖场的小龙虾哪个的“优质率”高?并说明理由;(3)从乙水产养殖场抽取的重量在[5,15),[15,25),[45,55]内的小龙虾中利用分层抽样的方法抽取6只,再从这6只中随机抽取2只,求至少有1只的重量在[15,25)内的概率.解(1)(2)若把频率看作相应的概率,则“甲水产养殖场的小龙虾为优质小龙虾”的概率为16+10+440=0.75,“乙水产养殖场的小龙虾为优质小龙虾”的概率为18+10+440=0.8,所以乙水产养殖场的小龙虾“优质率”高.(3)解法一:用分层抽样的方法从乙水产养殖场重量在[5,15),[15,25),[45,55]内的小龙虾中抽取6只,则重量在[5,15)内的有1只,在[15,25)内的有3只,在[45,55]内的有2只,记重量在[5,15)内的1只为x ,在[15,25)内的3只分别为y 1,y 2,y 3,在[45,55]内的2只分别为z 1,z 2,从中任取2只,可能的情况有(x ,y 1),(x ,y 2),(x ,y 3),(x ,z 1),(x ,z 2),(y 1,y 2),(y 1,y 3),(y 1,z 1),(y 1,z 2),(y 2,y 3),(y 2,z 1),(y 2,z 2),(y 3,z 1),(y 3,z 2),(z 1,z 2),共15种;记“任取2只,至少有1只的重量在[15,25)内”为事件A ,则事件A 包含的情况有(x ,y 1),(x ,y 2),(x ,y 3),(y 1,y 2),(y 1,y 3),(y 1,z 1),(y 1,z 2),(y 2,y 3),(y 2,z 1),(y 2,z 2),(y 3,z 1),(y 3,z 2),共12种.所以P (A )=1215=45.解法二:由解法一可知:重量在[15,25)内有3只,由题意可得P=1-C 23C 26=45.16.(2017·石景山区一模)“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801-2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:为了了解一批空气净化器(共2000台)的质量,随机抽取n台机器作为样本进行估计,已知这n台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图.(1)求n的值及频率分布直方图中的x值;(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P2的空气净化器有多少台?(3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率.解(1)∵在(4,6]之间的数据一共有6个,再由频率分布直方图得:落在(4,6]之间的频率为0.03×2=0.06,∴n=60.06=100,由频率分布直方图的性质得:11 (0.03+x +0.12+0.14+0.15)×2=1,解得x =0.06.(2)由频率分布直方图可知:落在(6,8]之间共:0.12×2×100=24台.又∵在(5,6]之间共4台,∴落在(5,8]之间共28台,∴估计这批空气净化器(共2000台)中等级为P 2的空气净化器有560台.(3)设“恰好有1台等级为P 2”为事件B ,依题意落在(4,6]之间共6台,属于国标P 2级的有4台, 则从(4,6]中随机抽取2台,基本事件总数n =C 26=15,事件B 包含的基本事件个数m =C 14C 12=8,∴恰好有1台等级为P 2的概率P (B )=m n =815.。

《二项分布及其应用》练习题(教师版)

《二项分布及其应用》练习题(教师版)

《二项分布及其应用》练习题一、单选题1.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%, 已知一学生语文不及格,则他数学也不及格的概率是 ( ) A .0.2 B .0.33 C .0.5 D .0.62.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A .14B .13C .12D .353.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到两个数均为偶数”,则()|P B A = ( )A .18B .14C .25D .124.已知P (B )>0,A 1A 2=∅,则下列成立的是( )A .P (A 1|B )>0 B .P (A 1∪A 2|B )=P (A 1|B )+P (A 2|B )C .P (A 12A )≠0D .()12P A A =15.设A 与B 是相互独立事件,则下列命题中正确的命题是( )A .A 与B 是对立事件 B .A 与B 是互斥事件C .A 与B 不相互独立D .A 与B 是相互独立事件 6.甲、乙两人独立地解同一问题,甲解决这个问题的概率是1p ,乙解决这个问题的概率是2p ,那么恰好有1人解决这个问题的概率是A .12p pB .1221(1)(1)p p p p -+-C .121p p -D .121(1)(1)p p ---7.袋中有大小相同的3个红球,7个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是 ( )A .15B .13C .38D .378.已知()13P B A =,()25P A =,则()P AB 等于( ) A .56 B .910C .215D .1159.设A,B 为两个事件,且P(A)>0,若P(AB)=13,P(A)=23,则P(B|A)= ( )A .B .C .D .10.抛掷一枚质地均匀的硬币两次,在已知第一次出现正面向上的条件下,两次都是正面向上的概率是A .14B .34C .12 D .1811.下列说法正确的是( )A .()()PB A P AB < B .()()()P B P B A P A =是可能的 C .()()()P AB P A P B =⋅ D .()0P A A =12.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .1313.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天,在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的胜率是A .15B .12 C .34D .310 14.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为( )A .35B .110C .59D .2515.一袋中装有5只白球,3只黄球,在有放回地摸球中,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则事件A 1与2A 是( )A .相互独立事件B .不相互独立事件C .互斥事件D .对立事件16.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为( ) A .0.02 B .0.08 C .0.18 D .0.7217.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1718 C .419D .21718.某种电子元件用满3000小时不坏的概率为34,用满8 000小时不坏的概率为12,现有一只此种电子元件,已经用满3000小时不坏,还能用满8000小时的概率是( )A .34B .23C .12 D .1319.若()34P A =,()12P B A =,则()P A B ⋂等于( ) A .23 B .38 C .13 D .5820.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29 C .23 D .1321.甲、乙两人独立地解同一问题,甲解决这个问题的概率是1p ,乙解决这个问题的概率是2p ,那么恰好有1人解决这个问题的概率是( )A .12p pB .1221(1)(1)p p p p -+-C .121p p -D .121(1)(1)p p ---二、填空题22.以集合{}2,4,6,7,8,11,12,13A=中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是______.23.如图,J A ,J B 两个开关串联再与开关J C 并联,在某段时间内每个开关能够闭合的概率都是0.5,计算在这段时间内线路正常工作的概率为___.24.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.25.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为__________. 26.已知A 、B 、C 相互独立,如果()16P AB =,()18P BC =,()18P ABC =,()P AB =_________. 27.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________. 28.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =_______,()P A B =__________三、解答题29.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列.30.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。

2019年浙江省高考高三数学复习优质考卷分项专练:专题10 计数原理与古典概率及解析

2019年浙江省高考高三数学复习优质考卷分项专练:专题10 计数原理与古典概率及解析

2019年浙江省高考高三数学复习优质考卷分项专练:
一.基础题组
1.【浙江省“七彩阳光”联盟2019届高三期初联考】甲、乙、丙3人同时参加5个不同的游戏活动,每个游戏最多有2人可以参与(如果有2人参与同一个游戏,不区分2人在其中的角色),则甲、乙、丙3人参与游戏的不同方式总数是______________.
【答案】120
【解析】
【分析】
分类:第一类,每一个游戏只有一个人参加;第二类,有一个游戏有两人参加,另一个游戏有一人参加,求出结果
【详解】
2. 【浙江省“七彩阳光”联盟2019届高三期初联考】展开式中所有项的系数和为
_________,其中项的系数为_____________.
【答案】1
【解析】
【分析】
令即得各项系数和,若要凑成有以下几种可能:一是个,个,个,二是
个,
个,即可求出项的系数。

【详解】
令,则展开所有项的系数和为
若要凑成有以下几种可能:一是个,个,个,二是个,个,
1 / 29。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(浙江版)2019年高考数学一轮复习 专题10.6 二项分布及其应用(练)
1. 将三颗骰子各掷一次,设事件A为“三个点数都不相同”,事件B为“至少出现一个6点”,则概率
P(A|B)的值为( )
A.6091 B.12 C.518 D.91216
【答案】A

2. 已知随机变量X~B(n,0.8),D(X)=1.6,则n的值是( )
A.8 B.10 C.12 D.14
【答案】B
【解析】由106.12.08.0)1()(nnpnpXD,故选B.
3. 设某种产品分两道工序生产,第一道工序的次品率为10%,第二道工序的次品率为3%.生产这种产品
只要有一道工序出次品就出次品,则该产品的次品率是( )
A.0.13 B.0.03 C.0.127 D.0.873
【答案】C

4. 一批产品的二等品率为0.03,从这批产品中每次随机取一件,有放回地抽取100次, X表示抽到的
二等品件数,则DX__________.
【答案】2.91
【解析】由于是有放回的抽样,所以是二项分布~100,0.03XB,
1000.030.972.91DXnpq
,填2.91.

5.【2016山东模拟】一个袋子中装有6个红球和4个白球,假设袋子中的每一个球被摸到可能性是相等
的。
(Ⅰ)从袋子中任意摸出3个球,求摸出的球均为白球的概率;
(Ⅱ)一次从袋子中任意摸出3个球,若其中红球的个数多于白球的个数,则称“摸球成功”(每次操
作完成后将球放回),某人连续摸了3次,记“摸球成功”的次数为,求的分布列和数学期望。
【解析】(Ⅰ)设从袋子中任意摸出3个球, 摸出的球均为白球的概率是P
3
4
3
10

1
.30CPC
4分

(Ⅱ)由一次”摸球成功”的概率32166431023CCCPC. 8分
随机变量服从二项分布)32,3(B,分布列如下 12分

0 1 2 3

P
271 276 2712 27

8

2E
. 13分.

B能力提升训练
1. .在一个投掷硬币的游戏中,把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出
现正面”为事件B,则P(B|A)等于( )
A.12 B.14 C.16 D.18
【答案】A


2. 某一批花生种子,若每1粒发芽的概率为35,则播下3粒种子恰有2粒发芽的概率为( ).

A. 18125 B. 36125 C.48125 D.54125
【答案】D
【解析】由题意得,发芽种子的粒数),(~pnBX,其中53,3pn;则播下3粒种子恰有2粒发芽的
概率12554)531()53()2(223CXP.
3. 某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为(结论写
成小数的形式) _________ .
【答案】0.648.
【解析】由题意,得:经过3次射击中击中目标的次数为X,则)6.0,3(~BX,所以此人至少有两次击

中目标的概率为648.04.06.04.06.0)3()2(0333223CCXPXPP.

4. 已知随机变量服从二项分布1~6,3B,则(2)P的值为 .

【答案】80243

5. 春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购
买该商品的顾客有3次抽奖的机会;若中一次奖,则获得数额为m元的奖金;若中两次奖,则共获得数

额为3m元的奖金;若中3次奖,则共获得数额为6m元的奖金.假设顾客每次抽奖中奖的概率都是13,
请问:商场将奖金数额m最高定位多少元,才能使促销方案对商场有利?

C 思维扩展训练
1. 一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮
的概率是( )

A.164 B.5564 C.18 D.116
【答案】B
【解析】设A与B中至少有一个不闭合的事件为T,E与F至少有一个不闭合的事件为R,则P(T)=P(R)
=1-12×12=34,所以灯亮的概率P=1-P(T)P(R)P(C)P(D)=5564.
2. 甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,
则目标被击中的概率为________.
【答案】34

3.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由
于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其
摧毁,则目标被摧毁的概率为( )
A. 0.998 B. 0.046 C. 0.002 D. 0.954
【答案】D
4.在5道题中有3道历史类,两道诗词鉴赏类,如果不放回地依次抽取2道题,则在第一次抽到历史题
的条件下,第二次抽到历史类问题的概率为 _________ .
【答案】21
【解析】思路1:在第一次抽到历史题的条件下,剩下四道题中两道历史类,两道诗词鉴赏类抽一道为历史
类的概率为21;思路2:在第一次抽到历史题记为事件A,第二次抽到历史类问题记为事件B,则

21)()()|(15132523CCCCAP
ABP
ABP
,所以答案为21.

5. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为求:(1)甲恰好
击中目标2次的概率;(2)乙至少击中目标2次的概率;
(3)乙恰好比甲多击中目标2次的概率

【答案】(1)(2);(3)
试题解析:(1)甲恰好击中目标2次的概率为
(2)乙至少击中目标2次的概率为
(3)设乙恰好比甲多击中目标2次为事件A,乙恰好击中目标2次且甲恰好击中目标0次为事件B1,乙
恰好击中目标3次且甲恰好击中目标1次为事件B2,则A=B1+B2,B1,B2为互斥事件

P(A)=P(B1)+P(B2)
所以,乙恰好比甲多击中目标2次的概率为

X
的数学期望为 13()355EX.

相关文档
最新文档