新药设计与开发讲稿

新药设计与开发讲稿
新药设计与开发讲稿

第一章.概述

专利保护:一个创新药只要有生物活性,研制者在未作安全试验前允许申请专利。但目前专利保护期多为20年。上市以前的研究需要9-12年,故新药上市后的实际保护期仅8-11年,有的更短,一旦研制成功,申请上市时,该药已经或即将丧失专利保护了。

此外,一个创新药亦须在首次申请专利(多在研究者所在国家)后12个月内向别国申请同一专利,逾期即失去优先权,别国不再受理,专利权不受保护.而在创新药的研究开发成功率不足1%,前景莫测,研究者对其成功可能性没有较大把握时,是不会花钱向许多国家申请专利的,仅择其中少数开发成功把握性很大的药到别的国家申请专利。英国仅世界医药巨头GW(葛兰素·威康)每年申请新药专利即200余项,而英国每年到中国申请新药专利数量尚不及一个GW年申请新药的专利数。

行政保护:在1993年前,美、日、欧盟等国家的药品在中国不受专利保护。直到1993年,中美知识产权备忘录等提出规定,凡是在1986年至1993年之间美、日、欧盟等国的药物,如果进入中国市场,可以申请7年6个月的行政保护期,在这个期限内,国内厂家不能仿制。这就是所谓的对独占药品专利实施行政保护。其条件是:该药必须已经上市,迄今为止未在我国注册销售的品种,如属已发了进口许可证的1696个药品,或国内已进入临床试验研究的药品,均不属于行政保护之列,故目前符合要求批准行政保护的不足100个药品。

对于1993年以后在美国等发达国家申请的药物专利,等同于在中国申请,这就意味着,2003年以后上市的药物(2003=1993+10;一个新药从研制出来到上市,一般要经过10年的成熟期),一般都是1993年以后研制出来并申请专利保护的药物,已经不能仿制,仿制就是侵权。

新药保护:我国《新药保护和技术转让的规定》的第四条内容是: 新药经国家药品监督管理局批准颁发新药证书后即获得保护。各类新药的保护期分别为第一类新药12年;第二、三类新药8年;第四、五类新药6年。凡在试产期的新药,其保护期包含试产期。

由此可见,专利保护、行政保护以及新药保护是我国新药知识产权实施的主要内容。

全球化药物产品主要来自四个制药国,即美国、日本、英国和瑞士。他们实行的是带有专利保护的新药才能产生巨大的利润。国家有规定,仿制药品可能有8%的利润,一类新药可以有35%的利润。

我国新药来源

对于一类药而言,新药筛选是新药研发的源头。目前美国制药业筛选新药所用的方法和模式主要是大公司自己筛选和小公司筛选以及科研机构和大学的研究机构筛选。这些中小公司以及科研机构筛选到一定程度后,如临床前一期就将这些新药转卖给这些大公司。由于大公司集聚了充足的财力,它们能够再进一步对有开发前景的新药系统地展开研究。

新药研究开发具有高投入、高风险、长周期等特点,同时也具有相应的高回报率。如世界

医药巨头GW(葛兰素·威康)每年用于科技开发的经费占全年销售额13%,超赤55亿美元。因而,GW拥有本国一流也是世界一流的药品科研机构,每年都能研制开发出近10个新的高效药用化学结构和剂型。

我国目前药品科研和技术开发主体是政府直属的科研机构和高等院校。国内新药来源的主要途径是:1.科研单位与制药企业合作,由制药企业出资,科研单位研究,共同报批新药。这种形式是比较常见的。2.科研单位设法完成新药研制,通过新药审评取得《新药证书》后,转让给制药生产企业,获得技术转让费后用于新的研究。3.科研单位除了完成新药研制报批工作,同时还办有制药厂,新产品投产后,销售额一定比例返回科研单位,用于支持新的项目开发研究。

由于医药工业企业科技开发能力薄弱,只能进行简单的移植和仿制,产、研、学条块分割,因此科研成果转化率比较低,基本谈不上根据市场需求或潜在需求进行高效率的研究开发活动;此外,国内整个医药工业科技开发方面的投入也很少,几年来始终在总销售额的0.5%左右徘徊,只有7亿元左右。

我国重要的创新药物研发中心

如前所述,国内新药研发主体是科研院所;相应地,具有高科技含量的创新药的研发也就主要由中国的药科大学及国家级新药研发基地承担。

1.北大药物院。每年研制出的4、5个新药都是一类新药,因而是华北制药和浙江药业的重点投资对象,连续10年,每年向北药投资约50-100万元。

2.中国药科大学。中国药科大学是我国最早独立设置的药学高等学府,其研发机构由药学院、中药学院、生物制药学院三大部分组成,每一部分都是国家创新药物的重要研究中心。此外,新药研究开发中心筹建中的国家新药筛选中心,得到国家科技部和原国家医药管理局的鼎力支持。该中心是专门从事新药研究和开发的科研机构,有新建实验大楼3100平方米。

3.沈阳药科大学正在筹建国家新药安全评价研究中心。它由原国家医药管理局天然药物工程技术研究中心,原国家医药管理局新药研究管理中心宛阳中药质量标准化研究实验室组成。在新药研究创制方面现已由以仿为主转入了仿创并举,重点进行抗癌、抗炎、抗衰老、治疗心血管等疾病一类新药的创制和新剂型、新辅料的研究,同时,兼顾其它各类药研究开发工作。

4.中国科学院上海药物研究所新药研究国家重点实验室、国家新药筛选中心(筹)。中国科学院上海药物研究所是我国历史最悠久、也是中国科学院惟一的综合性药物研究机构。以生物活性物质的结构和功能及二者的相互关系为研究方向。主要学科和研究领域为天然产物化学、药物合成化学、药理学、毒理学、药物分子设计等。通过以上各学科紧密配合,重点从事神经系统药物、抗肿瘤药物、心血管药物、医用螯合剂、免疫调节药物、抗生素、生物科技药物、老年性与代谢性疾病药物的研究与开发。

5.北京国家新药开发工程技术研究中心。占地64公顷,由北京市和卫生部共同建设,拟在十五期间基本建成。按规划设有3个国家级机构,药物研究所等6个国家级研究所,3个生物医药

孵化器、综合性医药科技大厦以及社会化支撑。它将成为北京地区现有的惟一一家医药行业的国家级研发中心,国家新药开发工程技术研究中心。

6.华北制药集团新药研究开发中心。该中心被国家经贸委、国家税务总局和国家海关总署确认为首批企业技术中心。该中心是在国家经济发展及产业政策指导下,开展新药、新产品的研究开发工作。中心科研大楼的建筑面積为11000平方米,另外还有一个多功能的中试车间。 此外,一般医科大学仅只有药理学专业,这只是新药开发后期的一个重要部分,不具有源头创新性,中医学院一般有药学院(系),能够开发新药,一般也是三、四类为多,不具有真正意义上的源头创新。

1.建国以来,我国新药研究的概况如何?

建国以来,我国发展新药的口号是以仿为主,创新结合。“七五”和“八五”期间,国家新药攻关课题70%以上是仿制产品。我国在创制药物研究方面人才缺乏﹑资金不足﹑技术理论储备不够,又缺乏科学管理,以致我们创新药物的总体设计研究水平与发达国家相比差距很大,独立创制新药的能力极弱。

目前我国制药工业的规模很大,其产值仅低于美国,规模已具世界前列。从我国制药工业的发展规模到新药研究发展的现状来看是极不协调的。该局面带来的后果:一窝蜂低水平重复仿制,造成人﹑财﹑物﹑力的浪费。限制了出口创汇,失去参与国际竞争的能力。

1993年我国已经实施药品专利,完成由仿制——创新的战略转轨。目前的迫切任务是奠定理论﹑蓄积人才。1993年初,我国成立了国家新药研究与开发领导小组。已着手研究我国新药研究与开发的中期科技战略规则,加强对我国新药研究与开发的宏观指导,并已制定了相应的措施。

2.1993年我国修订了专利法中的什么内容?

实施药品专利,完成了由仿制——创新的战略转轨。

3.国外开发新药数较多的是哪些国家?

日本﹑美国﹑英国﹑德国﹑瑞士﹑西班牙﹑法国等。

4.未来新药的发现有哪几种途径?

先导物开路:开拓先导物的发掘途径,缩短先导物的发掘周期。通过SAR信息进行结构修饰或改造,进而经过定量构效关系(QSAR)研究,以获得最佳治疗药物。

利用新技术﹑新领域,组织多学科领域的协调攻关。

加强生物技术产品的研究开发。

加强陆地和海洋动植物成分的研究。

5.新药发现的主要来源?

天然产物作为发现新药的来源。它们可以作为化学先导物,通过药物化学家的提炼和修饰而成为特异性更强的治疗药物。近年来,也有利用微生物发酵工程寻找先导化合物的例子,这种发酵液中含有数百种化学物质,是一个发掘新的酶抑制剂的丰富资源。

现有药物作为发现新药的基础。改善药物吸收或延长作用时间,增强疗效,降低给药剂量或避免某些毒副作用,制备更好的剂型等;另一面,可以老药新用。类型衍生物和定量构效关系(QSAR)是利用现有的药物研究和发掘新药的另一个重要途径。

通过广泛筛选新药。在新的抗生素﹑抗代谢物和酶抑制剂天然产物的基础上,有了它们的大量合成复制品,根据实验提示的生物活性,这是发现新药的第三个主要来源。

研究生理机制是进行现代药物设计的合理探索。随着对机体生理机制的了解,从一个合理的假设来进行药物设计已证明是行之有效的。6.新药研究的化合物类型有哪些?

多肽和蛋白质核苷脂质多糖类

7.举出80年代重大技术突破的化学药品?

1.Captopril ACE抑制剂(1981)

2.Insulin Pump胰岛素给药泵(1982)

3.Huminsulin r-DNA胰岛素(1982)

4.Somatren r-DNA人体生长激素(1985)

5.Orthoclone 免疫抑制剂(1986)

6.Activase r-DNA

Tpa(1987)

7.Horastain HMG CoA 还原酶抑制剂 8.Omeprazole 质子泵抑制剂(1988) 9.Erythropoietin r-DNA红细胞生长素(1988)

10.Interleukin 生物效应调节剂(1989) 11.Ondansotron 拮抗剂(1990) 即丹固琼。

8.新药设计内容有哪2个方面?

同系物或类似物中最佳化合物的设计和获得。即最佳化合物设计(Lead optimization)或系列设计(Series Design)

类型演化(Lead Generation):新的先导化合物(Lead Compound)或模型化合物(Pattern Compound)的寻求,通过对多种模型化合物的结构剖析,确定显效化学结构,进而获得全新结构的化合物。

9.什么是模型先导化合物?

先导化合物(Lead Compound)或模型化合物(Pattern Compound)具有某种生理活性的化合物,可用来作为进行结构修饰和结构改造的入门模型,从而可以获得预期药理作用的药物,叫模型先导化合物。10.新药的发现依赖于哪些专业研究人员的密切配合?其涉及哪些领域?由哪8大学科合成完成?

新药的发现依赖于制药工业﹑科研院所和医院临床中各类专业研究人员密切配合。它主要涉及化学﹑生物学和医学等学科领域。从一个先导化合物的发现到进入市场,要经过合成化学﹑分析化学﹑药理毒理学﹑制药学﹑药物动力学﹑临床药理学和药事管理学等八大学科领域的参与和合作。

第二章.药物作用的分子生物学基础

1.什么叫受体?

能够与药物有机小分子发生结合并产生相应药理作用的机体组织成

分(生物大分子)。

2.受体的结构是如何形成的?

受体大都是细胞膜上具有三四级结构的弹性内嵌蛋白质和细胞浆内的可溶性蛋白质三维实体及DNA和RNA生物大分子。

许许多多的氨基酸分子﹑靠分子中的羧基和另一分子中的α氨基脱水形成酰氨键(肽键),形成了链状高聚物多肽。通过盐键﹑氢键和二硫键﹑疏水键等非共键力的作用,使多肽链上距离较远的基团能相互吸引,并使多肽链折叠盘曲成一定的形状,构成了蛋白质的二三四级结构。

3.什么叫生物膜?起什么作用?

药物对靶细胞作用时,需要通过的细胞膜或细胞内亚细胞水平的一群细胞器(如:线粒体﹑内质网﹑内质器﹑溶酶体等)的膜。这些细胞器就是一整套庞大的复杂的膜性结构所组成,它们和细胞膜一并统称为生物膜。

作用:界膜包裹作用;是直接参与细胞生理代谢过程的重要机构。

4.生物大分子结构方面有哪些特征与共性?

具有多种单体的共聚物。

具有多层次结构。三维空间结构:分子基本单位通过化学链聚合产生一级结构;高聚物链状结构所形成特征的立体结构形成二级结构;在二级结构的基础上按一定方式再行盘曲折叠而形成的空间结构,是三级结构。四级机构是具有多个三级结构亚基的聚集体。

生物高分子结构的可变性。一级结构的改变:生物高分子在体内合成后,往往需要经过某些“加工”才能变成具有特定结构和生物功能的分子。高级结构的改变:维系生物大分子高层结构的分子内非共价键可因外来分子或周围环境的影响而改变,从而使生物大分子局部空间构象有所改变。

5.为什么了解生物膜对新药设计有特殊的意义?

绝大部分受体都在细胞膜上,也是膜的组成部分,很多药物就是通

过影响细胞膜的功能而发挥药效的。

6.什么是药物动力学时相?

药物从吸收进入血液循环,然后分步到各组织和靶细胞以至进入滑面内质网,线粒体等被代谢。最后排出体外,这一系列药物在体内的过程统称为药物动力学时相(Phanma Cokinetic Phase)。

7.生物膜的化学组成?

生物膜:水(80%)

有机物质(20%): 类脂质

蛋白质

少量的糖

微量金属离子等

8.生物膜的分子结构组成如何?

以液晶态的脂质双层为基质,镶嵌和垫付着可以活动的球状蛋白质团块或微丝﹑丝管等共同组成生物膜。

蛋白质团块:内嵌蛋白质

表面蛋白质

糖链

金属离子

第三章.药物作用的分子药理学基础

1.药物产生药理效应,在电性和空间上应具备什么样的要求?

电性上与受体表面电荷相匹配,空间上与受体立体图象相互补。这样就形成一种可逆性的药物受体复合物,导致受体构象改变并产生一系列的生理生化反应,从而导致一定药理效应。

2.受体是如何进行分类的,举出一些例子。

根据其激动剂划分,如乙酰胆碱受体,又分烟碱型及毒碱型二种:

肾上腺素类受体又分为α﹑β1及β2等;组胺受体也有H1及H2两种;以及其他内源性活性调节物质,如5-HT﹑胰岛素﹑甾体激素等受体。此外,也有根据先发现的外源性药物来分类命名的,如吗啡受体;也有一类外源性药物来分类命名的,如抗炎药受体等。

3.药物与受体结合的非共价键分哪几种?

(1)离子键(2)离子-偶极(3)偶极-偶极(4)氢键价(5)电荷转移键(6)疏水性相互作用(7)范德华力相互作用。

4.举出以共价键结合的药物例子

(1)某些有机磷杀虫药,胆碱酯酶抑制剂和烷化剂类抗肿瘤药都是通过与其作用的生物受体间形成共价键而发挥作用的。

(2)具有高张力的三﹑四圆环内酯或内酰胺类药物,如β-内酰胺类抗生素。

(3)青霉素的抗菌作用就是由于它能和细菌细胞壁生物合成一种酶,转肽酶生成共价键。

5.举出带阳离子的药物,带阴离子的药物和带离子的药物,它们的结构特点分别是什么?

阳离子型药物:阿托品(解痉药),麻黄碱(拟交感药),可卡因(局麻药),氯环嗪(抗组胺药),奎宁(抗疟药),吗啡(镇痛药)。阴离子型药物:苄青霉素(抗菌药),乙酰水杨酸(解热镇痛药),磺胺嘧啶(抗菌药),苯巴比妥(镇静催眠药)。

离子型药物:氯化筒箭毒碱(肌松药),氯化氨甲酰胆碱(拟胆碱药),苯扎溴铵(杀菌剂)。

6.药物中哪些类取代基或基团以离子-偶极,偶极-偶极方式结合?

带有部分正﹑负电荷的羰基﹑酯﹑醚﹑酰胺﹑腈和基团。

7.氢离子有什么特点?什么样的原子易形成氢键?

氢原子核实际上是一个极有效的结合电极,因为它即小又缺乏外层电子,当偶极的负极端是一个电负性原子时,这些特点就是明显。在生物相中最常见的氢键是羟基和氨基之间,其稳定性递减次序大约是

OHN>OHO>NHN≌NHO这种键可发生在分子间,分子内或二者的结合。

8.举出生物体系中产生的氢键实例。

在DNA﹑RNA的双螺旋结构中多重氢键大大增加了结构的稳定性,但就每一个孤立氢键而言,是相对较弱的,而且是可逆的,这在烷化剂类药物的作用中已经证明,其中进攻的氮芥易于取代分子中的氢键。

9.合成镇痛药的化学结构有什么特点?

(1)分子中具有一个平坦的芳环结构。

(2)一个碱性中心,并能在生理PH条件下大部分电离为阳离子,碱性中心和平坦结构在同一平面上。

(3)含有哌啶或类似于哌啶的空间结构,而烃基部分在立体构型中,突出于平面的前方。

10.酸性非甾类抗炎药有什么共同结构特点?

(1)有一可解离的酸性基团。

(2)芳杂环平面结构。

(3)与芳环非共平面的取代基。

11.举例说明受体空间与药物分子中两个特定官能团之间距离的关系。 局部麻醉药普鲁卡因,拟胆碱药乙酰胆碱,解痉药解痉素和抗组胺药苯海拉明等的酯键或醚键氧原子与氨基氮原子之间的距离均为5.5A,接近于5.38A。

12.举出几何异构体对药效影响的例子。

几何异构体中的官能团或与受体互补的药效基团的排列相差极大,理化性质和生物活性也都有较大差别。如上所述,顺式己烯雌酚和反式己烯雌酚二者的立体结构和生物活性都相差甚远。

13.举出光学异构对药效影响的例子。

对映异构体除旋光性外,理化性质极其相近,其生物活性的差别则更能反映受体对药物的立体选择性。如抗坏血酸L(+)异构体的活性为D(-)异构体的20倍。

14.什么叫构象异构?

分子内各原子和基团的空间排列因单键旋转而发生动态立体异构现象,称为构象异构。

第五章.新药先导化合物的发掘与药效几何模型的确定

1.什么叫基本结构?确定基本结构有何意义?举出一些类药的基本结构。

一般是为了作为模型的先导化合物,再经过结构剖析与改造,以确定与药理活性有关的基本骨架,也叫作药效团几何模型或基本结构。确定了该基本结构后,根据不同的目的(改善药动学或药效学性质),通过电子等排体原理﹑前药原理等进行构效关系或定量构效关系(QSAR)研究,可以发现一大批具有相同基本结构的优良药物。

2.先导化合物的发掘途径有哪些?

(1)动﹑植物和微生物中天然活性成分的分离。

(2)生命基础过程研究中发现先导化合物。

(3)现有药物总结性研究中发现先导化合物。

3.举出从哺乳动物体内发现激素药物的例子。

早期,从哺乳动物的性器官分离到的某些性激素,如雌二醇﹑睾丸素;作为外源性药物一般都因其在体内的代谢稳定性差而无药用价值,但其结构修饰衍生物如炔雌醇﹑苯丙酸睾丸素则有极好的临床治疗效果。

4.举出从哺乳动物体内发现抗癌药物的例子。

抗瘤酮A10,是一个从人的血液和尿液中分离出来的天然小分子抗癌活性物质,其分子大小和形状类似于一个DNA碱基对,以特种方式嵌入DNA碱基对之间,拮抗病毒或某些化学致癌物对DNA双螺旋的冲击,阻止癌基因的激活。其体内外初期降解产物AS2-5 是一个谷氨酰胺的衍生物,为一谷酰胺代谢拮抗剂,竞争性抑制蛋白质合成过程中的Glun-tRNA转移酶,并不弱的细胞终端诱导分化作用。因此是一个具有多作用位点的抗癌活性物质。但人作为一个外源性药物,由于其生物利用度和代谢稳定性差,因此用药剂量太高,临床难以接受。但作为

寻找无毒抗癌药物的模型先导化合物,抗瘤酮A10是一个理想的分子,如何通过结构修饰来改善其生物利用度和提高其代谢稳定性,是设计和筛选最佳化合物必须考虑的重要因素,抗瘤酮结构类似物设计﹑合成和构效关系研究,国内外已有大量报道。初步研究表明,当苯环的对位引入羟基时,由于改善了生物利用度,增加了与受体的结合点,其疗效增强5——10倍。

5.由可卡因如何简化而得到新的基本结构?举出临床应用的此类药物。

早期由古柯叶中分离出的可卡因,作为先导化合物通过结构剖析﹑改造和构效关系研究,确定了局麻药的药效几何模型或称基本结构,从而才有大批优良的局麻药的问世。

可卡因的结构改造表明,分子中N-甲基和羧甲酯基的去除,四氢吡咯环的打开,对局麻活性没有影响,而苯甲酸酯基部分必须保留。从而合成了大量苯甲酸酯的衍生物,经构效关系研究确定其基本结构为:临床应用的此类药物有:盐酸普鲁卡因﹑氯普鲁卡因﹑丁卡因﹑羟普鲁卡因﹑氨布卡因﹑美布卡因﹑丙美卡因﹑对乙氧卡因。

第六章.生物电子等排体与新药设计

1.举例说明广义的电子等排体。

广义的电子等排体概念是指具有相同数目的价电子的不同分子或原子团,不论其原子及电子总数是否相同。例如:F﹑OH﹑NH2﹑CH3为一个系列的电子等排体,-O-﹑-CH2-﹑-NH-是另一系列的电子等排体;-N=﹑-CH=为一个系列,Ne﹑HF﹑H2O﹑NH3又成一系列。

更为广义的电子等排体概念是由内外层电子数来决定。如:-CH=CH-与-S-为电子等排体,因而苯与噻吩也为电子等排体;同样,-O-与-NH-为电子等排体,因而甲苯和溴苯也是电子等排体等等。

2.什么叫生物电子等排原理?

由于电子等排体具有相近的物理化学性质,因而在设计新药时可以在具有生物活性分子中,以一个电子等排体取代另一个,常导致具

有与母体化合物类似的生物活性或有与母体化合物起拮抗的作用。利用这一规律设计新药的道理,称为药物化学中的生物电子等排原理。

3.近代生物电子等排体的概念包括哪些参数?

近代生物电子等排体的概念认为:生物电子等排不仅应具有相同总数外层电子,还应在分子大小﹑形状(键角﹑杂化度)﹑构象﹑电子分布(极化度﹑诱导效应﹑共轭效应﹑电荷﹑偶极等)﹑脂水分布系数﹑pKa﹑化学反应性(代谢相似性)和氢键形成能力等方面存在相似性。

4.σm表示电性效应参数,∏表示疏水性参数,Es表示立体参数,分别举出这些参数电子等排体的基团。

F﹑Cl﹑Br﹑I﹑CF3﹑SCF3﹑COMe﹑CHO﹑COOMe﹑CH=CHNO2的σm相近,具有等电性,为等电性电子等排体。

Cl﹑Br﹑CF3的∏值相近,为等疏水性电子等排体,COMe﹑CHO也属于此类。

就Es而论,I﹑CF3为等立体性电子等排体。

任意有相近的两种以上性质的官能团可称为并具这些性质的电子等排体。

5.举出基团反转的例子。

镇痛药二甲基哌替啶是一个哌啶醇的丙酸酯,而哌替啶则是一个哌啶酸的乙酯,二者有着一个酯基反转的关系。

6.举出环系的打开的例子。

磺胺类口服降血糖药的发现是直接来源于临床观察。1942年,一个磺胺噻唑的衍生物被专门用于治疗伤寒,但却发现使血糖降到了一个致命的水平,直到1955年,在这个发现的基础上,该化合物才用治疗糖尿病。后经噻吩环开环修饰得到硫脲,最后用=O代替=S产生了氨磺丁脲。

第七章.前药原理与新药设计

1.什么叫化学结构修饰?什么叫前药?什么叫前药原理?

保持药物的基本结构不变,仅在基本功能基上作一定的化学结构变化,称为化学结构修饰。

所谓前药是一类由于结构修饰后分子中的活性基团被封闭了起来而本身没有活性,但在体内可代谢成为具有生物活性的药物。

所谓前药原理即是用化学方法把具有生物活性的原药转变成为体外无活性的衍生物,后者在体内经酶解或非酶性水解释放出原药而发挥药效。利用这种在体内逐渐转变为有效药物而把生物活性的原药潜伏化的道理称之为前药原理。

2.举出通过前药原理,设计出促进药物吸收的例子。

药物的吸收主要与酯水分配系数有关,许多青霉素类药物口服给药时吸收不完全,它们的疏水性酯可用于改善吸收,青霉素类简单的脂肪酸酯在体内是无活性的,活化了的酯需要从无活性的前药酯释放活青霉素。

氨苄青霉素是一个广谱抗菌素,但口服效果差,作为无活性的前药口服易于吸收。临床应用的有匹氨西林﹑巴坎西林﹑酞氨苄西林等,它们在体内通过酶水解转化成氨苄青霉素,其中最好的前药匹氨西林。匹氨西林的特戊酰氧甲酯含有一个酰氧甲基功能团,在体内迅速被酶水解为羟甲基酯,该酯是一个甲醛的半缩醛,可自动裂解释放氨苄青霉素和甲醛。

3.举出通过前药原理,设计出增加溶解度改善吸收的例子。

如匹罗卡品在眼内迅速排泄,其缩瞳作用维持时间很短,它的“软”四价盐十六酰甲基匹罗卡品含有一个亲酯性侧链,能迅速吸收,仅以匹罗卡品1/10的剂量,则会产生更持久的作用。是由于酯的水解裂解,随后释放出匹罗卡品和甲醛而发挥作用的。

4.举出通过前药原理,设计出延长药物作用的例子。

作为镇静剂的噻吩嗪类药物,通过转变成前药后,经肌肉注射给药而成长效型药物,不仅减少了给药的次数,而且也消除了有时产生的一些副作用。如氟哌噻唑,当制成其癸酸酯以油性溶剂注射给药后,

可从脂质蓄库中释放出原形药物,透过血脑屏障后随即水解成母体药物发挥作用。

5.举出通过前药原理,设计出掩蔽药物不良气味的例子。

氯霉素是一个治疗伤寒和沙门菌感染的特效药,但味道极苦,通过制剂方法制成胶囊或糖衣片可以掩蔽其苦味,但对于吞咽功能差的婴﹑幼儿来说一般要求服用液体制剂。鉴于上述原因,现在一般都制成无活性的前体药物,氯霉素棕榈酸酯或肉桂酸酯的形成,称为无味氯霉素,服用后通过小肠中存在的酯酶水解释放出活性母体药物。

6.什么叫拼合原理,举例说明。

将两种药物的结构拼合在一个分子内,或将两个药物的基本结构兼容在同一个分子内,以求得到二者作用的联合效应,满足临床用药的多方面要求,这种设计新药的方法叫做前药原理中的拼合原理。

比如目前应用的抗菌药物有两大类型,即抗生素与喹诺酮类合成抗菌药。β-内酰胺类头孢菌素的作用为阻挠细菌合成其细胞壁,而喹诺酮类药物则是干扰细菌核酸的功能。将头孢噻肟和罗氟沙星以酯键联结在同一分子内,形成新药RO23-9424。该新药分别从两方面(阻扰细菌合成其细胞壁﹑干扰细菌核酸的功能)抑菌,因而该新药具有强烈的抑菌活性。

新药设计i

2.如何提高新药的命中率? ?… … 如何提高新药研究命中率? 虚拟筛选是利用计算机强大的计算能力,采用三维药效基团模型搜寻或分子对接的方法,在化合物数据库中寻找可能的活性化合物。在找到一些潜在的活性分子之后,可以通过向有关机构定购、自己合成或提取分离的方法得到样品,并进行药理测试。而目前新药发现中常用的高通量筛选技术虽然为进行大量化合物的实验测试提供了可能,加快了发现新药的速度,但存在假阳性和化合物样品来源有限等问题。与高通量筛选相比,虚拟筛选不存在样品的限制,其费用也远远低于前者。依靠超级计算机的强大计算能力先进行虚拟筛选,然后再进行药理测试这一新药研发策略,将有望大幅度提高新药发现的“命中率”。 高通量筛选和高内涵筛选区别?(一)高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机分析处理实验数据,在同一时间检测数以千万的样品,并以得到的相应数据库支持运转的技术体系,它具有微量、快速、灵敏和准确等特点。高内涵筛选是指在保持细胞结构和功能完整性的前提下,同时检测被筛样品对细胞形态、生长、分化、迁移、凋亡、代谢途径及信号传导等方面的影响,在单一实验中获取大量与基因、蛋白质及其他细胞成分相关的信息,确定被筛样品生物活性和潜在毒性的过程。高内涵筛选应用高分辨率的荧光数码影像系统获得被筛样品对细胞产生的多维立体和实时快速的生物效应信息,对其多角度分析(二) 高内涵筛选的优势 高通量筛选是按照发现药物的基本规律,应用药理学、生物化学、细胞生物学、分子生物学、计算机科学、药物化学、组合化学等多种学科,快速、高特异性、高灵敏度地对样品进行筛选的过程。高通量筛选模型主要建立在分子水平之上,针对单一药物靶点对被筛样品的活性进行评价,仅能够得到有限的活性数据,无法全面反映出被筛样品的生物活性特征,因此初筛得到的阳性结果仍需要进一步确认。 高内涵筛选则能够以细胞为单位实现同时获取对多靶点的活性数据,其中涉及的靶点包括细胞膜受体、细胞器以及其他胞内成分。通过同步应用报告基因、荧光标记、酶学反应和细胞可视化等常规检测技术,研究人员可以由细胞个体和群体的各种反应信息全面分析被筛样品,在新药研究的早期阶段既能够获得其对细胞产生多重效应的详细数据,如细胞毒性、代谢调节和非特异性作用等,从而显著提高发现先导化合物的效率,增加开发的成功率。药效团 认为药物与受体相互作用的第一步是受体分子对药物分子的识别过程,受体须识别接近的分子是否具有相互结合所必须的性质,所谓药效团指的就是符合某一受体对配体分子识别所提出的主要三维空间性质要求的分子结构要素。具有某一特定药效团的分子,也就具有了与某一特定受体结合的主要性质,就会显现出某种生理活性。

新产品设计开发流程(完整资料)

{修订记录}

1.目的 对产品设计开发全过程进行控制,确保产品能满足市场需求及顾客的要求,达到或超过、行业标准以及相关规定的技术要求。 2.使用范围 本程序适用于公司所有新产品的设计开发和现有产品的重大改进。 3.职责定义 3.1工程部负责设计开发工作的整个过程控制,负责设计输入到样件确认、批量生产的整个过程控制,负责设 计开发过程中生产工艺和输出文件的管理。 3.2PMC计划部负责设计开发过程中生产系统各部门资源的组织、协调与配合 3.3品质部负责设计开发过程中原材料及过程的品质控制。 3.4生产部负责批量生产及生产工艺。 3.5采购部负责设计开发及批量生产过程中的配套采购,及认证所需的配套文件。 3.6业务部负责新产品的策划宣传 3.7以上各相关部门协同实施设计开发,参与策划和规定的评审、验证和确认。 4.引用标准及术语定义 无 5.作业流程 6.流程说明

6.1新产品设计开发的信息来源 6.1.1公司各员工收集市场需求、客户要求以及行业的发展趋势的相关资料,交总经理办公室。由总经理组织 公司高层管理根据产品的市场需求、客户要求、市场占有率、技术现状和发展趋势以及资源效益等几方 面进行科学预测及技术经济的分析论证,确定产品的系统功能与市场定位。由工程经理编制《项目开发 建议书》。 6.1.2现有产品的重大改进,由项目负责人编制《项目开发建议书》。 6.1.3销售合同,客户订做:有技术开发成分的销售合同(包括技术协议),必须进行评审。评审通过后,将 相关技术资料送交工程部,销售合同视为《项目开发建议书》。 6.2质量计划 6.2.1项目负责人根据《项目开发建议书》对产品的实现过程进行策划,组织编写《质量计划》&《新产 品开发计划表》。 6.2.2《质量计划》包括以下的内容:产品的质量目标、人员配置要求、生产及检测设备、列出需验证的 项目及方法、关键件明细及质量控制方法(包括关键原材料技术协议及关键自生产件控制要点)。 6.2.3《新产品开发计划表》包括以下的内容各部门人员的组成,分工及时间要求等。 6.2.4《质量计划》&《新产品开发计划表》由总经理批准后方可实施。 6.3项目确认 6.3.1设计输入 6.3.1.1设计输入应包括一下内容: a)产品的功能要求和性能要求;分析客户图纸或样品。 b)产品遵循的法律、法规、标准(3C,等)。 c)以前类似设计的有关信息。 d)设计开发所需的人员配置要求及分工、生产及检测设备等其他要求。 e)设计时间的要求。 6.3.1.2项目负责人依据《新产品开发计划表》的安排组织设计开发输入评审。设计开发输入评审是对输入文件 的充分性和适宜性进行评审。 6.3.1.3设计开发输入评审的目的 a)评定性能参数、产品功能、结构特点是否满足市场要求。 b)评定产品是否具有市场前瞻性 c)评定产品总体布置是否可行、合理。 d)评定产品结构特点合理性、先进性、通用性、可行性以及配套使用性、工艺性。 e)评定所依据的法律、法规、标准(3C等)是否具有有效性、适用性。 6.3.1.4依据评审结果对《项目开发建议书》、《质量计划》、《新产品开发计划表》进行更改、更改过程按《工程 更改控制程序》进行 6.4设计试做 6.4.1详细设计

新药设计论文

新药设计论文 Revised by Jack on December 14,2020

药 物 设 计 论 文 一药物基本参数 中文名:丁酸氯维地平 汉语拼音:ding suan lv wei di ping 英文名:Cleviprex CAS登记号: 结构式: 分子式:C21H23CL2NO6 分子量: :系统命名:4-(2,3-二氯苯基)-1,4-二氢-2,6-二甲基-3,5-吡啶二甲酸甲基(1-丁酰氧基)甲酯

二:药品上市时间及机构 丁酸氯维地平是一种创新的注射型抗高血压药物,由英国阿斯利康公司(AstraZeneca)原研制,美国The Medicines Company拥有在除日本以外的全球市场开发和商业化授权,并于2008年8月11日首次在美国上市本品。目前在中国申请的有关氯维地平的专利两篇,公开号CN1137269、CN1136774,申请日均为1994年11月3日,已授权。CN1137269专利名称为“短效的二氢吡啶类化合物及制备方法和用途”,保护了化合物、制备方法及用途;CN1136774保护了注射用乳剂。此外,瑞典阿斯利康有限公司2000年申请了新制备方法专利,WO0031035,未在中国申请。2014年11月3日此专利已经到期,目前即可在国内销售该品种。 三:药品功效及作用机制 药品功效: 丁酸氯维地平是一种创新的注射型抗高血压药物,用于治疗急性高血压,效果可持续72小时,该药可在口服药物无效或患者不方便使用口服药物时使用,其起效迅速。与现有高血压药物通过肾或肝脏代谢不同,丁酸氯维地平在血液中代谢,不会在体内积蓄,特别适用于那些晚期器官损害的患者。 作用机制: 丁酸氯维地平是一个超短效L-型二氢吡啶类钙通道阻滞剂, L-型钙通道控制动脉平滑肌去极化过程中钙离子的流入。大鼠和狗的麻醉试验显示丁酸氯维地平通过选择性舒张动脉血管, 降低全身血管阻力使平均动脉压降低, 而不降低心充盈压(前负荷), 对心肌收缩力和静脉血管容量亦无影响。 四药理作用 药效学:

新药设计与开发期末考试复习题

新药设计与开发复习题 名词解释题 1.H2 受体 是组胺受体的一个亚型,主要分布于胃壁细胞、血管和心室、窦房结上,可引起胃酸分泌过多,血管扩张、心脏收缩加强、心率加快等生物效应。 2.H2受体拮抗剂 主要用于拮抗组胺引起的胃酸分泌,是治疗消化性溃疡很有价值的一类药物。 3.前药原理 前药是一类由于结构修饰后的化合物分子中的活性集团被封闭了起来而本身没有活性,但在体内可代谢成为具有生物活性的药物。 前药原理是用化学方法把具有生物活性的原药转变成为体外无活性的衍生物,后者在体内经酶解或非酶性水解而释放出原药而发挥药效。 4.先导化合物:简称先导物,是通过各种途径和手段得到的具有某种生物活性和化学结构的化合物,用于进一步的结构改造和修饰,是现代新药研究的出发点。 5.受体拮抗剂:与受体有较强亲和力而无内在活性的药物。 6.受体:指能与激动剂高度选择性的结合,并随之发生特异性效应的生物大分子或大分子复合物。 7.受体扩散剂:

8. 软药:是指一类本身有治疗效用或生物活性的化学实体,当在体内呈现药效并达到治疗目的后,按预料的代谢途径和可控的代谢速率的代谢, 转变成无毒、无活性的代谢物。 简答或其他 1、计算机工作站软件系统组成? 答:(1)数据库;(2)参数运算系统;(3)数据转换系统;(4)解析系统;(5)预测系统;(6)显示系统;(7)操作系统 计算机数据库、数据转换系统组成? 答:数据库:包括了各类化合物数据、分子结构数据、基团参数数据和生物活性数据等。数据库系统的软件中包括操作系统(OS)、数据库管理系统(DBMS)、主语言系统、应用程序软件和用户数据库。数据转换系统组成:不知道 数据转换系统:通过数据转换程序将分子的结构数据转换成屏幕显示时所必须的直角坐标系的形式。(只找到定义) 2、新药设计的经典原理和方法有哪些?(PPT) 答:经典方法:前药原理,软药原理,拼合原理,生物电子等排原理,相似原理等;一般方法有类型演化和结构优化等 3、类似物设计的目的和结果是什么?答:目的是为了获得比先导化合物疗效更好,毒副作用更少,便于合成的新药。结果:药效保持或更好,药效减小或消失,毒副作用减少,新的药效。

新药设计论文

新药设计论文文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

药 物 设 计 论 文 一药物基本参数 中文名:丁酸氯维地平 汉语拼音:ding suan lv wei di ping 英文名:Cleviprex CAS登记号: 结构式: 分子式:C21H23CL2NO6 分子量: :系统命名:4-(2,3-二氯苯基)-1,4-二氢-2,6-二甲基-3,5-吡啶二甲酸甲基(1-丁酰氧基)甲酯

二:药品上市时间及机构 丁酸氯维地平是一种创新的注射型抗高血压药物,由英国阿斯利康公司(AstraZeneca)原研制,美国The Medicines Company拥有在除日本以外的全球市场开发和商业化授权,并于2008年8月11日首次在美国上市本品。目前在中国申请的有关氯维地平的专利两篇,公开号CN1137269、CN1136774,申请日均为1994年11月3日,已授权。CN1137269专利名称为“短效的二氢吡啶类化合物及制备方法和用途”,保护了化合物、制备方法及用途;CN1136774保护了注射用乳剂。此外,瑞典阿斯利康有限公司2000年申请了新制备方法专利,WO0031035,未在中国申请。2014年11月3日此专利已经到期,目前即可在国内销售该品种。 三:药品功效及作用机制 药品功效: 丁酸氯维地平是一种创新的注射型抗高血压药物,用于治疗急性高血压,效果可持续72小时,该药可在口服药物无效或患者不方便使用口服药物时使用,其起效迅速。与现有高血压药物通过肾或肝脏代谢不同,丁酸氯维地平在血液中代谢,不会在体内积蓄,特别适用于那些晚期器官损害的患者。 作用机制: 丁酸氯维地平是一个超短效L-型二氢吡啶类钙通道阻滞剂, L-型钙通道控制动脉平滑肌去极化过程中钙离子的流入。大鼠和狗的麻醉试验显示丁酸氯维地平通过选择性舒张动脉血管, 降低全身血管阻力使平均动脉压降低, 而不降低心充盈压(前负荷), 对心肌收缩力和静脉血管容量亦无影响。 四药理作用 药效学:

产品开发设计讲稿

产品开发设计讲稿 第一章、导论 1、新产品和新产品的开发 1.1.1成功的产品开发的特点 ?产品质量 开发出的产品有什么优越性?它能满足顾客的需要吗?它是否强健和可靠?当然,产品质量最终反映在市场份额和顾客愿意支付的价格上。 ?产品成本 什么是产品的制造成本?这个成本包括在资本设备和工具上的花费,以及生产每一单位产品所增加的成本。产品成本决定了企业从特地昂销售量和特定销售价格中获得的利润。 ?开发时间 团队能够以多快的速度完成产品的开发?开发时间决定了企业对竞争对手和技术进步做出的反应程度,以及企业怎样迅速地从团队工作中得到经济回报。 ?开发成本 企业在开发产品活动中需要多少花销?产品开发成本通常在为获得利润而进行的投资中占有可观的比重。 ?开发能力 团队和企业能够在以往产品开发经验的基础上更好地开发未来的产品吗?开发能力是企业的一项重要资产,它使企业可以在未来更有效、更经济的开发产品。 1.1.2谁来设计和开发产品 ?市场营销 市场营销职能调节着企业与顾客之间的相互作用。它常常帮助企业进行产品机会的识别、细分市场的界定和顾客需求的判断。营销还可以加强企业和顾客之间的交流、设定价格、关注产品的试销与促销等。 ?设计 设计的职能在于它会产生最能迎合顾客需求的产品实物形态的定义。在这里,设计的职能包括工程设计(机械、电子、软件等)和工艺设计(美学、人机工程、用户界面)等。 ?制造 为了制造产品,制造职能要首先对设计和运作产品系统负责。广义的制造职能还包括采购、分配和安装等。这一系列活动通常称为“供应链”。 1.1.3产品开发的时间和成本 很少有产品能在一年内被开发出来,许多产品开发需要3—5年的时间,有些甚至会长达10年之久。 产品开发的成本大致与项目团队中的人员数量和项目持续时间成正比例。除了开发活动的开支外,大部分企业还要对产品所需的工具和设备进行投资,这种花费通常占产品开发预算的50%。 1.2 产品开发的流程和组织 阶段0(规划)—阶段1(概念开发)—阶段2(系统整体开发)—阶段3(细节设计)—阶段4(测试和改进)—阶段5(产品试用) 产品开发流程的一种思路是:首先创造一套广泛的可替代的产品概念,然后缩小产品的可替代范围以提高产品的特殊性,直到该产品可以被生产系统可靠地、重复地生产出来为止。尽管对于某些有形产品,生产流程和营销计划也包括在开发流程中,但应当注意,大多数开

前药原理与新药设计

前药原理与新药设计 探索前药原理在新药设计中的规律,推动新药研究工作的开展,通过文献检索,综合、归纳、分析、概括前药原理在新药设计方面的典型事例。前药原理在新药设计中广泛应用,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。利用前药原理设计新药投资少、风险小、成功率高,适合我国国情,是值得推广的新药研究途径。 关键词:前药原理结构修饰新药设计 进入21世纪H我国新药研究从仿制向创制转轨已成共识。然而,新药创制是系统工程,需 要多学科协同作战,难能一蹴而就。但是对我们13亿人口的大国来说,服药的重要性不亚于吃饱穿暖,是迫在眉睫一天也不能或缺的国计民生大事。根据我国的实际情况,新药研究应以开发那些结构类型已知,疗效优于或近于现有同类产品的药物作为主攻方向【1】。前药原理是将已知有生物活性而又存在某些缺点(如:生物利用度差、性质不稳定、作用时间短、有异味等)的药物经结构修饰制成新药即前药,后者体外无活性,在体内分解释放出原药产生药效。与原药相比,前药保持或增强原药的药效,又克服原药的缺点。前药属于结构类型已知,疗效优于或近于现有同类药物的创新药物类型,其特点为投资少、风险小,成功率高因而在新药研究中占有重要地位,尤其适合目前我国制药工业中既有的实际情况,为推动我国新药研究工作的发展,现按照结构修饰类型综述有关前药原理在新药设计中的应用。 1、含羧基药物的前药设计 1.1成酯前药设计 氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服,但是口服吸收差,血药浓度只有注射给药的20%~40%,分析结构表明,氨卡青霉素分子中C2羧基与C6侧链氨基,在胃内pH 情况下解离为两性离子,极性大是影响口服吸收的关键,将羧基成酯,发现其简单的脂肪/芳香酯类不够活泼,在体内酶促分解成原药的速度很慢,血药浓度达不到峰值,其原因是氨苄青霉素分子中羧基邻位的两个甲基占有较大空间,其屏蔽作用阻碍酯酶水解所致。而将其设计成双酯型前药,末端酯键位阻较小,易于发生酶促断裂,生成的羟甲酯不稳定,自动分解释放出甲醛和氨苄青霉素,产生药效,生物利用度提高3~5倍,口服几乎定量吸收(98%~99%)。 近几年!这种双酯前药设计广泛应用于含羧基药物的前药设计中* 1.2成醛前药设计 含羧基药物制成醛基前药,可增加原药的脂溶性,显著提高口服吸收效果,增加血药浓度。如氟哌酸,为广谱抗菌药,作用强但口服吸收不完全,只有给药剂量的35%~40%,其原因为分子中羧基与哌嗪环上的氮原子成两性离子,不易透过生物膜,做成酯不理想,做成醛以后,在体内经氧化形成,!口服吸收好,血药浓度高。因而含羧酸药物成酯不理想时,可考虑做成醛化物一试* 2 含羟基药物的前药设计 2.1氨基酸酯前药设计 氨基酸的羧基与母药的羟基成酯,其氨基与无机酸成盐!以增加药物水溶性。如甲硝唑-N,N-二甲基甘氨酸酯盐酸盐,水溶性好,血浆浓度高,但水溶液不稳定,需在临用前配制.其原因为分子中的氨基在制pH值为3~5下质子化,有强的吸电子效应,活化了酯羰基,易受OH-离子进攻,使酯键断裂.研究发现,若在酯基和氨基之间引入一个苯基,使成为N-取代的胺甲基苯甲酸酯,可完全阻止氨基对酯键的影响,又不影响体内酶促水解反应,如甲硝唑的这种前药水溶性比母药增加,水溶液稳定性增加,同样条件下可保存14年。

新药设计论文

新药设计论文 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

药 物 设 计 论 文 姓名:郭成班级:14级制药一班学号:20

一药物基本参数 中文名:丁酸氯维地平 汉语拼音:ding suan lv wei di ping 英文名:Cleviprex CAS登记号: 结构式: 分子式:C21H23CL2NO6 分子量: :系统命名:?4-(2,3-二氯苯基)-1,4-二氢-2,6-二甲基-3,5-吡啶二甲酸甲基(1-丁酰氧基)甲酯二:药品上市时间及机构 丁酸氯维地平是一种创新的注射型抗高血压药物,由英国阿斯利康公司(AstraZeneca)原研制,美国The Medicines Company拥有在除日本以外的全球市场开发和商业化授权,并于2008年8月11日首次在美国上市本品。目前在中国申请的有关氯维地平的专利两篇,公开号 CN1137269、CN1136774,申请日均为1994年11月3日,已授权。CN1137269专利名称为“短效的二氢吡啶类化合物及制备方法和用途”,保护了化合物、制备方法及用途;CN1136774保护了注射用乳剂。此外,瑞典阿斯利康有限公司2000年申请了新制备方法专利,WO0031035,未在中国申请。2014年11月3日此专利已经到期,目前即可在国内销售该品种。 三:药品功效及作用机制 药品功效: 丁酸氯维地平是一种创新的注射型抗高血压药物,用于治疗急性高血压,效果可持续72小时,该药可在口服药物无效或患者不方便使用口服药物时使用,其起效迅速。与现有高血压药物通过肾或肝脏代谢不同,丁酸氯维地平在血液中代谢,不会在体内积蓄,特别适用于那些晚期器官损害的患者。

前药设计原理及应用

前药设计原理及应用 前药是药物分子的生物可逆的衍生物,在体内经酶或化学作用释放具有活性的原药,从而发挥预期的药理作用。在药物的发现和发展过程中,前药已经成为一种确切的改善原药理化性质、生物药剂学性质及药物代谢动力学性质的手段。目前在世界范围内批准上市的药品中有5%~7%可以归类为前药,并且在新药研究的早期前药这一理念也越来越受到重视。 前药是一类通过结构修饰将原来药物分子中的活性基团封闭起来而导致本身没有活性,但在体内可代谢成为具有生物活性的药物[1]。前药原理在药物设计中应用广泛,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成酯、羧酸酯、氨基酸酯、酰胺、磷酸酯等类型的前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。 1.前药设计的结构修饰类型 1.1酯类前药 含有羧基、羟基和巯基的药物成酯在前药的应用中是最广泛的,将近49%的上市药物在体内是通过酶的水解来激活的。酯类前药主要是用来提高药物的脂溶性和被动的膜渗透能力,通常通过掩蔽水溶性药物的极性基团来达到的。在体内,酯键可以很容易的被血液、肝脏以及其他器官和组织中普遍存在的酯酶水解掉。目前临床上有许多烷基或芳基酯类前药在应用,其中β- 内酰胺类抗生素匹氨西林(Pivampicillin)就是一个成功的例子[2]。氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服, 但是口服吸收差, 血药浓度只有注射给药的20%~40% 。分析结构表明, 氨卡青霉素分子中的 C2 羧基与 C6 侧链氨基在胃内pH 情况下解离为两性离子,将羧基形成简单的脂肪。芳香酯类不够活泼, 在体内酶促分解成原药的速度很慢, 将其设计成双酯型前药, 末端酯键位阻较小, 易于发生酶促断裂, 生成的羟甲酯不稳定, 自动分解, 释放出甲醛和氨苄青霉素, 产生药效, 生物利用度提高 3~5 倍, 口服几乎定量吸收(98%~ 99% )。 1.2 磷酸酯 / 磷酸盐类前药 含有羟基和氨基的药物磷酸酯类前药主要是针对含有羟基和氨基的水溶性差的药物而设计的,目的是提高它们的水溶性来得到更好的口服给药效果。磷酸酯类前药表现出很好的化学稳定性,同时在体内可以通过小肠和肝脏中的磷酸酯酶快速的转化为原药[3]。 磷苯妥英钠(fosphenytoin sodium 为抗癫痫药苯妥英(phenytoin)的胃肠外使用的有效前药, 其水溶性和稳定性较原药都有很大提高。由于苯妥英的水溶性很低(24 μg·mL- 1 ) ,很难有效给药,因此开发了其前药磷苯妥英钠。该药可在血红细胞、肝和许多其他组织中的碱性磷酸酯酶的作用下,迅速而完全的转变为苯妥英。由于该药极性增加, 使其水溶性增加( 140 mg·mL- 1 ),可制成50 mg·mL- 1稳定的混合水溶液通过静脉注射或肌内注射途径给药, 克服了苯妥英临床应用带来的不良反应并消除了苯妥英的药物相互作用[4]。

新产品研发设计规章制度要求规范大全

实用文档 产品研发管理 第一节产品研发岗位职责 一、研发经理岗位职责 产品研发经理的主要职责是新产品的研发工作,其具体职责如表4-1所示。 表4-1 研发经理岗位职责 工作大项工作细化 (1)负责制定与企业产品研发相关的规章制度和工作流程,经领导审批后执行1.工作规划(2)根据企业总体规划和生产经营需要,制订新产品研发计划 (3)根据企业发展计划以及客户需求和市场发展趋势,确定新产品研发方向 (1)研究新产品技术方向,组织新产品设计、试制、改进等系列工作 (2)对新产品进行可行性分析,提出研发立项申请 2.研发过程管理 (3)制定产品研发费用预算及实施成本控制 (4)根据研发计划合理分配任务 (1)组织产品研发成果的鉴定和评审 3.研发结果评估 (2)分析总结研发过程的经验与教训,制订并执行工作改进计划 (1)指导、监督、培训、考核下属人员的工作,提高工作绩效 4.其他工作 (2)完成领导临时交办的其他工作 二、新品研发组长岗位职责 新品研发组长在研发部研发经理的指导下,协助制订产品研发计划,开展产品研发工作。 其具体职责如表4-2所示。 表4-2 新品研发组长岗位职责 工作大项工作细化 (1)严格执行与研发工作相关的规章制度和工作标准 1.基本职责 (2)传达上级领导的指示,完成领导临时交办的各项工作

实用文档 (1)了解行业市场信息,做好新产品的可行性论证和立项准备 (2)参与新产品的试制,做好试制记录,发现问题及时解决 2.参与产品研发(3)指导、帮助生产人员进行新产品生产 (4)参与新产品的上市推广工作,协助推广新产品 (5)参与新产品的评审工作 (1)编写新产品研发和老产品改进工作报告 3.编制报告 (2)定期向产品研发经理提供新产品开发报告和完整的新产品技术资料 三、产品设计工程师岗位职责 产品设计工程师主要负责产品设计规划工作,并对设计进行全程管理与控制,同时对相 关人员进行培训。其具体职责如表4-3所示。 表4-3 产品设计工程师岗位职责 工作大项工作细化 (1)负责研究和优化所管理业务的工作流程,编制相关的工作标准 1.制定设计规范及规划(2)负责组织相关人员编制设计技术任务书等设计文件 (3)负责相关产品或项目的设计规划工作,经批准后监督执行 (1)编制并实施设计进度计划,对计划的执行情况进行跟踪、检查 (2)参与设计图纸的校核、评审及审批,并提供专业意见 2.设计过程控制(3)控制设计过程中的质量与成本,确保设计工作并能按计划圆满完成 (4)指导相关人员的设计工作,明确设计中 的各项技术要求组织召开设计专业例会,解决设 计过程中存在的问题 3.设计人员培训负责所辖设计人员的培训工作 (1)协助有关人员将设计转变为产品的工作,提供相关的技术支持和专业意见4.其他职责 (2)完成领导交办的其他任务

13.新药设计与开发

第十三章新药设计与开发? 一、单项选择题 13-1、下列哪个说法不正确 A. 具有相同基本结构的药物,它们的药理作用不一定相同 B. 最合适的脂水分配系数,可使药物有最大活性 C. 适度增加中枢神经系统药物的脂水分配系数,活性会有所提高 D. 药物的脂水分配系数是影响药物活性的因素之一 E. 镇静催眠药的lg P值越大,活性越强 13-2、药物的解离度与生物活性有什么样的关系 A. 增加解离度,离子浓度上升,活性增强 B. 增加解离度,离子浓度下降,活性增强 C. 增加解离度,不利吸收,活性下降 D. 增加解离度,有利吸收,活性增强 E. 合适的解离度,有最大活性 13-3、lg P用来表示哪一个结构参数 A. 化合物的疏水参数 B. 取代基的电性参数 C. 取代基的立体参数 D. 指示变量 E. 取代基的疏水参数 13-4、下列不正确的说法是 A. 新药开发是涉及多种学科与领域的一个系统工程 B. 前药进入体内后需转化为原药再发挥作用 C. 软药是易于被代谢和排泄的药物 D. 生物电子等排体置换可产生相似或相反的生物活性 E. 先导化合物是经各种途径获得的具有生物活性的药物合成前体 13-5、通常前药设计不用于 A. 增加高极性药物的脂溶性以改善吸收和分布 B. 将易变结构改变为稳定结构,提高药物的化学稳定性 C. 消除不适宜的制剂性质

D. 改变药物的作用靶点 E. 在体内逐渐分解释放出原药,延长作用时间 二、配比选择题 [13-6~13-10] A. Hansch分析 B. Kier方法 C. MolecularShapeAnalysis方法 D. DistanceGeometry方法 E. ComparativeMolecularFieldAnalysis方法 13-6、距离几何学方法 13-7、比较分子力场分析 13-8、用分子连接性指数作为描述化学结构的参数 13-9、分子形状分析法 13-10、线性自由能相关模型 三、比较选择题 [13-11~13-15] A. Hansch分析 B. CoMFA方法 C. 两者均是 D. 两者均不是 13-11、计算机辅助药物设计的方法 13-12、用于受体的结构已知时的药物研究方法 13-13、用于受体的结构未知时的药物研究方法 13-14、用数学模型研究结构参数和生物活性之间的关系 13-15、从研究药物的优势构象的能量出发 四、多项选择题 13-16、以下哪些说法是正确的 A. 弱酸性药物在胃中容易被吸收 B.弱碱性药物在肠道中容易被吸收 C. 离子状态的药物容易透过生物膜 D. 口服药物的吸收情况与解离度无关 E. 口服药物的吸收情况与所处的介质的pH有关

新产品开发设计验证的内容有哪些

新产品开发设计验证的内容有哪些;设计确认的内容有哪些,在开发过程的哪个阶段去进行 5.5 设计评审 5.5.1 设计评审点包括: A. 初步设计评审,包括意匠和造型等; B. 技术设计评审; C. 工程图纸设计评审; D. 设计改进评审; E. 工艺方案评审。 5.5.2 每次设计评审的参加者应是与设计有关的部门代表,当涉及专业性问题评审时,可吸收有关专家参加。 5.5.3 设计评审应评价设计输出的适应性,关键点以及存在问题的范围和可能的不足,并采取相关的改正措施。 5.5.4 产品工程部门负责跟踪记录改正措施的执行效果。 5.6 设计验证 5.6.1在设计有输出的适当阶段,应有计划地对设计结果进行正式的验证,以验证设计满足输入要求的程度并形成文件。 5.6.2 除进行设计评审外,设计验证还包括: A. 计算方法; B. 比较法; C. 对新设计的零部件和总成进行试验; D. 产品样品试验; E. 产品样品试制等。 5.7 设计确认 5.7.1 设计确认应在成功的通过设计验证之后进行。 5.7.2 设计确认的内容: A. 产品的图纸、标准和资料带; B. 产品性能验证报告; C. 产品适用性,满足用户使用要求的程度; D. 产品技术水平,结构参数; E. 产品安全性、可靠性、耐用性、造型、操作方便性、环保目标、制造可行性、工艺性、检查方案及物流方案; F. 产品标准化程度; G. 样品是否达到设计要求; H. 对确认过程出现的失败,必须提出改正措施,直至通过确认为止。 5.7.3 设计确认可采用的资料有设计评审结果,产品样件试验报告,用户使用意见等。确认的形式有系统确认和零部件提交保证等。

目标成本控制在产品研发设计中的应用

9.2目标成本控制在产品研发设计中的应用 9.2.1 目标成本 目标成本决策是指以最低的成本方案去实现目标利润的决策,它是目标成本管理的核心。目标成本是指从产品寿命期间的目标利润出发,规划单位产品应达到的成本目标。其具有先进行,适应性,可行性及可修正性的特点。 目标成本管理是科学成本管理的一大发展,它始于新产品的设计过程,老产品的改进过程,贯穿于质量成本分析,物资采购成本分析,生产工艺成本分析,工序成本分析,他把成本管理由事后管理变成事前管理,把专业管理变成了全员管理,系统管理,适应了市场经济的发展。目标成本法一般可以采用下列两种方法 1.以某一先进的成本水平作为目标成本 这一先进成本可以是企业历史最好水平,国内外同类产品中的先进成本水,也可以是标准成本或者定额成本 2.计算得到的目标成本 在充分考虑价格因素的基础上,根据事先制定的目标利润和销售预测结果,根据以下公式得到目标成本 例9-1 某公司生产产品预计单价是22元每件,预计销售量为100件,目标利润是2000元,求该产品的目标成本。 目标成本可以衡量产品成本,费用支出,而且还能落实到具体执行环节,目标成本管理可以在生产过程中及时监督和解决脱离目标成本的偏差。目标成本在确定的过程中注意先进性的同时也要注意实施的可行性,这样才有利于全体职工参加民主管理,建立责任制,保证目标的实现。 9.2.2基于价值工程的目标成本的方法 1价值工程的特点 价值工程的特点主要表现在下面几个方面 (1)价值工程可以提高对象价值为目的。价值工程致力于提高价值。如前所述,根据式(7-1)可以看出,只能在功能与成本两个方面下功夫。离开价值工程,单方面解决成本问题或者单方面解决功能问题都不能全面满足目前企业及顾客的需要 (2)价值工程以功能分析为核心。用户购买产品就是购买某种功能,企业只要为用户提供所需的功能手段,用户就乐意为此付出相应的代价。因此,价值工程对于产品的分析,不是分析产品的结构,而是产品的功能,通过功能分析,可以发现哪些是必要功能,哪些是不必要功能,一边在改进方案的过程中合理分配功能,使产品结构更加合理 (3)价值工程是一项集体智慧的有组织的活动。价值工程师按照系统性,逻辑性进行的有目的的思维活动,这必然要求在组织管理上,具有依靠集体智慧开展的有组织的活动。价值工程对产品的研究是对产品的成本功能进行研究,这说明它的活动涉及产,供,销,用等各个方面,跨越车间,部门,关系到企业内外和全体职工。处理如此全面,复杂的问题,单靠

新药设计

内源性活性物质:一般把存在于人体内部,起着调节机体维持生命正常作用的物质称为内源性活性物质 受体:一般认为,受体是存在于细胞膜表面或细胞内,能识别和专一性的与特异性配基相结合并产生特定生物学效应的大分子物质 配基:是能与受体产生特异性结合的生物活性分子,包括体内生物活性物质(如激素、神经递质、细胞因子和信息分子)以及外源性的生物活性物质如药物 细胞通讯:是指一个细胞发出的信息通过介质传递到另一个细胞产生相应反应的过程 信号转导:是指外界信号(如光、电、化学分子)与细胞表面受体作用,通过一整套特定的机制,将胞外信号转换为胞内信号,最终调节特定基因的表达,引起细胞应答反应的一系列过程第二信使学说:胞外化学物质(第一信使)不能进入细胞,它作用于细胞表面受体,而导致产生胞内第二信使,从而激发一系列生化反应,最后产生一定的生理效应,第二信使的降解是使其信号作用终止。第一信使与受体作用后在细胞内最早产生的信号分子称为第二信使 双信使系统:以磷脂酰肌醇代谢为基础的信号通路中胞外信号被膜受体接受后,同时产生两个胞内信使,分别激动两个信号传递系统(即IP3-Ca2+和DG-PKC途径),实现细胞对外界信号的应答,因此把这一信号系统又称之为双信使系统 类肽:一类能够模拟肽分子与受体或酶相互作用,可激活或阻止某种内源性活性肽的生物学作用的肽的类似物或非肽 构象限定:即对处于平衡状态的多种构象中的一种加以固定,从而突出某一构象结构,消除其他构象,从而提高对受体的亲和力 多肽疫苗:也称为亚单位疫苗、基因工程疫苗,它是利用现代基因工程的手段,通过克隆病毒的一段序列到表达质粒中,使其在体外系统中进行表达,纯化出病毒抗原作为疫苗 基因疫苗:也称为DNA疫苗,是将外源基因克隆在表达质粒上,直接注入到动物体内,使其外源基因在活体内表达抗原并诱导机体产生免疫应答,产生抗体从而激活免疫力 反义核酸:能够与DNA或信使RNA发生特异性结合,分别阻断核酸的转录或翻译功能,阻止与病理过程相关的核酸或蛋白质的生物合成。这种可以与DNA或信使RNA结合的互补链称作反义寡核酸链 PNA:以肽链骨架代替磷酸核糖骨架的DNA类似物,其骨架为电中性 RNA干扰:是指在进化过程中高度保守的,由双链RNA诱发的,同源mRNA高效特异性降解的现象 酶的转换数:当酶被底物充分饱和时,单位时间内每个酶分子催化底物转变为产物的分子数前药:人们有意识的将本来有生物活性但存在某些不足的药物分子,经化学结构修饰,连接一个或数个修饰性载体基团,使之成为体外无生物活性的化合物,即前体前药,简称前药 孪药:两个相同或不同的药物经共价键连接,拼合成新的分子,称为孪药 生物电子等排体:生物电子等排不仅应具有相同总数外层电子,还应在分子大小、形状、构象、电子分布、脂水分布系数、pKa、化学反应性和氢键形成能力等方面存在相似性 化学信息学:利用计算机及其网络技术,对化学信息进行表述、管理、分析、模拟和传播,实现化学信息的提取、转化与共享,揭示化学信息的内在实质与内在联系的学科 1、药物发展的历史阶段: 直接采用天然动植物阶段(古代—18世纪末) 随机筛选阶段(19世纪—20世纪30年代) 定向发展阶段(20世纪30年代—20世纪60年代) 药物设计阶段(20世纪60年代至今)

前药设计原理及应用doc资料

前药设计原理及应用

前药设计原理及应用 前药是药物分子的生物可逆的衍生物,在体内经酶或化学作用释放具有活性的原药,从而发挥预期的药理作用。在药物的发现和发展过程中,前药已经成为一种确切的改善原药理化性质、生物药剂学性质及药物代谢动力学性质的手段。目前在世界范围内批准上市的药品中有5%~7%可以归类为前药,并且在新药研究的早期前药这一理念也越来越受到重视。 前药是一类通过结构修饰将原来药物分子中的活性基团封闭起来而导致本身 没有活性,但在体内可代谢成为具有生物活性的药物[1]。前药原理在药物 设计中应用广泛,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成酯、羧酸酯、氨基酸酯、酰胺、磷酸酯等类型的前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。 前药设计的结构修饰类型 1.1 酯类前药 含有羧基、羟基和巯基的药物成酯在前药的应用中是最广泛的,将近49%的上市药物在体内是通过酶的水解来激活的。酯类前药主要是用来提高药物的脂溶性和被动的膜渗透能力,通常通过掩蔽水溶性药物的极性基团来达到的。在体内,酯键可以很容易的被血液、肝脏以及其他器官和组织中普遍存在的酯酶水解掉。 目前临床上有许多烷基或芳基酯类前药在应用,其中β- 内酰胺类抗生素匹氨西林(Pivampicillin)就是一个成功的例子[2]。氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服, 但是口服吸收差, 血药浓度只有注射给药的20%~40% 。分析结构表明, 氨卡青霉素分子中的 C2 羧基与 C6 侧链氨基在胃内pH 情况下解离为两性离子,将羧基形成简单的脂肪。芳香酯类不够活泼, 在体内酶促分解成原药的速度很慢, 将其设计成双酯型前药, 末端酯键位阻较小, 易于发生酶促断裂, 生成的羟甲酯不稳定, 自动分解, 释放出甲醛和氨苄青霉素, 产生药效, 生物利用度提高 3~5 倍, 口服几乎定量吸收(98%~ 99% )。 1.2 磷酸酯 / 磷酸盐类前药 含有羟基和氨基的药物磷酸酯类前药主要是针对含有羟基和氨基的水溶性差的药物而设计的,目的是提高它们的水溶性来得到更好的口服给药效果。磷酸酯类前药表现出很好的化学稳定性,同时在体内可以通过小肠和肝脏中的磷酸酯酶快速的转化为原药[3]。 磷苯妥英钠(fosphenytoin sodium 为抗癫痫药苯妥英(phenytoin)的胃肠外使用的有效前药, 其水溶性和稳定性较原药都有很大提高。由于苯妥英的水溶性很低(24 μg·mL- 1 ) ,很难有效给药,因此开发了其前药磷苯妥英钠。该药可在 血红细胞、肝和许多其他组织中的碱性磷酸酯酶的作用下,迅速而完全的转变为苯妥英。由于该药极性增加, 使其水溶性增加( 140 mg·mL- 1 ),可制成 50 mg·mL- 1稳定的混合水溶液通过静脉注射或肌内注射途径给药, 克服了苯妥英临床应用带来的不良反应并消除了苯妥英的药物相互作用[4]。 1.3 碳酸酯类与氨基甲酸酯类前药

产品开发设计流程图.doc

厦门唯科健康科技有限公司 产品设计开发流程图 注: "* " 为主导部门 规划阶段 流程图 责任部门 参考文件 策 输 开发意向 * 销售部 合同和技术协议 划 入 阶 阶 研发部 * 研发部 客户规格书 段 段 产品设计 * 研发部 设计输入文件 NO 检讨 设 NO OK * 研发部 任务书 手板制作 计 OK 阶 输 NO 是否通过测试 段 出 , 阶 设 段 设计评审 计 * 研发部,品质部 设计输出评审报告 评 审 设计图纸和文件 COP4.1-8.1 附件 完成文件 合同评审表;立项申请书 设计开发可行新分析报告产品设计开发任务书产品设计开发计划书 设计输入评审报告 设计图纸 /文件初稿 手板测试报告 手板样机评审报告 设计输出评审报告 采购文件 生产设备清单 检验文件 工艺文件 外构件 PLM.BOM 发放 模具制作 首批样板零件测试 工程样板试装 NO 是否通过测试 设计验证 NO 验证通过 验 提交样板做安规认证 证 阶 安规认证通过 段 设计图纸和文件修改 STP.BOM 试产准备会 试产通知 生产试产 试产样板测试 确 寄样板给客户 设计确认 认 Pilot Run Sample (试产总结会) 阶 段 客户确认合格 发放 PSA 大批量生产 生 产 技转交接会 阶 生产后 30天内项目组交工程组负责 段 开发结束、归档 * 研发部 设计输入 采购部 设计输出文件 PMC 设计输入 * 研发部 设计输出文件 品质部 产品规格书 产品检验文件 * 研发部 品质部 产品规格书 生产部 设计验证报告 PMC 销售部 * 品质部 产品检验文件 * 研发部 品质部 设计输出文件 生产部 试产总结报告 销售部 * 研发部 试产总结报告 销售部 PSA 样板 * 生产部 品质部 研发部 PSA FIN.BOM 工程部 * 研发部 PWC 、图纸 品质规格 (项目组转工程组) 测试报告 FIN.BOM 设计图纸、设计文件 PLM.BOM 外协件设计要求 产品检测报告 产品检测报告 设计验证报告 更新设计图纸和设计文件 STP.BOM ID ,MPL 试产通知书 产品检测报告 设计确认报告 FIN.BOM PSA 生产计划 新产品移交会议记录 新产品技转清单

新药设计与合成复习资料

软药 是容易代谢失活的药物,使药物在完成治疗作用后,按预先设定的代谢途径和可以控制的速率分解、失活并迅速排出体外,从而避免药物的蓄积毒性,这类药物被称为软药 前药 将药物经过化学结构修饰后得到的在体外无活性或或性较小、在体内经酶或非酶的转化释放出活性药物而发挥药效的化合物,称为前体药物,简称前药。 硬药是指具有发挥药物作用所必需的结构特征的化合物,该化合物在生物体内不发生代谢或转化,可避免产生某些毒性代谢产物。 软药与前药的异同点:都是进入体内后都可按预期方式发生代谢。区别在于软药本身有活性,代谢的结果是失活;而前药本身无或低活性,代谢的目的是活化。软药与硬药都是有效药物,不同的是软药在体内呈现药理作用后,极易被代谢失活(毒),避免出现不良反应和毒性;而硬药基本不经历代谢过程以原形排出。 先导化合物 简称先导物,是通过各种途径和手段得到的具有某种生物活性和化学结构 的化合物,用于进一步的结构改造和修饰,是现代新药研究的出发点。 先导化合物的优化:因先导化合物存在着某些缺陷,如活性不够高,化学结构不稳定,毒性较大,选择性不好,药代动力学性质不合理等等,需要对先导化合物进行化学修饰,进一步优化使之发展为理想的药物,这一过程称为先导化合物的优化。 先导优化方法:经结构剖析与改造,确定与药理活性有关的药效基团,根据不同的目的,(改善药效学或药动学性质),通过生物电子等排体,前药原理,拼合原理以及类似物和拟肽设计等进行构效关系,定量构效关系或三维定量构效关系研究,可发现一大批具有相同基本结构的优良药物。 定量构效关系(QSAR ) 是药物活性与化学结构之间的定量关系。 电子等排体:电子等排体是指具有相同数目的原子,相同的电子总数,相同的电子排列的原子或分子,离子,因而又称为同电异素体,例如,—COO —、—CO —、—NH —、—CH2—等基团是电子等排体,—Cl 、—Br 、—CH3等也是电子等排体。 生物电子等排体:凡是有相似的物理和化学性质,又能产生相似生物活性的基团或分子。 经典的生物电子等排体包括Grimm 的氢化物替代规律及Erlenmeyer 定义所限定的电子等排体。取代基团的形状、大小和外层电子构型大致相同,组成基团的原子数、价键数、不饱和程度及芳香性等方面极其相似, 按照Erlenmeyer 氢化物取代规律可分为一价、二价、三价、四价及环内等价5 种类型 。 非经典的生物电子等排体不符合Erlenmeyer 的电子等排定义,基团的原子数可以不同,形状和大小变化亦较大,但保留了原基团的pKa 值、静电势能、最高占据分子轨道和最低空轨道等性能,因而仍显示相应的生物活性,如—CO —和—SO2— 以及 —SO2NH2 和—PO( OH) NH2等 电子等排体的应用:1环与非环结构及构象限制。如己烯雌酚和雌二醇。2可交换的基团。如磺胺类药物。3基团反转。如哌替啶是一个哌啶的乙酯。 合理药物设计 根据药物作用的靶点生物大分子(受体或酶)的三维空间结构来模拟与 其向嵌合互补的天然配体或第五的结构片段来设计活性化合物分子的方法。 致死合成 与生物体内基本代谢物的结构有某种程度相似的化合物,与基本代谢物竞争 性或干扰基本代谢物的利用,或掺入生物大分子的合成之中形成伪生物大分子,导致致死合成,从而影响细胞的生长。 类似物设计 以现有药物或具有生物活性的物质为先导物,按预定的设想经结构修饰或改造,以获得疗效比先导物更好、毒副作用更小的新药。 生物烷化剂 抗肿瘤药物的一类。这类药物在体内能形成缺电子活泼中间体或其他具有 活泼的亲电性基团的化合物,进而与生物大分子(如DNA\RNA\或某些重要的酶类等)中富电子基团(如氨基、巯基、羟基、羧基、磷酸基等)进行亲电反应,形成共价结合,使其丧失活性或使DNA 分子发生断裂。 软烷化剂:烷化作用温和,选择性的作用于肿瘤 硬烷化剂:烷化过程失活,毒性大 me-too 药物 :药物作用于酶或受体,结构类似的药物,尤其带有相仿药效构象的化合物,应可与同一酶或受体作用,理应产生类似的药效。利用已知药物的作用机制和构效关系的研究成果,在分析已知药物的化学结构的基础上,设计合成该药物的衍生物、结构类似物和结构相关化合物,并通过系统的药理学研究,所产生的新药与已知药物比较,具有活性高或活性类似等特点的新药称为“模仿(me-too)药”,有别于完全照抄他人化学结构的“仿制药”。 新药研发的进步历程:滞后性模仿-跟随性模仿- 模仿创新-率先性创新的发展模式 治疗指数 半数致死量(药量)LD50与半数有效量ED50之比一般地,TI 越大,它的安全性和有效性越有保证。 50 50 ED LD TI

相关文档
最新文档