因式分解的常用方法[目前最牛最全的教学案]

合集下载

因式分解方法大全

因式分解方法大全

因式分解方法大全以下是一些常用的因式分解方法:方法一:提取公因式法如果一个多项式的各项系数可以同时被一个常数整除,那么可以将这个常数提取出来,然后再对多项式进行因式分解。

例如:2x+4y=2(x+2y)方法二:两项提取公因式法当多项式的两项具有相同的因子时,可以将这个因子提取出来,然后再对多项式进行因式分解。

例如:3x^2+6x=3x(x+2)方法三:平方差公式如果多项式是两个平方数相减,那么可以使用平方差公式进行因式分解。

平方差公式为:a^2-b^2=(a+b)(a-b)例如:9x^2-4=(3x+2)(3x-2)方法四:差平方公式如果多项式是两个平方数相加,那么可以使用差平方公式进行因式分解。

差平方公式为:a^2 + b^2 = (a + b)^2 - 2ab例如:x^2+4=(x+2)^2-4方法五:分组法当多项式含有多项之和时,可以根据各项的共同因子进行分组,然后进行因式分解。

例如:2ab + 4bc + 6ca = 2a(b + 2c) + 2c(2b + 3a)方法六:完全平方公式当多项式是一个完全平方时,可以使用完全平方公式进行因式分解。

完全平方公式为:a^2 + 2ab + b^2 = (a + b)^2例如:x^2+4x+4=(x+2)^2方法七:配方法对于一些多项式,可以通过将其形式转化为一个平方差或平方和的形式,然后使用平方差公式或完全平方公式进行因式分解。

例如:4x^2+12x+9=4(x^2+3x)+9=4(x^2+2x+1)然后使用完全平方公式进行因式分解。

方法八:综合运用多项式的因式分解方法往往需要综合运用多种方法,根据具体情况选择合适的方法进行因式分解。

对于较复杂的多项式,可能需要多次分解才能得到最简形式。

因此,需要对各种方法进行熟练运用,并根据具体情况进行灵活组合。

以上是一些常用的因式分解方法,它们可以用来解决不同类型的多项式因式分解问题。

需要注意的是,进行因式分解时要善于观察和发现多项式中的模式和规律,以便选择合适的方法进行分解。

因式分解技巧十法

因式分解技巧十法

因式分解技巧十法因式分解是基础数学中的重要内容,它不仅在代数中有重要应用,还有助于解决复杂的数学问题。

因式分解的目的是将一个多项式或一个数分解为相对简单的因子相乘的形式。

在这篇文章中,我们将介绍十种因式分解的技巧。

1.公因式提取:这是最常见的因式分解技巧之一、当多项式中的每一项都有一个公因式时,可以将这个公因式提取出来,得到一个公因式和一个因数。

例如,多项式2x+4可以因式分解为2(x+2)。

2.平方差公式:平方差公式可以用来因式分解二次多项式。

形式为a^2-b^2的二次多项式可以因式分解为(a+b)(a-b)。

例如,多项式x^2-4可以因式分解为(x+2)(x-2)。

3. 完全平方公式:完全平方公式可以用来因式分解二次多项式。

形式为a^2 + 2ab + b^2的二次多项式可以因式分解为(a + b)^2、例如,多项式x^2 + 2x + 1可以因式分解为(x + 1)^24.因式定理:因式定理是一种将多项式分解为更简单的因子的技巧。

根据因式定理,如果一个多项式P(x)在x=a处取0值,那么P(x)可以被因式(x-a)整除。

例如,多项式x^2-2x-3在x=3处取0值,因此可以因式分解为(x-3)(x+1)。

5.线性因式定理:线性因式定理是因式定理的一个特殊情况。

根据线性因式定理,如果一个多项式的次数为n,那么它可以被分解为n个线性因子的乘积。

例如,多项式x^2-3x+2可以因式分解为(x-1)(x-2)。

6. 共轭因式定理:共轭因式定理是一种将复数多项式因式分解为实数因子的技巧。

根据共轭因式定理,如果一个复数多项式P(x)的一个复数根是a + bi,那么其共轭根是a - bi,且(x - (a + bi))(x - (a - bi))是P(x)的因式。

例如,多项式x^2 + 2x + 5在复数域上没有实数解,但可以因式分解为(x - (-1 + 2i))(x - (-1 - 2i))。

7. 差二次幂公式:差二次幂公式可以用来因式分解高次多项式。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。

在因式分解的过程中,有许多不同的方法可以使用。

下面将介绍因式分解的十二种常见方法。

一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。

它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。

例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。

二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。

通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。

例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。

三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。

例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。

五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。

它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。

根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。

它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。

例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。

因式分解十种方法

因式分解十种方法

因式分解十种方法因式分解是数学中的一种重要方法,它可以将一个多项式表达式分解成更简单的因式形式。

在本文中,我将介绍十种常见的因式分解方法。

一、公因式提取法公因式提取法是最基本的因式分解方法之一。

它适用于多项式中存在公因式的情况。

通过提取多项式中的公因式,可以将其分解为更简单的因式形式。

例如,对于多项式2x+4xy,可以提取出公因式2x,得到2x(1+2y)。

二、配方法配方法是一种常见且常用的因式分解方法。

通过巧妙地选择合适的配方,可以将多项式进行因式分解。

例如,对于多项式x^2+6x+9,可以通过配方(x+3)^2将其分解为(x+3)(x+3)。

三、差平方公式差平方公式是一种常见的因式分解方法,适用于多项式中出现两个平方项和一个常数项的情况。

通过应用差平方公式,可以将多项式进行因式分解。

例如,对于多项式x^2-4,可以应用差平方公式(x+2)(x-2)将其分解为(x+2)(x-2)。

四、和差平方公式和差平方公式是一种常见的因式分解方法,适用于多项式中出现两个平方项的和或差的情况。

通过应用和差平方公式,可以将多项式进行因式分解。

例如,对于多项式x^2-y^2,可以应用和差平方公式(x+y)(x-y)将其分解为(x+y)(x-y)。

五、完全平方公式完全平方公式是一种常见的因式分解方法,适用于多项式中出现平方项和两倍乘积项的情况。

通过应用完全平方公式,可以将多项式进行因式分解。

例如,对于多项式x^2+6x+9,可以应用完全平方公式(x+3)^2将其分解为(x+3)(x+3)。

六、分组分解法分组分解法是一种常见的因式分解方法,适用于多项式中存在多个项的情况。

通过将多项式中的项进行分组,可以将其进行因式分解。

例如,对于多项式x^3+3x^2+2x+6,可以将其进行分组,并分别因式分解为x^2(x+3)+2(x+3),再提取公因式(x+3),最终得到(x^2+2)(x+3)。

七、因式分解公式法因式分解公式法是一种常见的因式分解方法,适用于多项式中存在特定的因式分解公式的情况。

因式分解的常用方法

因式分解的常用方法

因式分解的常用方法因式分解是数学中的重要概念,它可以将一个多项式或一个数分解成其因子的乘积形式。

因式分解有许多常用的方法,下面将介绍其中一些。

1.提取公因式:这是最基本且常用的因式分解方法。

如果一个多项式中的每一项都可以被一个因子整除,那么可以从每一项中提取出这个公因式,并将其提取出来形成一个公因式的乘积。

例如,对于多项式2x + 4xy,我们可以将其分解为2x(1 + 2y)。

2.分组法:当一个多项式中有多个项,且这些项具有相同的公因子时,可以使用分组法来进行因式分解。

例如,对于多项式x^3+2x^2+x+2,我们可以将其进行分组,得到x^2(x+2)+(x+2)=(x^2+1)(x+2)。

3.平方差公式:平方差公式可以将一个二次多项式分解成两个平方的差。

例如,对于二次多项式x^2-4,我们可以使用平方差公式来得到(x+2)(x-2)。

4.公式法:对于一些常见的多项式形式,可以使用特定的公式来进行因式分解。

例如,对于二次多项式x^2 + bx + c,我们可以使用二次公式x = (-b ± √(b^2 - 4ac))/(2a)来进行因式分解。

5.因式分解公式:对于一些特殊形式的多项式,可以使用因式分解公式来进行因式分解。

例如,对于三次多项式x^3 + y^3,我们可以使用因式分解公式x^3 + y^3 = (x + y)(x^2 - xy + y^2)来进行因式分解。

6.完全平方公式:完全平方公式可以将一个二次多项式分解成两个平方的和。

例如,对于二次多项式x^2 + 2ax + a^2,我们可以使用完全平方公式(x + a)^2来进行因式分解。

除了上述常用的方法外,还有一些特殊的多项式形式可以使用其他方法进行因式分解,例如差平方公式、立方差公式等。

因式分解是解决多项式运算和方程求解的重要工具,熟练掌握因式分解方法对于数学学习和解题都有很大的帮助。

因式分解的常用方法

因式分解的常用方法

因式分解的常用方法因式分解是数学中常用的一种方法,它是将一个复杂的表达式或多项式分解成更简单的因子的过程。

因式分解在代数、方程、不等式等数学问题的解题中经常出现。

下面将介绍因式分解的常用方法。

一、公因式提取法公因式提取法是指在多项式中提取出公共的因式,然后将剩余的部分进行因式分解。

例如:1.3x+6y可以提取出公因子3,得到3(x+2y)。

2.4x^2+8x可以提取出公因子4x,得到4x(x+2)。

二、配方法配方法也被称为乘法公式法,它适用于二次型的因式分解。

当二次型为(ax+b)^2形式时,常采用配方法进行分解。

配方法的步骤如下:1. 将二次型展开为(ax+b)^2的形式,即去掉开头的系数和常数项;2. 将二次型写成(a^2x^2+2abx+b^2)的形式;3.因式分解成(a*x+b)^2的形式,即加法的平方。

例如:1.x^2+6x+9可以写成(x+3)^2的形式。

2.4x^2+12x+9可以写成(2x+3)^2的形式。

三、辗转相除法辗转相除法也是因式分解中常用的方法,它适用于多项式的因式分解和整除。

辗转相除法的步骤如下:1.对多项式进行约去常因子;2.将多项式按照次数从高到低进行排列;3.用低次多项式除以高次多项式,得到商和余数;4.如果余数为0,则表示能整除,否则继续用余数进行除法;5.将多项式的因式写成约去的常因子与商的乘积的形式;例如:1.x^2+2x+1可以通过辗转相除法整除(x+1),得到商为x+12.3x^3-2x^2+3x+4可以通过辗转相除法整除(3x-2),得到商为x^2+x+2四、根式分解法根式分解法适用于含有平方根或立方根的表达式因式分解。

根式分解法的步骤如下:1.提取出平方根或立方根;2.将根式进行化简;3.根据提取出的根式与原表达式进行乘法、加法运算;4.将原表达式分解成根式与其他因子的乘积的形式;例如:1.x^2+8x+16可以分解为(x+4)^22. x^3+y^3 可以分解为(x+y)(x^2-xy+y^2)。

因式分解的9种方法

因式分解的9种方法因式分解是代数学中的一项重要内容,可以将一个复杂的代数表达式分解成简单的乘积形式,从而便于计算和理解。

在因式分解过程中,根据不同的情况和不同的代数表达式,可以采用多种方法进行分解。

下面将介绍常见的九种因式分解方法。

一、公因式法公因式法是因式分解中最常用的方法之一、公因式法适用于含有公因式的多项式表达式。

它的基本思想是找出多项式表达式中所有项的最高次幂的公因式,然后将整个表达式除以这个公因式进行分解。

例如:4x^3+2x^2-6x可以分解为2x(2x^2+x-3)。

二、配方法配方法适用于含有二次项和一次项的多项式表达式。

它的基本思想是通过增加一个适当的常数因子,使得多项式表达式可以分解成两个完全平方的形式相加或相减。

例如:x^2+2x+1可以分解为(x+1)(x+1)。

三、平方差公式平方差公式适用于含有二次项且系数为1的多项式表达式。

它的基本思想是将多项式表达式表示为两个完全平方的差。

例如:x^2-4可以分解为(x+2)(x-2)。

四、差两个平方公式差两个平方公式适用于含有平方项的多项式表达式。

它的基本思想是利用两个完全平方的差进行分解。

例如:x^4-16可以分解为(x^2+4)(x^2-4)。

五、两项平方和公式两项平方和公式适用于含有平方项和常数项的多项式表达式。

它的基本思想是将多项式表达式表示为两个平方项的和。

例如:x^2+6x+9可以分解为(x+3)(x+3)。

六、组合法组合法适用于含有三项或三项以上的多项式表达式。

它的基本思想是根据多项式表达式中各项间的关系,将表达式分解为不同的组合。

例如:x^3+x^2+x+1可以分解为(x^2+1)(x+1)。

七、分组法分组法适用于含有四项或四项以上的多项式表达式。

它的基本思想是将多项式表达式进行适当的分组,然后在每一组内进行因式分解。

例如:x^3+2x^2+x+2可以分解为(x^3+x)+(2x^2+2)=x(x^2+1)+2(x^2+1)=(x+2)(x^2+1)。

因式分解常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a2-b2 -----------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ---------a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 --------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解最全方法归纳

因式分解最全方法归纳因式分解是将一个多项式拆解成几个较简单的乘积的过程。

虽然因式分解的方法非常多,但其中一些方法被广泛使用。

在下面的讨论中,我们将介绍最常用的因式分解方法。

一、提取公因子法:这是最基本的因式分解方法之一、该方法基于一个重要的数学原理,即两个数的乘积可以分为这两个数的最大公因数和其余部分的乘积。

因此,当一个多项式中的各项具有公因子时,我们可以先将这个公因子提取出来,然后再进行因式分解。

下面是一个例子:多项式:6x^2+9x公因子:3x因式分解:3x(2x+3)二、公式法:很多特殊形式的多项式可以通过特定的公式因式分解。

下面是一些常见的公式和其对应的因式分解方法:1.平方差公式:a^2-b^2=(a+b)(a-b)2. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^23. 完全立方公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)下面是几个例子:多项式:x^2-4因式分解:(x+2)(x-2)(平方差公式)多项式:x^2+4x+4因式分解:(x+2)^2(完全平方公式)三、配方法:当一个多项式中的各项无法提取公因子或使用特定的公式时,我们可以尝试使用配方法进行因式分解。

配方法的基本思想是将多项式中的各项分解为两个括号内的两个项的乘积,然后通过选择正确的括号内的两个项,使得相乘后可以得到原多项式。

下面是一个例子:多项式:x^2+5x+6因式分解:(x+3)(x+2)四、分组法:有时候,我们可以将多项式中的各项进行分组,然后再利用配方法进行因式分解。

这种方法主要适用于多项式中包含四项或更多项的情况。

下面是一个例子:多项式:x^3+2x^2+4x+8因式分解:x^2(x+2)+4(x+2)=(x^2+4)(x+2)总结:因式分解是将多项式拆解为较简单的乘积的过程。

提取公因子、使用公式、配方法和分组法是最常见的因式分解方法。

但需要注意的是,并不是每个多项式都可以被因式分解,有时候一个多项式可能已经是不可约的。

因式分解最全方法归纳

因式分解最全方法归纳因式分解是代数运算中的重要内容,它可以将一个复杂的多项式化为几个简单因式的乘积形式,有助于解决各种数学问题。

下面为大家归纳总结因式分解的常用方法。

一、提公因式法如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式化成两个或多个因式乘积的形式。

例如,对于多项式$6x + 9$,各项的公因式是 3,分解因式可得:$6x + 9 = 3(2x + 3)$再比如,$4x^2y 6xy^2$,公因式是$2xy$,分解因式为:$4x^2y 6xy^2 = 2xy(2x 3y)$提公因式法是因式分解的基础,很多多项式都需要先通过提公因式来简化式子。

二、公式法常用的公式有平方差公式:$a^2 b^2 =(a + b)(a b)$;完全平方公式:$a^2 ± 2ab + b^2 =(a ± b)^2$例如,$9 x^2$可以利用平方差公式分解为:$(3 + x)(3 x)$而对于$x^2 + 6x + 9$,则可以使用完全平方公式分解为:$(x+ 3)^2$三、十字相乘法对于二次三项式$ax^2 + bx + c$($a ≠ 0$),如果能找到两个数$p$和$q$,使得$p + q = b$,$pq = ac$,那么就可以将式子分解为$(x + p)(x + q)$例如,对于$x^2 + 5x + 6$,因为$2 + 3 = 5$,$2×3 = 6$,所以可以分解为:$(x + 2)(x + 3)$再看$2x^2 5x 3$,我们要找到两个数$m$和$n$,使得$m + n =-5$,$mn =-6$,可以得到$m =-6$,$n = 1$,分解因式为:$(2x + 1)(x 3)$四、分组分解法当多项式不能直接运用上述方法分解时,可以将多项式适当分组,再分别对每一组进行分解,最后综合起来得到分解结果。

例如,$am + an + bm + bn$,可以分组为$(am + an) +(bm+ bn)$,然后分别提公因式得到:$a(m + n) + b(m + n) =(m +n)(a + b)$又如,$x^2 y^2 + 2x + 1$,可以分组为$(x^2 + 2x + 1) y^2$,先利用完全平方公式,再用平方差公式,分解为:$(x + 1)^2 y^2=(x + 1 + y)(x + 1 y)$五、拆项、添项法在多项式中添加或减去一项,使得式子可以运用上述方法进行分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

例4、分解因式:2222c b ab a -+-解:原式=)()(22ay ax y x ++- 解:原式=222)2(c b ab a -+-=)())((y x a y x y x ++-+ =22)(c b a --=))((a y x y x +-+ =))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x(4)a b b ab a 4912622-++-(5)92234-+-a a a(6)y b x b y a x a 222244+--(7)222y yz xz xy x ++--(8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y(10))2())((a b b c a c a -+-+四、十字相乘法.直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。

于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

1 8b1 -16b8b+(-16b)= -8b解:221288ba b a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++五、换元法。

例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。

原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++ (2)90)384)(23(22+++++x x x x六、添项、拆项、配方法。

例15、分解因式(1)4323+-x x解法1——拆项。

解法2——添项。

原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x =2)2)(1(-+x x =2)2)(1(-+x x练习15、分解因式(2)4224)1()1()1(-+-++x x x (3)1724+-x x 4)22412a ax x x -+++第二部分:习题大全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式。

2分解因式: m 3-4m= .3.分解因式: x 2-4y 2= __ _____.4、分解因式:244x x ---=___________ ______。

5.将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 .6、若5,6x y xy -==,则22x y xy -=_________,2222x y +=__________。

二、选择题7、多项式3222315520m n m n m n +-的公因式是( )A 、5mnB 、225m nC 、25m nD 、25mn8、下列各式从左到右的变形中,是因式分解的是( )A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭ 10.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y+y 2 (D)x 2-4x+411.把(x -y )2-(y -x )分解因式为( )A .(x -y )(x -y -1)B .(y -x )(x -y -1)C .(y -x )(y -x -1)D .(y -x )(y -x +1)12.下列各个分解因式中正确的是( )A .10ab 2c +6ac 2+2ac =2ac (5b 2+3c )B .(a -b )2-(b -a )2=(a -b )2(a -b +1)C .x (b +c -a )-y (a -b -c )-a +b -c =(b +c -a )(x +y -1)D .(a -2b )(3a +b )-5(2b -a )2=(a -2b )(11b -2a )13.若k-12xy+9x 2是一个完全平方式,那么k 应为( )A.2B.4C.2y 2D.4y 214、nx ny - 15、2294n m -16、()()m m n n n m -+- 17、3222a a b ab -+18、()222416x x +- 19、22)(16)(9n m n m --+;五、解答题 20、如图,在一块边长a =6.67cm 的正方形纸片中,挖去一个边长b =3.33cm 的正方形。

相关文档
最新文档