在平面直角坐标系中
2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】

专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y=k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【分析】(1)将(2,4)代入解析式求解.(2)由判别式Δ的符号可判断抛物线与x轴交点个数.【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y=2x+1的和谐点为(x,x),可得2x+1=x,求解即可;(2)将点(,)代入y=ax2+6x+c,再由ax2+6x+c=x有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a、c的值;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,则3≤m≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y=2x+1的和谐点为(x,x),∴2x+1=x,解得x=﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,∴=a+15+c,∴c=﹣a﹣,∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,∴ax2+6x+c=x有且只有一个根,∴Δ=25﹣4ac=0,∴a=﹣1,c=﹣;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,∴抛物线的对称轴为直线x=3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m≤5时,函数的最大值为3,最小值为﹣1.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.【分析】(1)把解析式化成顶点式,根据顶点式求得对称轴和顶点坐标,根据顶点在x轴上得到关于a的方程,解方程求得a的值;(2)根据二次函数的性质,分两种情况即可求出m的范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣2+a2=a(x﹣1)2+a2﹣a﹣2,∴抛物线的对称轴为直线x=1.若抛物线的顶点在x轴上,则a2﹣a﹣2=0,∴a=2或﹣1.(2)∵抛物线的对称轴为直线x=1,则Q(4,y2)关于直线x=1对称点的坐标为(﹣2,y2),∴当a>0时,若y1<y2,m的取值范围为:﹣2<m<4;当a<0时,若y1<y2,m的取值范围为:m<﹣2或m>4.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.【分析】(1)先化抛物线的表达式为y=a(x﹣1)2+1,依此可求抛物线的对称轴;(2)利用二次函数性质即可求得答案;(3)利用二次函数性质存在A到对称轴的距离与B到对称轴的距离相等即可解答.【解答】解:(1)y=ax2﹣2ax+a=a(x﹣1)2,∴抛物线的对称轴为x=1;(2)∵﹣2<x1<﹣1,1<x2<2,∴1﹣x1>1﹣x2,∴A离对称轴越远,若a>0,开口向上,则y1>y2,若a<0,开口向下,则y1<y2,(3)∵t<x1<t+1,t+2<x2<t+3,存在y1=y2,则t+1<1且t+2>1,∴t<0且t>1,∴存在1﹣x1=x2﹣1,即存在A到对称轴的距离与B到对称轴的距离相等,∴1﹣t>t+2﹣1且1﹣(t+1)<t+3﹣1,∴﹣1<t<0.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线x=2,抛物线与y轴的交点坐标为(0,2);(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.【分析】(1)由对称轴方程,将对应系数代入可得,令抛物线解析式中的x=0,求得y,答案可得;(2)利用当x满足1≤x≤5时,y的最小值为﹣6,可求得a的值,再利用二次函数图象的特点可确定y的最大值.【解答】解:(1)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2.令x=0,则y=2.∴抛物线y=ax2﹣4ax+2与y轴的交点为(0,2).故答案为:x=2;(0,2).(2)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=2,∴顶点在1≤x≤5范围内,∵当x满足1≤x≤5时,y的最小值为﹣6,∴当a<0时,抛物线开口向下,x=5时y有最小值﹣6,∴25a﹣20a+2=﹣6,解得a=﹣,∴抛物线为y=﹣x2+x+2当x=2时,y=﹣×22+×2+2=,∴此时y的最大值为.当a>0,抛物线开口向上,x=2时y有最小值﹣6,∴4a﹣8a+2=﹣6,解得a=2,∴抛物线为y=2x2﹣8x+2,当x=5时,y=2×25﹣8×5+2=12,∴此时y的最大值12.综上,y的最大值为12.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.【分析】(1)直接将点(1,2)代入即可求得a的值,然后根据顶点公式求得即可;(2)利用题意,﹣===﹣1求解a,然后把解析式化成顶点式,根据二次函数的性质即可得到结论;(3)利用顶点公式求得x=﹣=﹣+,y==﹣,由a<0且a≠﹣1即可判断x<0,y>0,即可得到该二次函数图象的顶点在第二象限.【解答】解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.【分析】(1)根据对称轴公式x=﹣,即可求出b的值,由抛物线与y轴交点的纵坐标为﹣3即可求得c的值;(2)①由(1)可得抛物线C1的解析式,从而可得抛物线C1的顶点P的坐标,由抛物线C2经过抛物线C1的顶点可得n=﹣m﹣3,从而可得抛物线C2为:y=﹣x2+mx﹣m﹣3,根据对称轴公式x=﹣,即可求出顶点Q的坐标,再将点Q的横坐标代入抛物线C1的解析式中,即可证明;②先分别求出点P和点Q的横坐标,由①可得n=﹣11,设点E横坐标为x,由点E在抛物线C1上可表示出纵坐标,由题可知点F与点E横坐标相同,代入抛物线C2的解析式中可得点F纵坐标,即可求解.【解答】(1)解:∵抛物线C1:y=x2+bx+c对称轴为x=1,且与y轴交点的纵坐标为﹣3,∴x=﹣=1,c=﹣3,∴b=﹣2;(2)①证明:∵抛物线C1的解析式为:y=x2﹣2x﹣3,∴顶点P的坐标为:(1,﹣4),∵抛物线C2经过抛物线C1的顶点,∴﹣4=﹣12+m+n,∴n=﹣m﹣3,∴抛物线C2为:y=﹣x2+mx﹣m﹣3,∴对称轴为:直线x=﹣=,将x=代入y=﹣x2+mx﹣m﹣3,得:y=﹣m﹣3,∴点Q坐标为:(,﹣m﹣3),将x=代入y=x2﹣2x﹣3,得:y=﹣m﹣3,∴点Q也在抛物线C1上;②解:由①知n=﹣m﹣3,∵m=8,∴n=﹣11,∴抛物线C2的解析式为:y=﹣x2+8x﹣11,对称轴为:直线x==4,设点E横坐标为x,∵点E是在点P和点Q之间抛物线C1上的一点,∴点E坐标为(x,x2﹣2x﹣3),1<x<4,∵过点E作x轴的垂线交抛物线C2于点F,∴点F横坐标为x,∴点F坐标为(x,﹣x2+8x﹣11),∴EF=﹣x2+8x﹣11﹣(x2﹣2x﹣3)=﹣x2+8x﹣11﹣x2+2x+3=﹣2x2+10x﹣8=﹣2(x2﹣5x+4)=﹣2(x2﹣5x+)+=﹣2(x﹣)2+,∴当x=时,EF取得最大值,最大值为,∴EF长度的最大值为.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.【分析】(1)利用待定系数法即可求得抛物线解析式,化成顶点式即可求得顶点坐标;(2)根据二次函数的性质判断即可;(3)设M、N的横坐标分别为x1、x2,则x1、x2是方程x2+4x=m的两个根,根据根与系数的关系得到x1+x2=﹣4,x1x2=﹣m,由MN≤5,则(x1﹣x2)2≤25,所以(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得即可.【解答】解:(1)∵抛物线y=ax2+bx经过点A(﹣4,0),B(1,5),∴,解得,∴抛物线为y=x2+4x,∵y=x2+4x=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4);(2)∵抛物线为y=x2+4x的对称轴为直线x=﹣2,且开口向上,∴当x<﹣2时,y随x的增大而减小,∵点P(2,c)关于对称轴的对称点为(﹣6,c),∵x0>﹣6,∴当﹣6<x0<2时,则c>y0;当x0≥2时,则c≤y0;(3)设M、N的横坐标分别为x1、x2,∵直线y=m与抛物线交于M、N两点,(M、N两点不重合),∴x1、x2是方程x2+4x=m的两个根,∴x1+x2=﹣4,x1x2=﹣m,∵MN≤5,∴(x1﹣x2)2≤25,∴(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得m≤,∵抛物线的顶点坐标为(﹣2,﹣4),∴函数的最小值为﹣4,∴﹣4<m≤.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.【分析】(1)证明y1=y2时,方程2x+m+n=x(2x+m)+n有解,进而转化证明一元二次方程的根的判别式非负便可;(2)由y1=y2,求出x1与x2,进而求得b,由b的值,求得x3的值,进而得x3﹣x1的值;(3)把点A(x1,a)、点D(x1+2,c)代入y2=x(2x+m)+n,根据a>c得x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,代入求解即可.【解答】(1)证明:当y1=y2时,得2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,△=(m﹣2)2+8m=(m+2)2≥0,∴方程2x+m+n=x(2x+m)+n有解,∴y1,y2的图象必有交点;(2)解:当y1=y2时,2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,(2x+m)(x﹣1)=0,∵m>0,x1<x2,∴x1=﹣,x2=1,∴b=2+m+n,当y=2+m+n时,y2=x(2x+m)+n=2+m+n,化简为:2x2+mx﹣m﹣2=0,2x2﹣2+mx﹣m=0,2(x+1)(x﹣1)+m(x﹣1)=0,(2x+m+2)(x﹣1)=0,解得,x=1(等于x2),或x=,∴x3=,∴x3﹣x1=﹣(﹣)=﹣1;(3)解:∵点D(x1+2,c)在y2的图象上,∴c=(x1+2)[2(x1+2)+m]+n=2(x1+2)2+m(x1+2)+n.∵点A(x1,a)在y2的图象上,∴a=x1(2x1+m)+n.∵a>c,∴a﹣c>0,∴x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,∴4×(﹣)+4+m<0,﹣2m+4+m<0,﹣m+4<0,m>4,∴m的取值范围为m>4.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.【分析】(1)将二次函数解析式化为顶点式求解.(2)由二次函数的对称性及AB=4可得点A,B坐标,进而求解.(3)由点P坐标及抛物线对称轴可得点P关于对称轴的对称点P'坐标,由抛物线开口向下可求解.【解答】解:(1)∵y=x2﹣4mx+4m2﹣1=(x﹣2m)2﹣1,∴抛物线顶点坐标为(2m,﹣1).(2)∵点A,B关于抛物线对称轴对称,AB=4,对称轴为直线x=2m,∴抛物线经过(2m+2,n),(2m﹣2,n),将(2m+2,n)代入y=(x﹣2m)2﹣1得n=22﹣1=3.(3)点P(2m+1,y1)关于抛物线对称轴的对称点P'坐标为(2m﹣1,y1),∵抛物线开口向上,∴当2m﹣t>2m+1或2m﹣t<2m﹣1时,且y1<y2,解得t<﹣1或t>1.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.【分析】(1)①由交点横坐标及直线解析式可得交点坐标,然后通过待定系数法求解.②由抛物线开口方向及交点横坐标求解.(2)由y=y1﹣y2,M=N可得m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系进行证明.【解答】解:(1)①将x=﹣1和x=2分别代入y2=x+1得y2=0,y2=3,∴抛物线经过(﹣1,0),(2,3),∴,解得,∴y1=﹣x2+2x+3.②∵抛物线y1=﹣x2+2x+3开口向下,抛物线与直线交点坐标为(﹣1,0),(2,3),∴﹣1<x<2时,y1>y2.(2)∵y=y1﹣y2=ax2+bx+3﹣(x+1)=ax2+(b﹣1)x+2,∴x=m时,M=am2+(b﹣1)m+2,x=n时,N=an2+(b﹣1)n+2,∴m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系可得m+n=﹣=1,∴b﹣1=﹣a,∴a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.【分析】(1)由Δ=b2﹣4ac>0证明.(2)将点A坐标代入解析式求解.(3)分类讨论,通过数形结合求解.【解答】解:(1)令x2﹣(m+2)x+m=0,则Δ=(m+2)2﹣4m=m2+4>0,∴方程x2﹣(m+2)x+m=0有两个不相等实数根,∴二次函数的图象与x轴总有两个交点.(2)将(2m+1,7)代入y=x2﹣(m+2)x+m得7=(2m+1)2﹣(m+2)(2m+1)+m,解得m=2或m=﹣2,当m=2时,y=x2﹣4x+2,当m=﹣2时,y=x2﹣2.(3)①当m=2时,y=x2﹣4x+2,令x2﹣4x+2=0,解得x1=2+,x2=2﹣,∴抛物线与x轴交点坐标为(2+,0),(2﹣,0),如图,当直线y=x+t经过(2+,0)时,2++t=0,解得t=﹣2﹣,当直线y=x+t与抛物线y=x2﹣4x+2只有1个公共点时,令x2﹣4x+2=x+t,整理得x2﹣5x+2﹣t=0,则Δ=52﹣4(2﹣t)=17+4t=0,解得t=﹣,∴﹣<t<﹣2﹣满足题意.②同理,当m=﹣2时,y=x2﹣2,将x=0代入y=x2﹣2得y=﹣2,∴抛物线经过(0,﹣2),将(0,﹣2)代入y=x+t得t=﹣2,令x2﹣2=x+t,由Δ=1﹣4(﹣2﹣t)=0可得t=﹣,∴﹣<t<﹣2满足题意.综上所述,﹣<t<﹣2﹣或﹣<t<﹣2.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.【分析】(1)将(﹣1,﹣2)代入解析式求解.(2)将x=﹣2代入解析式求出点P纵坐标,通过配方可得y p取最小值时m的值,再将二次函数解析式化为顶点式求解.(3)分别将点A,B坐标代入解析式求解.【解答】解:(1)将(﹣1,﹣2)代入y=x2﹣2mx+m2﹣2得﹣2=1+2m+m2﹣2,解得m=﹣1,∴y=x2+2x﹣1.(2)将x=﹣2代入y=x2﹣2mx+m2﹣2得y P=m2+4m+2=(m+2)2﹣2,∴m=﹣2时,y p取最小值,∴y=x2+4x+2=(x+2)2﹣2,∴x<﹣2时,y随x增大而减小,∵x1<x2≤﹣2,∴y1>y2.(3)∵y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴抛物线顶点坐标为(m,﹣2),∴抛物线随m值的变化而左右平移,将(0,2)代入y=x2﹣2mx+m2﹣2得m2﹣2=2,解得m=2或m=﹣2,将(2,2)代入y=x2﹣2mx+m2﹣2得2=4﹣4m+m2﹣2,解得m=0或m=4,∴﹣2≤m≤0时,抛物线对称轴在点A左侧,抛物线与线段AB有交点,2≤m≤4时,抛物线对称轴在点A右侧,抛物线与线段AB有交点.∴﹣2≤m≤0或2≤m≤4.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.【分析】(1)将(2,1)代入函数解析式求解.(2)由当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,可得抛物线对称轴为y轴,从而可得a的值,然后将x=2代入解析式判断.(3)由b≤﹣2时,m≤n恒成立,可得抛物线开口向下,求出点E关于对称轴对称的点坐标,列不等式求解.【解答】解:(1)将(2,1)代入y=a(x﹣1)(x﹣)得1=a(2﹣),解得a=2,∴y=2(x﹣1)(x﹣).(2)∵y=a(x﹣1)(x﹣),∴抛物线与x轴交点坐标为(1,0),(,0),∴抛物线对称轴为直线x=,∵x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,∴抛物线对称轴为值x=0,即1+=0,解得a=﹣3,∴y=﹣3(x﹣1)(x+1),将x=2代入y=﹣3(x﹣1)(x+1)得y=﹣9,∴点(2,﹣9)在抛物线上.(3)∵抛物线对称轴为直线x=,∴点E(0,n)关于对称轴对称的点E'(1+,n),∵当b≤﹣2时,m≤n恒成立,∴抛物线开口向下,即a<0,且﹣2≤1+,解得a≤﹣1.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.【分析】(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),即可求解;(Ⅱ)(i)设P(t,0),分两种情况讨论:当D点在点P右侧时,过点D作DN⊥x轴交于点N,通过证明△PND≌△AOP(AAS),可得D(t+2,﹣t),再将D点代入二次函数解析式求出t的值,从而求出D的坐标;当点D在点P的左侧时,同理可得D(t﹣2,t),再将D点代入二次函数解析式求出t的值,即可求解;(ii)分两种情况讨论:当D点在x轴下方时,当PE∥y轴时,∠OAP=45°,P(2,0);当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,可证明△GAF≌△APO(AAS),从而得到GF=2,则E点与G点重合,OP=AF=OA﹣OF=2﹣=,求出P(﹣,0).【解答】解:(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),得﹣12a=﹣2,∴a=,∴y=(x+3)(x﹣4)=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣);(Ⅱ)(i)令a(x+3)(x﹣4)=0,解得x=4或x=﹣3,∴B(4,0),设P(t,0),如图1,当D点在点P右侧时,过点D作DN⊥x轴交于点N,∵∠APD=90°,∴∠OPA+∠NPD=90°,∠OPA+∠OAP=90°,∴∠NPD=∠OAP,∴△PND≌△AOP(AAS),∴OP=ND,AO=PN,∴D(t+2,﹣t),∴(t+5)(t﹣2)=﹣t,解得t=1或t=﹣10,∴D(3,﹣1)或(﹣8,10);当点D在点P的左侧时,同理可得D(t﹣2,t),∴t=(t﹣2+3)(t﹣2﹣4),解得t=,∴D(,)或(,);综上所述:D点坐标为(3,﹣1)或(﹣8,10)或(,)或(,);(ii)如图2,当D点在x轴下方时,∵PE平分∠APD,∴∠APE=∠EPD,∵∠APD=90°,∴∠APE=45°,当PE∥y轴时,∠OAP=45°,∴P(2,0);如图3,当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,∵∠PAF+∠FAG=90°,∠FAG+∠FGA=90°,∴∠PAF=∠FGA,∵PE平分∠APD,∠APD=90°,∴∠APE=∠EPD=45°=∠AGP,∵AP=AG,∴△GAF≌△APO(AAS),∴AF=OP,FG=OA,∵OA=2,∴GF=2,∵E(2,﹣),∴E点与G点重合,∴OP=AF=OA﹣OF=2﹣=,∴P(﹣,0);综上所述:P点坐标为(2,0)或(﹣,0).14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.【分析】(1)用待定系数法求出抛物线的解析式,再将抛物线的解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A、B、C三点坐标,再根据三角形面积公式求解即可;②按第一种情况:当点A是最高点,可得m>1或m<﹣,第二种情况:当点B是最高点,得m的取值范围,再计算纵坐标的差h即可解答;(3)分情况讨论:①当m<﹣1时,②当﹣1≤m≤1时时,③当1<m<2时,④当2<m<3时,⑤当m=3,⑥当3≤m<4时,⑦当m=4时,⑧当m>4时,分别画出图形求解即可.【解答】解:(1)把(0,﹣1)和(2,7)代入y=x2+bx+c,得:,解得:,∴抛物线对应的函数表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴顶点C的坐标为(﹣1,﹣2);(2)①当x=﹣1﹣2m时,y=(﹣1﹣2m+1)2﹣2=4m2﹣2,∴B(﹣1﹣2m,4m2﹣2).当△ABC是以AB为底的等腰三角形时,则AC=BC,又∵点C在抛物线对称轴x=﹣1上,∴点A、点B关于直线x=﹣1对称,∴A(2m﹣1,4m2﹣2),∵点A的横坐标为m,∴2m﹣1=m,解得:m=1,∴A(1,2),B(﹣3,2),∵由(1)得,C(﹣1,﹣2),=[1﹣(﹣3)]×[2﹣(﹣2)]=8;∴S△ABC②∵A(m,(m+1)2﹣2),B(﹣1﹣2m,4m2﹣2).∴当点A是最高点,即m>1或m<﹣时,则h=(m+1)2﹣2﹣(﹣2)=(m+1)2;当点B是最高点,即0≤m<1时,则h=4m2﹣2﹣(﹣2)=4m2,综上,h与m之间的函数关系式为:h=(m+1)2(m>1或m<﹣)或h=4m2(0≤m<1);(3)①当m<﹣1时,则2﹣m>3,1﹣m>2,如图:。
(必考题)初中七年级数学下册第七单元《平面直角坐标系》经典题(提高培优)(1)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 4.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 5.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 6.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,9.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4)10.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 12.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88613.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭14.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处15.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.18.写一个第三象限的点坐标,这个点坐标是_______________.19.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.20.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 21.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .22.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.23.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.24.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.28.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标. 29.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标30.若点(1m -,32m -)在第二象限内,求m 的取值范围。
人教版初中数学函数之平面直角坐标系技巧及练习题附答案解析

2.在平面直角坐标系中,长方形 ABCD的三个顶点 A(3,2), B(1,2),C 1, 1, 则第四个
顶点 D 的坐标是( ).
A. 2,1
B. (3, 1)
C. 2,3
D. (3,1)
【答案】B 【解析】 【分析】
根据矩形的性质(对边相等且每个角都是直角),由矩形 ABCD 点的顺序得到 CD⊥AD, 可以把 D 点坐标求解出来.
∴ OA OP cos 5 3 3 , 5
∴ PA OP2 OA2 =4,
∵点 P 在第二象限, ∴点 P 的坐标是(-3,4) 故选:B.
【点睛】
此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐 标的符号特点.
8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为 4 的正方形
A. (4, 2)
B. (2, 4)
C. (3, 2)
D. (2, 1)
【答案】A
【解析】
【分析】
根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.
【详解】
如图所示,根据“車”的点坐标为 2, 0 ,可知 x 轴在“車”所在的横线上,
又根据“炮”的点坐标 1, 2 ,可推出原点坐标如图所示,
点的坐标为()
A. 3, 4
B. 3,4
C. 4,3
D. 3, 5
【答案】B 【解析】 【分析】
过点 P 作 PA⊥x 轴于 A,利用 OP 5, cos 3 求出 OA,再根据勾股定理求出 PA 即可得 5
到点 P 的坐标. 【详解】 过点 P 作 PA⊥x 轴于 A,
∵ OP 5, cos 3 , 5
上,可以得到点 A 的坐标. 【详解】
学而思初中数学题库 平面直角坐标系50题

||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题: ①若点 C 在线段 AB 上,则||AC||+||CB||=||AB||; ②在△ABC 中,若∠C=90°,则||AC||2+||CB||2=||AB||2; ③在△ABC 中,||AC||+||CB||>||AB||.其中真命题的个数为( )
C.(1,0)或(5,4)D.(0,1)或(4,5)
20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,
那么嘴的位置可以表示成( )
A.(1,0)
B.(﹣1,0)
C.(﹣1,1)
D.(1,﹣1)
21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,
,到原点
的距离为
.
41.在某地震多发地区有互相垂直的两条交通主干线,以这两条主干线为轴建立直角坐标系,
长度单位为 100km.地震监测部门预报该地区将有一次地震发生,震中位置为(﹣1,2),
平面直角坐标系 50 题(含解析)
影响范围的半径为 300km,则下列主干线沿线的 6 个城市在地震影响范围内有
D.(1,﹣2) D.7
平面直角坐标系 50 题(含解析)
A.3
B.4
C.5
D.7
9.在直角坐标中,点 P(6,8)到原点的距离为( )
A.10
B.﹣10
C.±10
D.12
10.在平面直角坐标系中,点 P( ,﹣1)到原点的距离是( )
A.1
B.
C.4
D.2
11.对于直角坐标平面内的任意两点 A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:
2023~2014北京十年中考数学分类汇编——代数综合(原卷版)

2023~2014北京十年中考数学分类汇编——代数综合1.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c (a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.2.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.3.(2021•北京)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx (a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.4.(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c (a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.6.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N (x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.8.(2016•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.9.(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y =x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.10.(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.。
2020年九年级数学中考三轮复习:《三角形综合训练》(解析版)

中考三轮复习:《三角形综合训练》1.如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC =S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP =S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.2.平面直角坐标系中,A(a,0),B(0,b),a,b满足(2a+b+5)2+=0,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.解:(1)∵(2a+b+5)2≥0,≥0,且(2a+b+5)2+=0,∴,解得:,∴A(﹣4,0),B(0,3).(2)设C(0,c),E(0,y),∵将线段AB平移得到CD,A(﹣4,0),B(0,3).∴由平移的性质得D(4,3+c),过D作DP⊥x轴于P,∴AO=4=OP,DP=3+c,OE=y,OC=﹣c,∵S△ADP =S△AOE+S梯形OEDP,∴,∴,解得y=.∴BE﹣OE=(BO﹣OE)﹣OE=BO﹣2OE=3﹣2×=﹣c=OC,∴=1.(3)∠G与∠H之间的数量关系为:∠G=2∠H﹣180°.如图,设AH与CD交于点Q,过H,G分别作DF的平行线MN,KJ,∵HD平分∠BAC,HF平分∠DFG,∴设∠BAH=∠CAH=α,∠DFH=∠GFH=β,∵AB平移得到CD,∴AB∥CD,BD∥AC,∴∠BAH=∠AQC=∠FQH=α,∠BAC+∠ACD=180°=∠BDC+∠ACD,∴∠BAC=∠BDC=∠FDG=2α,∵MN∥FQ,∴∠MHQ=∠FQH=α,∠NHF=∠DFH=β,∴∠QHF=180°﹣∠MHQ﹣∠NHF=180°﹣(α+β),∵KJ∥DF,∴∠DGK=∠FDG=2α,∠DFG=∠FGJ=2β,∴∠DGF=180°﹣∠DGK﹣∠FGJ=180°﹣2(α+β),∴∠DGF=2∠QHF﹣180°.3.在平面直角坐标系中,O 为坐标原点,A (m ,n +1),B (m +2,n ).(1)当m =1,n =2时.如图1,连接AB 、AO 、BO .直接写出△ABO 的面积为 .(2)如图2,若点A 在第二象限、点B 在第一象限,连接AB 、AO 、BO ,AB 交y 轴于H ,△ABO 的面积为2.求点H 的坐标.(3)若点A 、B 在第一象限,在y 轴正半轴上存在点C ,使得∠CAB =90°,且CA =AB ,求m 的值,及OC 的长(用含n 的式子表示).解:(1)∵A (1,3),B (3,2),∴S △ABC =3×3﹣×1×3﹣×2×1﹣×2×3=.故答案为.(2)如图2中,∵S △ABO =S △AOH +S △OBH =•OH •(m +2﹣m )=2,∴OH =2(3)如图3中,作AD ⊥y 轴于D ,BE ⊥DA 交D 的延长线于E .∵∠ADC =∠E =∠CAB =90°,∴∠DAC +∠EAB =90°,∠EAB +∠ABE =90°,∴∠DAC =∠ABE ,∵AC =AB ,∴△DAC≌△EBA(AAS),∴AD=BE=m,CD=AE=2,∴OC+CD=n+1,∴OC=n﹣1(n>1),∴OC+CD=n+m=n+1,∴m=1.4.在△ABC中,AB=AC,点D在射线BC上,连接AD.(1)如图1,当点D在线段BC上时,若AB=5,BC=8,CD=2,求△ABD的面积;(2)如图2,当点D在线段BC的延长线上时,过B作BE⊥AC分别交AC于点E,交AD 于点F,截取AC中点G,延长BG到点H,连接AH,使∠AHB=∠ACB﹣∠ABH,若∠ADB=45°,求证:AH=DF.解:(1)如图1中,作AH⊥BC于H.∵AB=AC=5,AH⊥BC,∴BH=CH=BC=4,∴在Rt△ABH中,AH===3,∴S=•BD•AH=×6×3=9.△ABD(2)如图2中,作FM⊥BD于M,作AN⊥BC于N.∵AB=AC,AN⊥BC,∴BN=CN,∠BAN=∠CAN,∠ABC=∠ACB,∵BE⊥AC,∴∠ANC=∠ANB=∠BEC=90°,∴∠CN+∠ACB=90°,∠FBM+∠ACB=90°,∴∠FBM=∠CAN=∠BAN,∵∠H=∠ACB﹣∠ABH,∴∠H=∠ABC﹣∠ABH=∠HBC,∵AG=GC,∠AGH=∠CGB,∴△AGH≌△CGB(AAS),∴AH=BC,∵∠AND=90°,∠D=45°,∴∠NAD=∠D=45°,∵∠BFA=∠D+∠FBD,∠BAF=∠DAN+∠BAN,∴∠BFA=∠BAF,∴BA=BF,∵∠ANB=∠BMF=90°,∴△ANB≌△BMF(AAS),∴BN=FM,∵DF=FM,∴DF =BN , ∴DF =2BN =BAH ,即AH =DF .5.如图,等腰三角形ABC 中,AB =AC =10cm ,BC =12cm ,AD 为底边BC 上的高,动点P 从点D 出发,沿DA 方向匀速运动,速度为1cm /s ,运动到A 点停止,设运动时间为t (s ),连接BP .(0≤t ≤8)(1)求AD 的长;(2)设△APB 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使得S △APB :S △ABC =1:3,若存在,求出t 的值;若不存在,说明理由.(4)是否存在某一时刻t ,使得点P 在线段AB 的垂直平分线上?若存在,求出t 的值;若不存在,说明理由.解:(1)∵AB =AC ,AD ⊥BC ,∴BC =DC =6cm ,在Rt △ABD 中,∵∠ADB =90°,AB =10cm ,BD =6cm ,∴AD ===8(cm ).(2)y =S △APB =S △ABD ﹣S △PBD =×6×8﹣×6×t =﹣3t +24.∴y =24﹣3t (0≤t ≤8).(3)∵S△APB :S△ABC=1:3,∴(24﹣3t):×12×8=1:3,解得t=.∴满足条件的t的值为.(4)由题意点P在线段AB的垂直平分线上,∴PA=PB,在Rt△PBD中,∵PB2=PD2+BD2,∴t2=(8﹣t)2+62,解得t=.∴满足条件的t的值为.6.如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E (1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF 的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是2.(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC=60°∵AD⊥BC,∴BD=DC=4,∵DE⊥AB,∴∠DEB=90°,∠BDE=30°,∴BE=BD=2,∴AE=AB﹣BE=8﹣2=6,∴AE=3BE.(2)解:如图2中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.∵∠AED=90°,AF=FD,∴EF=AF=DF,∵DF=DH,∴DE=DF=DH,∴∠FEH=90°,∵在Rt△ABD中,∠ADB=90°,BD=4,∠B=60°,∴AD=BD•tan60°=4,∵∠BAD=∠BAC=30°,FE=FA,∴∠FEA=∠FAE=30°,∴∠EFH=60°,∠H=30°,∵FH=AD=4,∴EH=FH•cos30°=6,∴PE+PF的最小值=PE+PH=EH=6,∵PD=DH•sin30°=2,∴BP=BD﹣PD=2.(3)解:如图2中,∵BE=BP=2,∠B=60°,∴△BPE是等边三角形,∴PE=2,∵∠PEF=90°,EF=AF=DF=2,∴S=•PE•EF=×2×2=2.△PEF7.在△ABC中,∠ABC=60°(1)AB=AC,PA=5,PB=3①如图1,若点P是△ABC内一点,且PC=4,求∠BPC的度数.②如图2,若点P是△ABC外一点,且∠APB=60°,求PC的长.(2)如图3,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是2.解:(1)在△ABC中,∠ABC=60°,AB=AC,∴△ABC是等边三角形,①如图1,将△ABP绕点B顺时针旋转60°得到△CBP′,连接PP′,∴BP=BP′,∠PBP′=∠ABC=60°,∴△BPP′是等边三角形;∴PP′=PB,∠BPP′=60°,由旋转的性质得,P′C=PA=5,∵PP′2+PC2=32+42=25=P′C2,∴△CPP′是直角三角形,∠CPP′=90°,∴∠BPC=∠BPP′+∠CPP′=60°+90°=150°;②如图2中,以AP为边向上作等边△PAE,作EF⊥BP交BP的延长线于F.∵∠EAP=∠BAC=60°,∴∠EAB=∠PAC,∵AE=AP,AB=AC,∴△EAB≌△PAC(SAS),∴BE=PC,∵∠APE=∠APB=60°,∴∠EPF=180°﹣60°﹣60°=120°,∵PE=PA=5,∴PF=PE•cos60°=,EF=PE•sin60°=,∴BF=BP+PF=3+=,∴BE===7,∴PC=PE=7.(2)如图3中,将△PBF绕点B逆时针旋转60°得到△BFE,作EH⊥CB交CB的延长线于H.∵∠ABC=60°,∠PBF=60°,∵∠ABP=∠EBF,∴∠EBF+∠BC=60°,∴∠EBC=120°,∵PB=BF,∠PBF=60°,∴△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=CP+PF+EF,根据两点之间线段最短可知,当E,F,P,C共线时,PA+PB+PC的值最小,最小值=EC 的长,在Rt△EBH中,∵∠EBH=60°,EB=6,∴BH=BE•cos60°=3,EH=EB•sin60°=3,∴CH=BH+CB=3+8=11,∴EC===2.8.全等三角形是研究图形性质的主要工具,以此为基础,我们又探索出一些轴对称图形的性质与判定.通过寻找或构造轴对称图形,能运用其性质及判定为解题服务.(1)如图①,BE⊥AC,CD⊥AB,BD=CE,BE与CD相交于点F.①求证:BE=CD;②连接AF,求证:AF平分∠BAC.(2)如图②,在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出∠BAC的平分线.(不写画法,保留画图痕迹).(3)如图③,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?为什么?(1)①证明:∵BE⊥AC,CD⊥AB,∴∠BDF=∠CEF=90°,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD;②证明:由①得:DF=EF,∵BE⊥AC,CD⊥AB,∴AF平分∠BAC.(2)解:连接BE、CD交于点O,作射线AO交BC于F,如图②所示:AF即为所求;理由如下:∵AB=AC,∴∠DBC=∠ECB,在△BDC和△CEB中,,∴△BDC≌△CEB(SAS),∴∠BCD=∠CBE,∴∠ABO=∠ACO,OB=OC,同理:△ABO≌△ACO(SAS),∴∠OAB=∠OAC,∴AF是∠BAC的平分线;(3)解:CD=BE,理由如下:分别作CF⊥AB于F,BG⊥AC于G,如图③所示:∴∠CFB=90°,∠BGC=90°,∵AB=AC,∴∠ABC=∠ACB,在△FBC和△GCB中,,∴△FBC≌△GCB(AAS).∴CF=BG,∵∠ADC+∠AEB=180°,又∵∠BEG+∠AEB=180°,∴∠ADC=∠BEG,在△CFD和△BGE中,,∴△CFD≌△BGE(AAS),∴CD=BE.9.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒lcm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在∠BAC的角平分线上时,求出此时t的值;(3)当P在运动过程中,求出t为何值时,△BCP为等腰三角形.(直接写出结果)(4)若M为AC上一动点,N为AB上一动点,是否存在M、N使得BM+MN的值最小?如果有请求出最小值,如果没有请说明理由.解:(1)∵△ABC中,∠ACB=90°,AB=10,BC=6,∴由勾股定理得AC==8,连接BP,如图所示:当PA=PB时,PA=PB=t,PC=8﹣t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣t)2+62=t2,解得:t=,∴当t=秒时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10,BC=6,∴CP=EP,在Rt△ACP和Rt△AEP中,,∴Rt△ACP≌Rt△AEP(HL),∴AC=AE=8,∴BE=2,设CP=EP=x,则BP=6﹣x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2,解得x=,∴CP=,∴CA+CP=8+=,∴t=;当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=10+8+6=24;综上,若点P恰好在∠BAC的角平分线上,t的值为秒或24秒;(3)①如图2,点P在CA上,当CP=CB=6时,△BCP为等腰三角形,则t=8﹣6=2;②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20;③如图4,若点P在AB上,当CP=CB=6时,△BCP为等腰三角形;作CD⊥AB于D,则根据面积法求得:CD==4.8,在Rt△BCD中,由勾股定理得,BD==3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2;④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19;综上所述,t为2s或20s或21.2s或19s时,△BCP为等腰三角形.(4)存在M、N使得BM+MN的值最小,理由如下:作点B关于AC的对称点B',过B'作AB的垂线交AC于M,交AB于N,连接BM,如图6所示:则B'C=BC=6,B'M=BM,∠B'NB=90°,BM+MN=B'M+MN=B'N,∴BB'=2BC=12,∵∠ACB=∠B'NB=90°,∠B'BN=∠ABC,∴△B'BN∽△ABC,∴===,∴B'N=AC=×8=9.6,综上所述,存在M、N使得BM+MN的值最小,BM+MN的最小值为9.6.10.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.11.在平面直角坐标系中,直线AB交y轴于A(0,a),交x轴于B(b,0),且a,b满足(a﹣b)2+|3a+5b﹣88|=0.(1)求点A,B的坐标;(2)如图1,已知点D(2,5),求点D关于直线AB对称的点C的坐标.(3)如图2,若P是∠OBA的角平分线上的一点,∠APO=67.5°,求的值.解:(1)由题意得解得∴A(0,11),B(11,0)(2)如图一,延长FD交AB于点E,连结CE因为OB=OA=11所以三角形OAB是等腰直角三角形易得△DEC,△AFE都是等腰直角三角形所以FE=AF=OA﹣OF=11﹣5=6∴CE=DE=EF﹣FD=6﹣2=4所以C的横坐标为6.,纵坐标为5+4=9故C的坐标为(6,9)(3)如上图,作PM垂直AB于点M,作PM垂直OB于点L,在L的左侧取一点N,使得NL=AM ∵PB是∠ABO的平分线所以PM=PL∴△AMP≌△NLP∴∠NLP=∠APM∴∠APN=∠MPL∵∠ABO=45°∴∠MPL=135°∴∠APN=135°又∠APO=67.5°∴∠NPO=∠APO=67.5°∵PN=PA,PO=PO∴△OPN≌OPA∴∠PON=∠POA=45°,NO=AO=11设NL=a,则MA=a,∴BL=BM=a+11∵BL=22﹣a∴22﹣a=a+11∴a=11﹣∴LO=11﹣(11﹣)=∴PO=LO=11所以=312.以△ABC的边AB,AC为直角边向外作等腰直角三角形ABE和等腰直角三角形ACD,AB =AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.(1)如图1,在△ABC中,当∠BAC=90°时,求AM与DE的数量和位置关系.(2)如图2,当△ABC为一般三角形时,(1)中的结论是否依然成立?说明理由.(3)如图3,若以△ABC的边AB,AC为直角边向内作等腰直角三角形ABE和等腰直角三角形ACD,其他条件不变(1)中的结论是否依然成立,并说明理由.解:(1)AM=DE,AM⊥DE,理由如下:延长MA交DE于F,如图1所示:∵∠BAC=90°,M是BC中点,∴AM=BC,∵∠BAE=∠CAD=90°,∠BAC=90°,∴∠EAD=90°,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴DE=BC,∠ABC=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAM+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(2)(1)中的结论成立,AM=DE,AM⊥DE,理由如下:延长AM至N,使MN=AM,连接BN、CN,延长MA交DE于F,如图2所示:∵M是BC中点,∴BM=CM,∴四边形ABNC是平行四边形,∴BN=AC=AD,BN∥AC,∴∠NBA+∠BAC=180°,∵∠BAE=∠CAD=90°,∴∠DAE+∠BAC=180°,∴∠NBA=∠DAE,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE=2AM,∠BAN=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAN+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(3)(1)中的结论成立,理由如下:由(1)的结论,当∠BAC=90°,可得AM=DE,AM⊥DE,当∠BAC≠90°时,延长CA到F,使AF=AC,连接BF,延长AM交DE于G,如图3所示:则AF=AX=AD,∵M是BC中点,∴AM是△BCF的中位线,∴AM=BF,AM∥BF,∴∠MAC=∠F,∵∠BAE=∠DAC=90°,∴∠DAF=90°,∴∠BAE=∠DAF,∴∠BAF=∠EAD,在△ABF和△AED中,,∴△ABF≌△AED(SAS),∴BF=DE,∠F=∠ADE,∴AM=DE,∴∠BAC=∠ADE,∵∠MAC+∠DAM=∠DAC=90°,∴∠ADE+∠DAM=90°,∴∠AGD=90°,∴AM⊥DE;综上所述,(1)中的结论成立.13.在平面直角坐标系中,点A的坐标为(0,4)(1)如图1,若点B的坐标为(3,0),△ABC是等腰直角三角形,BA=BC,∠ABC=90°,求C点坐标.(2)如图2,若点E是AB的中点,求证:AB=2OE;(3)如图3,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,△ACD是等边三角形,连接OD,若∠AOD=30°,求B点坐标.(1)解:过点C作CD⊥x轴于D,如图1所示:∵∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∵CD⊥x轴,∴∠BDC=90°=∠AOB,在△BDC和△AOB中,,∴△AOB≌△BDC(AAS),∴OA=DB,OB=DC,∵点A(0,4),点B(3,0),∴DB=4,DC=3,∴OD=4+3=7,∴C点坐标为(7,3);(2)证明:延长OE至F点,使得EO=EF,连接FB,如图2所示:∵点E为AB的中点,∴EA=EB,在△AOE和△BFE中,,∴△AOE≌△BFE(SAS),∴OA=FB,∠AOE=∠F,∴OA∥BF,∴∠AOB+∠FBO=180°,∵∠AOB=90°,∴∠FBO=90°,∴∠AOB=∠FBO,在△AOB和△FBO中,,∴△AOB≌△FBO(SAS),∴AB=OF,∵EA=EB,EO=EF,∴OE=AE=EB,∴AB=2OE;(3)解:过点D作DM⊥y轴于M,CN⊥OD于N,CH⊥y轴于H,CG⊥x轴于G,如图3所示:则四边形OHCG是矩形,∴OH=CG,∵∠AOD=30°,∴∠ODM=90°﹣30°=60°,OD=2DM,∵△ADC为等边三角形,∴AD=CD=AC,∠ADC=60°,∵∠ADM+∠ADO=60°,∠CDN+∠ADO=60°,∴∠ADM=∠CDN,在△DMA和△DNC中,,∴△DMA≌△DNC(AAS),∴DM=DN,∴OD=2MD=2DN,∴DN=ON,∴CD=CO=AC,∴HA=HO=CG=2,由(1)得CG=OB∴OB=2,∴B点坐标为(2,0).14.已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接DE.(1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE=(AB+BC+AC);(2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明;(3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为 4.5 .(1)证明:如图1,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK+BC+CH=AB+BC+AC,∴DE=(AB+AC+BC);(2)解:结论不成立.DE=(AB+AC﹣BC).理由:如图2,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK﹣BH=AB+AC﹣BC,∴DE=(AB+AC﹣BC);(3)解:分别延长AE、AD交BC或延长线于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB同理可证,AE=HE,AC=HC,∴DE=KH又∵KH=BC﹣BK+HC=BC+AC﹣AB.∴DE=(BC+AC﹣AB),∵AB=8,BC=10,AC=7,∴DE=(10+7﹣8)=4.5,故答案为4.5.15.在平面直角坐标系中,点A(a,0)、C(b,0)、B(0,),a、b满足:a2+2ab+2b2﹣4b+4=0,且AB=AC.(1)判断△ABC的形状并证明;(2)如图1,点D为BA延长线上一点,AD=AB,E为x轴负半轴上一点,F为DE上一点,连接CF交AD于点G,∠EFC=120°,求的值;(3)如图2,R(3a,0)点P为线段BR上一动点,以AP为边作等腰△APQ,PA=PQ,且∠APQ=∠RAB,连接AQ.当点P运动时,△ABQ的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)结论:△ABC是等边三角形.理由:∵a2+2ab+2b2﹣4b+4=0,∴(a+b)2+(b﹣2)2=0,∵(a+b)2≥0,(b﹣2)2≥0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,0),∴OA=OC,∵BO⊥AC,∴BA=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形.(2)如图1中,作BH∥DE交x轴于H.∵∠DEA=∠BHA,∠DAE=∠BAH,AD=AB,∴△DAE≌△BAH(AAS),∴AE=AH,∵∠D+∠DGF=∠EFH=120°,∠D+∠DEA=∠DAC=120°,∴∠DEA=∠DGF=∠AGH,∴∠AGH=∠BHC,∵∠GAH=∠BCH=120°,AH=BC,∴△AHG≌△CBH(AAS),∴AG=CH,∴===2.=4.(3)结论:△ABQ的面积不变,S△ABQ理由:如图2中,在x轴的正半轴上取一点M,使得PR=PM,连接PM,QR.由题意R(﹣6,0),A(﹣2,0),B(0,﹣2),∴OR=6,OB=2,∴tan∠PQM=,tan∠OAB=∴∠PRM=∠PMR=30°,∠OAB=60°,∴∠RPM=120°,∵∠RPM=∠APQ=120°,∴∠APM=∠RPQ,∵PR=PM,PQ=PQ,∴△PRQ≌△PMA(SAS),∴∠PRQ=∠AMP=30°,∴∠ARQ=60°=∠OAB,∴AB∥QR,∴S△ABQ =S△ABR=×4×2=4.16.在平面直角坐标系中,点A(0,m)和点B(n,0)分别在y轴和x轴的正半轴上,满足(m﹣n)2+|m+n﹣8|=0,连接线段AB,点C为AB上一动点.(1)填空:m= 4 ,n= 4 ;(2)如图,连接OC并延长至点D,使得DC=OC,连接AD.若△AOC的面积为2,求点D 的坐标;(3)如图,BC=OB,∠ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.求证:①△ACE为等腰直角三角形;②BF﹣EF=OC.解:(1)∵(m﹣n)2+|m+n﹣8|=0,∴m=n=4,故答案为:4,4;(2)如图1,过点C作CH⊥OA,CG⊥OB,∵点A(0,4)和点B(4,0),∴OA=OB=4,=×4×4=8,∴S△ABO∵△AOC的面积为2,∴AO×CH=×4×CH=2,S=6=×OB×CG=×4×CG,△BOC∴CH=1,CG=3,∴点C(1,3),∵DC=OC,∴点D(2,6)(3)①∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,∵BE平分∠ABO,∴∠EBO=∠EBC,且BE=BE,OB=OC,∴△OBE≌△CBE(SAS)∴∠EOB=∠ECB=90°,∴∠ACE=90°,且∠OAB=45°,∴∠CAE=∠AEC=45°,∴AC=CE,且∠ACE=90°,∴△ACE是等腰直角三角形;②如图2,作OM平分∠AOB,交BE于点M,∵OM平分∠AOB,∴∠AOM=∠BOM=45°,∴∠AOM=∠BOM=∠OAB=∠OBA,∵OB=OC,BE平分∠ABO,∠ABO=45°,∴∠OBE=22.5°,BE⊥OC,∠COB=∠OCB=67.5°,∴∠AOC=22.5°=∠COM,∴∠AOC=∠BOM,且OB=OA,∠OAB=∠OBM,∴△ACO≌△OMB(ASA)∴BM=OC,∵∠EFO=∠MFO=90°,OF=OF,∠AOC=∠COM,∴△EFO≌△MFO(ASA)∴EF=FM,∴BF﹣EF=BF﹣FM=BM=OC.17.【问题发现】(1)如图①,数学课外资料《全品》P4页有一道题条件为:“D是等边三角形ABC的边BC上的一动点,以AD为边在AB上方作等边△ADE,若AB=10,AD=8……”,小明认为AD有最小值,条件AD=8是错误的,他的想法得到了王老师的肯定,那么AD的最小值是5.王老师又让小明研究了以下两个问题:【问题探究】(2)如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D在AB上,且AD =1,以CD为直角边向右作等腰直角△DCE,连接BE,求△BDE的周长;【问题解决】(3)如图③,△ABC中,∠A=45°,∠ABC=60°,AB=3+,点D是边AB上任意一点,以CD为边在AD的右侧作等边△DCE,连接BE,试求△BDE面积的最大值.【问题发现】解:(1)当AD⊥BC时,AD的值最小,∵△ABC是等边三角形,AD⊥BC,∴BC=AB=10,BD=BC=5,∴AD===5,故答案为:5;【问题探究】解:(2)作CM⊥AB于M,如图②所示:∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=AC=4,CM=AB=AM=BM=2,∴DM=AM﹣AD=1,∴BD=BM+DM=3,CD===,∵△DCE是等腰直角三角形,∴CD=CE,∠DCE=90°=∠ACB,DE=CD=,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE=1,∴△BDE的周长=BD+BE+DE=3+1+=4+;【问题解决】解:(3)作CM⊥AB于M,作EN⊥AB于N,如图③所示:∵∠A=45°,∠ABC=60°,∴△ACM是等腰直角三角形,∠BCM=30°,∴AM=CM,CM=BM,设BM=x,则AM=CM=x,∴AB=x+x=3+,解得:x=,∴BM=,CM=AM=3,设AD=y,则DM=3﹣y,BD=3+﹣y,∵△CDE是等边三角形,∴∠DCE=60°CD=CE,∴∠DCM+∠BCE=30°=∠BCM,在MB上截取MH=MD=3﹣y,连接CH,则CD=CH=CE,∵CM⊥DH,∴∠DCM=∠HCM,∴∠BCH=∠BCE,在△BCH和△BCE中,,∴△BCH≌△BCE(SAS),∴∠CBH=∠CBE=60°,BH=BE=3+﹣y﹣2(3﹣y)=y+﹣3,∴∠EBN=60°,∵EN⊥AB,∴∠BEN=30°,∴BN=BE,EN=BN=BE=(y+﹣3),∵△BDE的面积=BD×EN=×(3+﹣y)×(y+﹣3)=(﹣y2+6y﹣6)=﹣(y﹣3)2+,∴当y=3,即AD=3时,△BDE面积的最大值为.18.等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上的一点,连接CF,过点B作BH⊥CF交CF于G,交AC于H.(1)如图1,延长BH到点E,连接AE,当∠EAB=90°,AE=3,求BF的长;(2)如图2,若F为AB的中点,连接FH,求证:BH+FH=CF;(3)如图3,在AB上取点K,使AK=BF,连接HK并延长与CF的延长线交于点P,若G 为CP的中点,PG=2.求AH+BH的值(直接写出答案)解:(1)∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE=3.(2)证明:如图2中,过点A作AD⊥AB交BH的延长线于点D.∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°,∴∠ABD=∠BCF,在△ABD与△BCF中,,∴Rt△BAD≌Rt△CBF(AAS),∴AD=BF,BD=CF.∵F为AB的中点,∴AF=BF,∴AD=AF,在△ADH与△AFH中,,∴△AHD≌△AHF(SAS),∴DH=FH.∵BD=BH+DH=BH+FH,∴BH+FH=CF;(3)如图3中,过A作AM⊥AB,交BH延长线于M,由(2)证得△MAB≌△FBC,∴AM=BF=AK,∠AMB=∠CFB,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵∠MAB=90°,∴∠MAH=45°,∴∠MAH=∠CAB,在△MAH与△KAH中,,∴△MAH≌△KAH(SAS),∴∠AMB=∠AKH,∴∠AKH=∠CFB,∵∠AKH=∠PKF,∠CFB=∠PFK,∴∠PKF=∠PFK,∵FC⊥BH,G是PC中点,∴CH=PH,∴∠AHK=2∠P,在△PFK中,∠PKF==90°﹣∠P,则90°﹣∠P+45°+2∠P=180°,解得∠P=30°,在CH上取一点R,使RH=BH,连接BR,∴∠RHB==60°,∴△RHB是等边三角形,∴BH=BR=RH,∵∠CAB=∠ACB=45°,∠AHB=180°﹣60°=120°,∠BRC=180°﹣60°=120°,∴∠ABH=∠RBC,在△ABH与△CBR中,,∴△ABH≌△CBR(ASA),∴AH=CR,∵cos30°=,∴CH==CG=PG,∴RH+RC=BH+AH=PG=,∴BH+AH=.19.如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2m/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s)(1)若点Q的运动速度与点P的运动速度相等,当t=1时,判断线段PC与PQ满足的关系,并说明理由.(2)如图(2),将图(1)中的AC⊥AB,BD⊥AB为改“∠CAB=∠DBA=a°”,其它条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.解:(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2∴BP=6∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ,∴∠C=∠QPB,∵∠APC+∠C=90°,∴∠APC+∠QPB=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:6=8﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:6=xt,2t=8﹣2t解得:x=3,t=2.20.已知△ABC是等边三角形.(1)如图1,点D是BC边的中点,点P在直线AC上,若△PAD是轴对称图形,则∠APD 的度数为120°或75°或30°或15°.(2)如图2,点D在BC边上,∠ADG=60°,DG与∠ACB的外角平分线交于G,GH⊥AC 于H,当点D在BC边上移动时,请判断线段AH,AC,CD之间的数量关系,并说明理由.(3)如图3,点D在BC延长线上,连接AD,E为AD上一点,AE=AC,连接BE交AC于F,若AF=2ED=3,则线段CF的长为.解:(1)如图1中,当△PAD是等腰三角形时,是轴对称图形.当AP=AD时,可得∠AP1D=15°,∠AP3D=75°.当PA=PD时,可得∠AP2D=120°.当DA=DP时,可得∠AP4D=30°,综上所述,满足条件的∠APD的值为120°或75°或30°或15°.故答案为120°或75°或30°或15°.(2)结论:AC+CD=2AH.理由:如图2中,连接AG,作GN⊥CM于N,在BA上截取BQ,使得BQ=BD,∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠BAC=∠ACB=60°,∵BQ=BD,∴△BDQ是等边三角形,AQ=DC,∴∠BQD=60°,∴∠AQD=120°,∵CG是∠ACB的外角平分线,∴∠ACG=60°,∠DCG=120°,∵∠ADG=60°,∴∠ADB+∠GDC=120°,∵∠QAD+∠ADB=120°,∴∠QAD=∠CDG,∴△AQD≌△DCG(ASA),∴AD=DG,∵∠ADG=60°,∴△ADG是等边三角形,∴AG=DG,∵GH⊥C,GN⊥CM,CG平分∠ACM,∴GH=GN,∠GHC=∠GNC=90°,∵CG=CG,∴Rt△CGH≌Rt△CGN(HL),Rt△AGH≌Rt△DGN,∴CH=CN,AH=DN,∴AC+CD=AH+CH+DN﹣CN=2AH.(3)如图3中,在BC上截取BG=CF,则CG=AF=3,过点D作QH∥AB,分别交AC,BE 的延长线于Q,H.∵AB=AE,∴∠ABE=∠AEB,∵QH∥AB,∴∠ABE=∠H,∵∠AEB=∠DEH,∴∠H=∠DEH,∴DE=DH=1.5,设AB=BC=AC=m,∵△ABG≌△BCF(SAS),∴∠BAG=∠CBF,设∠BAG=∠CBF=x,∵AB=AE,∴∠ABE=∠AEB=60°﹣x,∴∠BAE=180°﹣2(60°﹣x)=60°+2x,∴∠DAG=∠DGA=60°+x,∴DA=DG=m+1.5,∴CD=m﹣1.5=CQ=DQ,∴QH=QD+DH=m,∴QH=AB,∵∠AFB=∠QFH,∠BAF=∠Q,∴△ABF≌△QHF(AAS),∴AF=FQ,∴3=m﹣2+m﹣1,5,∴m=,∴CF=.故答案为.。
平面直角坐标系中任意三角形的面积公式
平面直角坐标系中任意三角形的面积公式《平面直角坐标系中任意三角形的面积公式》在平面直角坐标系里呀,三角形就像是一群调皮的小精灵,它们的面积计算还真有点小门道呢。
咱先说说三角形的三个顶点坐标,就假设是A(x1,y1),B(x2,y2),C(x3,y3)。
这时候你可能会想,咋求这个三角形的面积呢?可别小瞧这事儿,这里面的乐趣可多啦。
有一种方法呢,是可以用行列式来计算。
行列式这个东西呀,听起来有点高大上,其实就像是一个特殊的小盒子,把三角形顶点的坐标按照一定的规则放进去。
这个行列式算出来的值呀,和三角形的面积有着奇妙的联系。
就好像它们之间有个小秘密,只有懂数学的小机灵鬼才能发现。
你要是把坐标放进去算对了,再按照规定处理一下这个结果,就能得到三角形的面积啦。
还有一种比较直观的想法哦。
我们可以把这个三角形看成是由一些矩形和直角三角形拼凑或者裁减而成的。
想象一下,在坐标系里画一些辅助线,把三角形周围都用矩形给围起来,然后把多余的直角三角形减掉,剩下的就是我们要的三角形面积啦。
这就像是在玩拼图游戏,不过是数学版的。
比如说,我们先算出大矩形的面积,这个比较好算,长乘以宽嘛。
然后再算出那些多余的直角三角形的面积,这也简单,直角边相乘再除以2就成。
最后用大矩形的面积减去这些多余部分的面积,哇塞,三角形的面积就出来啦。
再讲讲向量的方法。
向量就像是带着方向的小箭头在坐标系里到处跑。
我们可以利用三角形两个边对应的向量来计算面积。
通过向量的叉乘,这叉乘的结果和三角形的面积也有着千丝万缕的联系呢。
这就像是两个小伙伴在坐标系里合作,一起把三角形面积这个小秘密给揭开。
其实呀,平面直角坐标系里的三角形面积公式就像是一个魔法盒,我们可以从不同的角度把坐标这个小钥匙插进去,然后就能得到面积这个小宝藏。
它既有趣又有点小挑战,就像一场数学的小冒险。
我觉得平面直角坐标系中任意三角形的面积公式充满了数学的智慧和乐趣。
不管是用行列式、拼凑裁减还是向量的方法,都像是打开同一个宝藏的不同钥匙,每一种方法都有着它独特的魅力。
xy轴表示坐标方法
xy轴表示坐标方法坐标方法是数学中常用的表示空间位置的方法,其中以xy轴表示坐标是最常见的一种方法。
在平面直角坐标系中,x轴和y轴互相垂直,交于原点O,x轴向右延伸为正方向,y轴向上延伸为正方向。
下面将介绍一些关于xy轴表示坐标的基本概念和应用。
一、直角坐标系介绍直角坐标系是平面上最常见的坐标系,也是我们最常用的表示空间位置的方法之一。
它由两条垂直的直线组成,其中一条直线被称为x轴,另一条直线被称为y轴。
这两条直线的交点被定义为原点O,其坐标为(0,0)。
二、坐标的表示方法在直角坐标系中,每一个点都可以用一个有序数对(x,y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
当x为正数时,表示点在原点右侧;当x为负数时,表示点在原点左侧。
当y为正数时,表示点在原点上方;当y为负数时,表示点在原点下方。
三、坐标的应用1. 图形的表示通过直角坐标系中的坐标,我们可以准确地表示出各种图形的位置和形状。
例如,可以用坐标表示直线、曲线、抛物线、圆等图形。
2. 距离的计算在直角坐标系中,我们可以根据两点的坐标计算它们之间的距离。
根据勾股定理,两点之间的距离可以通过计算两点在x轴和y轴上的距离,然后使用勾股定理求得。
例如,两点A(x1,y1)和B(x2,y2)之间的距离为√((x2-x1)²+(y2-y1)²)。
3. 坐标变换在直角坐标系中,我们可以对坐标进行平移、旋转、缩放等操作,从而改变图形的位置和形状。
平移是通过改变坐标的值来实现的,旋转是通过改变坐标的角度来实现的,缩放是通过改变坐标的比例来实现的。
4. 函数的表示在数学中,函数可以用方程y=f(x)来表示,其中x为自变量,y为因变量。
通过在直角坐标系中绘制函数的图形,我们可以观察函数的性质和行为。
例如,可以通过绘制函数的图像来研究函数的增减性、极值、对称性等。
5. 问题的求解在物理、工程、经济等领域中,许多问题都可以通过建立坐标系和运用坐标方法来求解。
中考数学圆中最值问题专题含答案
点圆关系问题三、利用坐标特性进行转换【经典例题5】如图,在平面直角坐标系中,已知点 A (0,1)、B(0,1+t)、C(0,1−t)(t>0),点P 在以D(4,4)为圆心,1 为半径的圆上运动,且始终满足∠BPC=90°,则 t 的最大值是 .【解析】如图,连接AP ,∵点A(0,1)、点B(0,1+t)、C(0,1−t)(t>0),∴AB=(1+t)−1=t ,AC=1−(1−t)=t ,∴AB=AC ,∵∠BPC=90∘,∴AP=21BC=AB=t , 要t 最大,就是点A 到⊙D 上的一点的距离最大,∴点P 在AD 延长线上,∵A(0,1),D(4,4),∴AD=()51-4162=+, ∴t 的最大值是AP=AD−PD=5+1=6,最小值为4.故答案为:6,练习5-1如图,已知直线y=43x −3与x 轴、y 轴分别交于A. B 两点,P 是以C(0,1)为圆心,1为半径的圆上一动点,连结PA 、PB.则△PAB 面积的最大值是( ) A. 8 B. 12 C. 221 D. 217【解析】∵直线y=43x −3与x 轴、y 轴分别交于A. B 两点, ∴A 点的坐标为(4,0),B 点的坐标为(0,−3),3x −4y−12=0,即OA=4,OB=3,由勾股定理得:AB=5,过C 作CM ⊥AB 于M ,连接AC ,则由三角形面积公式得:21×AB×CM=21×OA×OC+21×OA×OB , ∴5×CM=4×1+3×4,∴CM=516, ∴圆C 上点到直线y=43x−3的最大距离是1+516=521, ∴△PAB 面积的最大值是21×5×516=221, 故选:C.练习5-2如图,直线y=43x +3与x 轴、y 轴分别交于A ,B 两点,点P 是以C(1,0)为圆心,1为半径的圆上任意一点,连接PA ,PB ,则△PAB 面积的最小值是( )A. 5B. 10C. 15D. 20【解答】作CH ⊥AB 于H 交⊙O 于E. F.∵C(1,0),直线AB 的解析式为y=43x +3, ∴直线CH 的解析式为y=34-x +34, 由⎪⎪⎩⎪⎪⎨⎧+=+-=3433434x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=51254y x ,∴H(−54,512), ∴CH=22)512()541(++=3, ∵A(4,0),B(0,3),∴OA=4,OB=3,AB=5,∴EH=3−1=2,当点P 与E 重合时,△PAB 的面积最小,最小值=21×5×2=5,练习5-3如图,已知直线y=343-x 与x 轴、y 轴分别交于A 、B 两点,P 是以C(0,1)为圆心,1为半径的圆上一动点,连接PA 、PB ,当△PAB 的面积最大时,点P 的坐标为________.【解析】过C 作CM ⊥AB 于M ,交x 轴于E ,连接AC ,MC 的延长线交⊙C 于D ,作DN ⊥x 轴于N ,∵直线y=343 x 与x 轴、y 轴分别交于A ,B 两点, 令x=0,得y=-3,令y=9,得x=4 ∴A(4,0),B(0,−3),∴OA=4,OB=3,∴AB=则由三角形面积公式得,21×AB×CM=21×OA×BC , ∴ 21×5×CM=21×4×(1+3), ∴CM=516∴BM=∴圆C 上点到直线y=343 x 的最大距离是DM=1+ 516 = 521 当P 点在D 这个位置时,△PAB 的面积最大, ∵∠CMB=∠COE=90°,∠OCE=∠MCB ,∴△COE ∽△CMB ,∴∴∴OE=43,CE=45, ∴ED=1+45=49∵DN ⊥x 轴,∴DN ∥OC ,∴△COE ∽△DNE ,∴ ,即∴DN=59,NE=2027∴ON=NE−OE=2027−43=53∴D(−53,59)∴当△PAB 的面积最大时,点P 的坐标为(−53,59)故答案为:(−53,59)练习5-4在平面直角坐标系xOy 中,A(-m,0) ,B(m,0) (其中m>0 ),点P 在以点C(3,4)为圆心,半径等于2的圆上,如果动点P 满足∠APB=90°,(1)线段OP 的长等于________(用含m 的代数式表示);(2)m 的最小值为________.【解析】(1)∵OA=OB=m ,∴OP=21AB=m ; (2)连结OC 交⊙C 于D ,则OD 最短,∵OC==5,∴OD=OC -r=5-2=3.∴m 的最小值为3.故答案为(1)m ;(2)3.练习5-5如图,在平面直角坐标系中,点P 是以C(-72,)为圆心,1为半径的⊙O 上的一个动点,已知A(-1,0),B(1,0),连接PA ,PB ,则PA 2+PB 2的最小值是 .【解析】P (x,y ),根据两点间距离公式PA 2=(x+1)2+y 2PB 2=(x-1)2+y 2OP 2=x 2+y 2当点P 处于OC 与圆的交点上是,OP 取得最值所以OP 最小值为CO-CP=15【经典例题6】如图,抛物线y=41x 2-4与x 轴交于A ,B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ 。
初中数学一轮复习-平面直角坐标系答案
平面直角坐标系一、选择题1. (2018 山东省东营市)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2C.﹣1<m<2 D.m>﹣1【答案】C【解析】∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.2. (2018 山东省济宁市)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【答案】A【解析】∵点C的坐标为(﹣1,0),AC=2,∴点A的坐标为(﹣3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.3. (2018 山东省青岛市)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【答案】D【解析】画图如下:则A'(5,﹣1),故选:D.4. (2018 山东省泰安市)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)【答案】A【解析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.5. (2018 山东省潍坊市)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB 放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)【答案】B【解析】点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.6. (2018 山东省潍坊市)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P (3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)【答案】D【解析】∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.7. (2019 山东省滨州市)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(﹣1,1)B.(3,1)C.(4,﹣4)D.(4,0)【答案】A【解析】∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,∴点B的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴B的坐标为(﹣1,1).故选:A.8. (2019 山东省滨州市)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解析】∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.9. (2019 山东省青岛市)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【答案】D【解析】将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.10. (2019 山东省枣庄市)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.二、填空题11. (2018 山东省威海市)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.【答案】:(22018,22017)【解析】:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).12. (2018 山东省潍坊市)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D 在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.【答案】:(﹣1,)【解析】如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).13. (2019 山东省东营市)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是.【答案】:(,0)【解析】:如图,∵△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,∴CH=1,∴AH=,∵∠ABO=∠DCH=30°,∴DH=AO=,∴OD=﹣﹣=,∴点D的坐标是(,0).故答案为:(,0).14. (2019 山东省济宁市)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标.【答案】:(1,﹣2)(答案不唯一).【解析】∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),∴x>0,y<0,∴当x=1时,1≤y+4,解得:0>y≥﹣3,∴y可以为:﹣2,故写一个符合上述条件的点P的坐标可以为:(1,﹣2)(答案不唯一).故答案为:(1,﹣2)(答案不唯一).15. (2019 山东省临沂市)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.【答案】(﹣2,2)【解析】∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).三、作图题16. (2017 山东省枣庄市) 如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.17. (2015 山东省枣庄市) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.【解析】(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 在平面直角坐标系中,A,B,C三点的坐标分别为(0,2),(3,0) ,(3, 4)
(1) 在直角坐标系中画出以A、B、C三点为顶点的△ABC,并求 △ABC的面积。
(2) 如果在第二象限内有一点P(m, 1).
① 试用含m的式子表示△AOP的面积;
② 是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,请求出点
P的坐标,若不存在,请说明理由。
(3)点Q在坐标轴上,且△ABQ的面积与△ABC的面积相等,求满足条件的点Q的坐标。
(4)若B、A两点分别在x、y轴正半轴上运动,设∠BAO的邻补角的平分线与∠ABO的
邻补角的平分线相交于第一象限内点Q,那么点A、B在运动过程中,∠Q的大小是否会发
生变化?说明理由。
2.如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB,∠PCD的关系,请你从
所得四个关系中任意选出一个,说明你探究结论的正确性。
结论:(1) ;
(2) ;
(3) ;
(4)
选择结论 ,说明理由.
3..如图,AB//CD,试解决下列问题:⑴∠1+∠2=___ __;⑵∠1+∠2+∠3=___ __;
⑶试探究∠1+∠2+∠3+∠4+…+∠n= .
4. 7、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.
(1)若∠DEF=200,则图③中∠CFE度数是多少?
(2)若∠DEF=α,把图③中∠CFE用α表示.
P
DC
B
A
P
DC
B
A
P
DC
B
A
P
D
C
B
A
(1) (2) (3)
(4)
A
E
B
F
C
D
图③
A
E B F C D 图② A E
B
F
C
D
图①