对数线性回归模型

合集下载

2 经典线性回归模型I

2 经典线性回归模型I

第二章经典线性回归模型:估计、统计性质与统计检验•经典线性回归模型:假设与OLS估计•OLS估计的小样本性质与统计检验•OLS估计的大样本性质与统计检验§1.1 经典线性回归模型:假设与OLS估计一、经典线性回归模型二、经典线性回归模型的OLS估计E(Y|X)回归分析的基本逻辑:寻找样本回归线,并用样本回归线近似代表总体回归线问题:能否代表?需要通过检验来回答!(1) 对残差平方和SSR(b )= Σe t 2=e ’e =(Y -Xb )’(Y -Xb ) 1阶偏导: ∂SSR/∂b = -2X ’(Y-Xb )2阶偏导: ∂2SSR/∂b ∂b ’= 2X ’X由于X ’X 为正定矩阵(Why?), 从而b =(X ’X )-1(X ’Y )是最小值 由1阶极值条件可以得到所谓正规方程(normal equations ): X ’(Y-Y-XbXb )=X ’e =0 ⇔ Σt X tj e t =0 (j=1,2,…,k )当模型含有值恒为1的常数项时, Σe t =0正规方程是OLS 所特有的,而不论是否有E(εt |X )=02、OLS 估计的数值性质(4)一些有用的等式a. X’e=0b. b −β=(X’X)-1X’ε因为b=(X’X)-1X’Y=(X’X)-1X’(Xβ+ε)=β+(X’X)-1X’ε c. 定义n×n方阵:P P X=X(X’X)-1X’(投影矩阵),M X=I n−P X(消灭矩阵)则P=P X’, M M X=M X’XP X2=P X, M M X2=M XX=X, M X X=O n×(k+1)且PXd. e=M X Y=M XεSSR(b)=e’e=Y’M X Y=ε’M Xε二元回归的示例图赤池信息准则(Akaike information criterion, AIC, 1973) AIC=ln[e’e/n]+2(k+1)/n=goodness of fit + model complexityAIC= -2ln L/n +2(k+1)/n贝叶斯信息准则(Baysian information criterion, BIC)施瓦茨准则(Schwarz criterion,SC, 1978)BIC=ln[e’e/n]+(k+1)ln(n)/nBIC/SC= -2ln L/n+(k+1)ln(n)/n贝叶斯信息准则对多引入多余的解释变量给出了更重的惩罚。

第三章 线性回归模型的

第三章 线性回归模型的

例3.2 需求方程 我们可以将需求模型建立成双对数的形式,从而 估计需求弹性。 模型设为: lnQ = b0 + b1 ln P+ b2 lnI+b3 ln Pr+u 其中, Q 是每天的咖啡销售 I是收入 P 是咖啡每磅的价格 Pr 是相关产品——茶叶每磅的价格
估计结果为: lnQ=0.78 -0.25lnP +0.6I+ 0.38lnPr t (51.1) (-5.12) (15.12) (3.25) 解释: (1)自价格弹性 是 -.25,表明保持其他不变, 如果价格增加1%,需求量将减少0.25%。这是缺乏 弹性的——弹性的绝对值小于1 (2)收入弹性是0.6 (3)交叉价格弹性是.38,表明保持其他不变, 如果茶叶的价格增加1%,咖啡的需求量增加0.38%。 注: 如果交叉弹性是正的,表明它们是替代品; 如果交叉弹性是负的,表明它们是互补的。
这种“量化”通常是通过引入“虚拟变量”来完 成的。根据这些因素的属性类型,构造只取“0” 或“1”的人工变量,通常称为虚拟变量 dummy 虚拟变量(dummy 虚拟变量 variables),记为D。 variables 例如,反映文化程度的虚拟变量可取为: 例如,反映文化程度的虚拟变量可取为 1, D= 0, 非本科学历 本科学历
参数的含义: 参数的含义:
β
j
∂Y = ∂ ln X
j
∂Y = =或 ∂X j X j
∆Y ∆X j X j
度量了在给定解释变量(X)的相对变化时, 度量了在给定解释变量(X)的相对变化时,Y的 (X)的相对变化时 绝对变化。 绝对变化。
例3.4货币供给的增长率对GNP的影响模型为: GNP = b 0 + b 1 lnM + u 斜率b1度量对M的相对变化,GNP的绝对变化— —M变化1%,GNP的绝对变化量为b1/100。 例如:b1=2000,说明货币供给增加1% ,将使 GNP 增加2000/100 = $20 billion.

§2.1线性回归模型概述解析

§2.1线性回归模型概述解析

01-2-28
重庆商学院经济系
总体分布
200
150
Y
100 50 50
100
150 X
200
250
300
01-2-28
重庆商学院经济系
8
总体回归曲线 (Popular Regression Curve)

条件分布:以X取定值为条件的Y的条件分布 条件概率:给定X的Y的概率,记为P(Y|X)。 例如,P(Y=55|X=80)=1/5;P(Y=150|X=260)=1/7。 条件期望(conditional Expectation):给定X的Y的 期望值,记为E(Y|X)。 例如,E(Y|X=80)=55×1/5+60×1/5+65×1/5+ 70×1/5+75×1/5=65 (总体回归曲线的几何意义):当解释变量给定值时 因变量的条件期望值的轨迹。
重庆商学院经济系 2
01-2-28
§2.1 线性回归模型概述
一、 线性回归模型的特征 二、 线性回归的普遍性 三、 线性回归模型的基本假设
01-2-28
重庆商学院经济系
3
单方程回归模型概述

单方程回归模型分为;线性和非线性 线性模型(按变量划分);变量以1次的形式出现 线性模型(按参数划分);参数以1次的形式出现 线性回归模型是线性模型的一种,参数以1次形式出现, 通常可以通过一些变换,将非1次的变量化为1次。 线性回归模型的数学基础;回归分析,企图通过回归 模型的形式揭示变量之间的因果关系 线性回归模型是是一类最为普遍的计量经济模型
展开泰勒级数,得到一个线性近似公式
01-2-28
重庆商学院经济系
22
三、线性回归模型的基本假定

线性回归模型

线性回归模型

随机回归函数
总体
E(W | Si ) 0 1 Si Wi 0 1 Si ui
样本



Wi 0 1 Si



Wi 0 1 Si ui
特别地:Wi称为观测值(observed value)

Wi 称为拟合值(fitted value)

我 们 使 用 函 数 建 立Wi 与Si的 对 应 关 系 :



W
Wi 0 1 Si ui , 作 为 对 总 体 回 归 函 数
Wi 0 1 Si ui的 估 计 。



用0

1
Si估 计0


1
S

i
用ui
估 计ui。

ui 称 为 残 差 (residual)
ui表 示Wi与 其 均 值 的 偏 差 , 称 为随 机 误 差 项 或 误 差 项, 它 度 量 的 是 除 了S之 外 , 其 他 因 素 对W的 影 响
o 误差(error)的来源 其他解释变量的影响 测量误差 人类行为的随机性
总体回归函数和样本回归函数
o 总体回归函数图解
Wi E(W|Si)
A
ui
PRF C
Si
总体回归函数和样本回归函数
样本回归函数(sample regression function,SRF) o 样本:从上述总体中随机抽取了100人 o 问题:根据样本数据估计总体中工资W与受教育年限S的关系



W
用Wi 0 1 Si表 示 对 总 体 回 归 函 数
线性回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

《SPSS数据分析与应用》线性回归分析

《SPSS数据分析与应用》线性回归分析

“票房”直方图
对数线性回归模型结果解读
变量
截距项 类型=主旋律
类型=儿童 类型=动作 类型=动画 类型=励志 类型=历史剧情 类型=喜剧 类型=家庭伦理 类型=悬疑 类型=惊悚 类型=灾难 类型=警匪 类型=魔幻
回归系数
5.490 0.278 -0.110 0.150 0.176 0.454 0.096 0.072 -0.432 1.008 -0.276 0.807 0.345 0.820
=黄金2档, 年=2011, 类型=动作, 宣发方=G, 导演得奖情况=1.0, 类型=历史剧情, 类型=动画, 时长, 年=2013, 类型=主旋律, 档期=暑期
档, 宣发方=L
R表示拟合优度(goodness of fit), 是用来衡量估计的模型对观测值的拟合程度。它的值 越接近1说明模型越好。调整后的 考虑了模型的复杂程度,也就是自变量的个数,其含义与 非常类似,更多的被用于不同模型拟合优度的比较(因变量必须相同)。在本案例中,调整后 为 0.376,表示自变量可以解释因变量37.6%的变化。当然,在实际项目中,不建议一味地追 求 ,这不是建模的目标。
第 7 章 线性回归分析
学习目标
1.掌握回归分析的基本原理及步骤。 2.掌握线性回归分析模型的SPSS实现与解读方法。 3.掌握对数线性回归分析模型的SPSS实现与解读方法。 4.熟悉线性回归分析报告的撰写方法。
引导案例
近年来,得益于国民经济的持续快速增长以及国家对文化产业的支持,整体电影 文化与产业环境持续改善。作为文化娱乐市场重要组成部分的电影市场已连续多年实 现电影票房的快速增长,同时,也吸引了各类社会资本积极进军电影行业,从而进一 步推动了电影行业的良性快速发展。
对数线性回归模型的具体实现方法与线性回归模型的实现方法一致,这里就不再 一一赘述了。但是对于回归结果的解读,对数线性回归模型结果的解读与线性回归模 型结果的解读还是有不同的地方需要注意。

经典线性回归模型

经典线性回归模型

·β的OLS估计量:在假定2.3成立时
( ) å å b =
XTX
-1 X T Y
= çæ 1 èn
n i=1
xi xiT
Hale Waihona Puke -1ö æ1 ÷ç ø èn
n i=1
xi yi
÷ö ø
( ) ·估计量的抽样误差(sampling error): b - b = X T X -1 X Te
·第i次观测的拟合值(fitted value): yˆi = xiTb
且自变量的回归系数和 y 与 x 的样本相关系数之间的关系为
b1 == corr(Y , X )
å( 1 n
n - 1 i=1
yi
- y)2
º r sy
å( ) 1 n
n - 1 i=1
xi - x 2
sx
·修正决定系数(adjusted coefficient of determination, adjusted R square)
4.假定我们观测到上述这些变量的n组值: (y i , x i1 , L , ) x ip (i=1,…,n)。称
这n组值为样本(sample)或数据(data)。
§2.2 经典线性回归模型的假定
假定 2.1(线性性(linearity))
yi = b0 + b1xi1 + L + b p xip + e i (i=1,…,n)。
( ) ( ) E ~x jei
çæ E x j1e i =ç M
÷ö ÷=0
(i=1,…,n ; j=1,…,n )。
( ) ç
è
E
x jp e i
÷ ø
·不相关条件(zero­correlation conditions)

8-2第2课时 一元线性回归模型的综合问题(教学课件) 高中数学人教A版(2019)选择性必修第三册

8-2第2课时 一元线性回归模型的综合问题(教学课件) 高中数学人教A版(2019)选择性必修第三册

由题意知lg lg
ห้องสมุดไป่ตู้
300=klg 200=klg
300+b 2 000+b,
解得k=-14 b=285,
所以 lg f=-14lg W+285,
25
1
所以f关于W的函数解析式为f=10 8 W 4 .
03 残差平方和与决定系数R2
问题3 例2中给出了两个模型,那么如何比较这两个模型的拟合效果? 提示 残差平方和、决定系数.
(2)当声音强度大于60 dB时属于噪音,会产 生噪声污染,城市中某点P共受到两个声源的 影响,这两个声源的声音能量分别是I1和I2, 且 I11+I42=1010.已知点P的声音能量等于声音 能量I1与I2之和,请根据(1)中的经验回归方 程,判断P点是否受到噪声污染的干扰,并 说明理由.
点P的声音能量I=I1+I2, ∵I11+I42=1010, ∴I=I1+I2=10-10·I11+I42(I1+I2)=10-10· 5+II21+4II21≥9×10-10(当且仅当II21=4II21,即 I2=2I1 时等号成立), 根据(1)中的经验回归方程,点 P 的声音强度 D 的最小预测值为D^ = 10·lg(9×10-10)+160.7=10·lg 9+60.7>60,
量 I 的经验回归方程D^ =a^ +b^ ·lg I;
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其经验回归直线v^ =
n
ui- u vi- v
i=1
α^ +β^ u 的斜率和截距的最小二乘估计分别为β^ =
,α^ = v
n
ui- u 2
i=1
-β^ ·u .
由Wi=lg Ii,先建立D关于W的经验回归方程,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数线性回归模型:对数线性模型描述的是概率与协变量之间的关系;对数线性模型也用来描述期望频数与协变量之间的关系。

对数线性模型分析是把列联表资料的网格频数的对数表示为各变量及其交互效应的线性模型,然后运用类似方差分析的基本思想,以及逻辑变换来检验各变量及其交互效应的作用大小。

列联表
(1)作用:分析定类变量和定类变量之间有无关系;
(2)优缺点:不需要确定因变量和自变量。

但是,卡方检验对三维和三维以上列联表资料的分析有一定困难,即对混杂变量的控制较难。

约束条件少、清晰、可以快速准确进行判断。

失去了对多变量之间的交互联系的分析,进行两变量间关联分析时缺乏统计控制,不能准确定量描述一个变量对另一个变量的作用幅度。

(3)列联表的四种类型:
双向无序列联表;
单向有序列联表;
双向有序且属性不同的列联表;
双向有序且属性相同的列联表。

相关文档
最新文档