高中数学苏教版必修2讲义:第一章 1.3 空间几何体的表面积和体积

合集下载

高中数学 第一章 1.3.1空间几何体的表面积配套课件 苏教版必修2

高中数学 第一章 1.3.1空间几何体的表面积配套课件 苏教版必修2

研一研·问题探究、课堂(kètáng)更高效
1.3.1
问题 3 下图是正四棱台的展开图,设底面周长为 c,你能根 据展开图,归纳出正 n 棱台的侧面积公式吗?
答 S 正棱台侧面积=12n(a+a′)h′=12(c+c′)h′.
第十二页,共26页。
研一研·问题(wèntí)探究、课堂更高效
1.3.1
1.3.1
解 由题意,可设直角梯形上底、下底和高为 2x,4x, 5x, 它们分别是圆台的上、下底面半径和高.
在图中,过点 B 作 BC⊥OA 于 C, 则在 Rt△ABC 中,AC=OA-OC= OA-O′B=4x-2x=2x,BC=O′O= 5x,
所以 AB= AC2+BC2= 2x2+ 5x2=3x.
答 如图,图柱的侧面展开图是矩形,长是圆 柱底面圆周长,宽是圆柱的高(母线), 设圆柱 的底面半径为 r,母线长为 l,
则有:S 圆柱侧=2πrl,S 圆柱表=2πr(r+l),其中 r 为圆柱底面半 径,l 为母线长.
第十四页,共26页。
研一研·问题探究(tànjiū)、课堂更高效
1.3.1
问题 2 如何根据圆锥的展开图,求圆锥的表面积? 答 圆锥的侧面展开图为一个扇形,半径是圆
第二十页,共26页。
研一研·问题(wèntí)探究、课堂更高效
1.3.1
因此,S 上∶S 下∶S 侧=[π(2x)2]∶[π(4x)2]∶[π(2x+4x)×3x] =2∶8∶9.
即这个圆台上底面积、下底面积和侧面积之比为 2∶8∶9. 小结 解旋转体的有关问题时,常常需要画出其轴截面,将空 间问题转化为平面问题.
锥的母线,弧长等于圆锥底面周长,侧面展开 图扇形中心角为 θ=rl×360°, S 圆锥侧=πrl,S 圆锥表=πr(r+l),其中 r 为圆锥底面半径,l 为 母线长.

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

高中数学第1章立体几何初步1.3.1空间几何体的表面积课件5苏教版必修2

高中数学第1章立体几何初步1.3.1空间几何体的表面积课件5苏教版必修2

扇形
l
r
c
S圆锥侧=S扇=
1 2
cl
rl
旋转体
思考:把圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?
扇环
r1
l
r2
S圆台侧=S扇环=
1 2
(c
c' )l
(r1
r2
)l
思考:将圆柱、圆锥、圆台的侧面积公
式进行类比,你能发现它们的联系和区
分吗?
S圆锥侧=
1 2
cl
D1
C1
D1 A1
D A
C1 B1
C B
C1
C1
C
例4、圆锥的半径为r,母线为4r,M是底 面圆上任意一点,从M拉一根绳子,环绕 圆锥的侧面再回到M,最短绳长为多M少?
O
M
* 沿母线OM展开圆锥侧面
小结:1、弄清楚柱、锥、台的侧面展 开图的形状是关键;
2、对应的面积公式
S正棱锥侧=
1 2
ch'
S圆锥侧=
1 2
cl
C’=0
S正棱台侧=
1(c+c' 2
)h'
C’=C
S直棱柱侧=ch
C’=0
S圆台侧=
1(c+c' 2
)l
C’=C
S圆柱侧=cl
A
A
B
A
B
C
DB
CC
D
分别经过旋转轴作一个平面,视察得到的轴截面是 什么形状的图形.
矩形
等腰三角形
等腰梯形
旋转体
思考:把圆柱的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?

高中数学 第一章 1.3.2空间几何体的体积配套课件 苏教版必修2

高中数学 第一章 1.3.2空间几何体的体积配套课件 苏教版必修2

且 S△PBC=12·PB·PC= 26(因 PB⊥PC), ∴V 三棱锥 P—ABC=V 三棱锥 A—PBC=13·PA·S△PBC
=13× 3× 26= 618= 22,
即三棱锥
P—ABC
的体积为
2 2.
第十三页,共24页。
研一研·问题探究、课堂(kètáng)更高效
1.3.2
小结 三棱锥的“等体积性”,即计算体积时可以用任意一 个面作三棱锥的底面.①求体积时,可选择高和底面积容易 计算的来算;②利用“等体积性”可求点到平面的距离.利 用等体积变换法求点到平面的距离,这是求点到平面距离的 又一重要方法,尤其是点到平面的垂线不好作时,往往使用 此法.
第七页,共24页。
研一研·问题探究、课堂(kètáng)更高效
1.3.2
问题 5 由锥体的体积公式,你能得出圆锥的体积公式吗? 答 V 圆锥=13πR2h.
第八页,共24页。
研一研·问题探究(tànjiū)、课堂更高效
1.3.2
问题 6 台体的上底面积 S′,下底面积 S, 高 h,则台体的 体积是如何计算的?
台体
V 台体=13(S+ SS′+S′)h(S′,S 分别为上、下
1 底面面积,h 为高),V = 圆台 3πh (r′2+rr′+ r2)(r′,r 分别为上、下底面半径)
第二页,共24页。
填一填·知识(zhī shi)要点、记下疑难点
1.3.2
2.球的体积 球的半径为 R,那么它的体积 V=
43πR3
∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°, ∴CD=BcCos-6A0D°=2a,AB=CDsin 60°= 3a, ∴DD′=AA′-2AD=2BC-2AD=2a, ∴DO=12DD′=a. 由于以 l 为轴将梯形 ABCD 旋转一周后形成的几何体为圆柱 中挖去一个倒放的与圆柱等高的圆锥.

高中数学 1.3.1空间几何体的表面积课件 苏教版必修2

高中数学 1.3.1空间几何体的表面积课件 苏教版必修2
#39;)h'
1 2
ch'
S圆柱侧 cl 2rl
S圆锥侧
1 2
cl
rl
S圆台侧
1 2
(c
c' )l
(r
r ' )l
第十九页,共19页。
第四页,共19页。
直棱柱 :侧棱和底面垂直 (léngzh (chuízhí)的棱柱
ù)
第五页,共19页。
直棱柱 (lé ngzh ù)
:侧棱和底面垂直 (chuízhí)的棱柱
第六页,共19页。
直棱柱 :侧棱和底面垂直(chuízhí)
(lé ngz
的棱柱
hù )
3 3
2 1
4
1
2
S直棱柱侧 ch
斜高h’ 第十页,共19页。
侧面展开
c'
c
第十一页,共19页。
S正棱台侧
1 2
(c
c')h'
c c'
c' 0
S直棱柱侧 ch
S正棱锥侧
1 2
ch'
第十二页,共19页。
l r
S圆柱侧 cl 2rl
第十三页,共19页。
c l
r
S圆锥侧
1 2
cl
rl
第十四页,共19页。
c'
l
r'
c
r
第十七页,共19页。
例2 有一根长为5cm,底面半径为1cm的圆柱形铁管, 用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点 (duān diǎn)落在圆柱的同一母线的两端,则铁丝的最 短长度为多少厘米?(精确到0.1cm)
D
C

高中数学必修二知识点整理

高中数学必修二知识点整理

二)空间几何体的体积高中数学必修 2 知识点第一章空间几何体1.1 柱、锥、台、球的结构特征1.2 空间几何体的三视图和直观图1 三视图:正视图:从前往后下 2 画三视图的原则:长对齐、高对齐、宽相等 3 直观图:斜二测画法 4 斜二测画法的步骤:(1). 平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x,z 轴的线长度不变;(3). 画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(1.3 空间几何体的表面积与体积(一)空间几何体的表面积 1 棱柱、棱锥的表面积:侧视图:从左往右各个面面积之和俯视图:从上往2)画底面(3)画侧棱(4)成图2 圆柱的表面积S圆锥的表面积S rl4 圆台的表面积S rl2Rl R2球的表面积R21 柱体的体积V S底锥体的体积3 台体的体积1V3(S上S上S下S下)球体的体积1S底h3底4R3第二章直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈B∈A∈B∈公理 1 作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。

符号表示为: A 、 B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理 2 作用:确定一个平面的依据。

(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。

符号表示为: P ∈α∩β => α∩β =L ,且 P ∈ L 公理 3 作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 共面直线平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。

高中数学必修二:1.3-2球的表面积和体积.pptx


3
3
18
你能由此推导出半径为R的球的表面积 公式吗?
S 4 R2
经过球心的截面圆面积是什么?它与球 的表面积有什么关系?
球的表面积等于球的大圆面积的 4 倍
19
理论迁移
例1 如图,圆柱的底面直径与高都等 于球的直径,求证: (1)球的体积等于圆Байду номын сангаас体积的 2 ;
3
(2)球的表面积等于圆柱的侧面积.
n=6
O
假设将圆n等分,则
A1
n=12 An
A2
S S 正多边形
A1OA 2
SA2OA3
SAnOA1
1 2
p( A1A2
A2 A3
An A1)
1 2
pC正多边形
O
当n 时,p R,C正多边形 C圆
p
A3
S圆
1 2
R
2R
R2
A1 A2
12
极限思想
zxxkw



早在公元三世纪,我国数学家刘徽为推导圆的面
O A
C
M B
R 3 6 , S 54 ,V 27 6
23
2
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的倍.2
(2)若球半径变为原来的2倍,则表面积变为原来的倍4.
(3)若两球表面积之比为1:2,则其体积之比是. 1: 2 2
(4)若两球体积之比是1:2,则其表面积之比是. 1: 3 4
20
例2 已知正方体的八个顶点都在球O
的球面上,且正方体的表面积为a2,求
球O的表面积和体积.
C′
o
A
21
例3某街心花园有许多钢球(钢的密度是

高中数学同步讲义必修二——第一章 1.3.2 球的体积和表面积

1.3.2 球的体积和表面积学习目标 1.掌握球的表面积和体积公式.2.能解决与球有关的组合体的计算问题.知识点 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径); 2.球的体积公式V =43πR 3.1.球的表面积等于它的大圆面积的2倍.( × )2.两个球的半径之比为1∶2,则其体积之比为1∶4.( × ) 3.球心与其截面圆的圆心的连线垂直于截面.( √ )类型一 球的体积和表面积例1 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.反思与感悟 (1)公式是计算球的表面积和体积的关键,半径与球心是确定球的条件. (2)两个结论:①两个球的表面积之比等于这两个球的半径比的平方;②两个球的体积之比等于这两个球的半径比的立方.跟踪训练1 (1)两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C.2∶ 3D.8∶27(2)两个半径为1的铁球,熔化成一个球,则这个大球的半径为________. 答案 (1)B (2)32解析 (1)由两球的体积之比为8∶27, 可得半径之比为2∶3, 故表面积之比是4∶9.(2)设大球的半径为R ,由题意得 43πR 3=2×43π×13,得R =32. 类型二 球的截面及切接问题 命题角度1 球的截面问题例2 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42, ∴R =5.∴V 球=43π×53=5003π(cm 3).反思与感悟 (1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. (2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.跟踪训练2 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的表面积为________. 答案 12π解析 用一平面去截球所得截面的面积为2π,所以小圆的半径为2,已知球心到该截面的距离为1,所以球的半径为3,所以球的表面积为4π(3)2=12π. 命题角度2 与球有关的切、接问题例3 (1)将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( ) A.4π3 B.2π3 C.3π2 D.π6 答案 A解析 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是43×π×13=4π3.(2)长方体的共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为______. 答案 9π解析 设长方体共顶点的三条棱长分别为a ,b ,c , 则⎩⎪⎨⎪⎧ab =3,bc =5,ac =15,解得⎩⎪⎨⎪⎧a =3,b =1,c =5,∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×⎝⎛⎭⎫322=9π. 反思与感悟 (1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 跟踪训练3 (1)正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3D .1∶9(2)表面积为433的正四面体的各个顶点都在同一个球面上,则此球的体积为( )A.23π B.13π C.23π D.223π答案 (1)C (2)A解析 (1)设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32, ∴其体积比为43π×⎝⎛⎭⎫123∶43π×⎝⎛⎭⎫323=1∶3 3.(2)如图所示,将正四面体补形成一个正方体.设正四面体的棱长为a .∵正四面体的表面积为433,∴4×34a 2=433, 解得a =233,∴正方体的棱长是63, 又∵球的直径是正方体的体对角线,设球的半径是R , ∴2R =63×3, ∴R =22, ∴球的体积为43π·⎝⎛⎭⎫223=23π,故选A.1.若球的体积与其表面积数值相等,则球的半径等于( ) A .3 B .2 C .1 D.12答案 A解析 设球的半径为R ,则4πR 2=43πR 3,所以R =3.2.一个球的表面积是16π,则它的体积是( ) A .64π B.64π3 C .32π D.32π3 答案 D解析 设球的半径为R ,则由题意可知4πR 2=16π,故R =2.所以球的半径为2,体积V =43πR 3=323π. 3.如图,圆柱形容器内盛有高度为6 cm 的水,若放入3个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径为( )A .4 cmB .3 cmC .2 cmD .1 cm答案 B解析 由题意可得,设球的半径为r ,依题意得三个球的体积和水的体积之和等于圆柱体的体积,∴3×43πr 3=πr 2(6r -6),解得r =3,故选B.4.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为( ) A .1 B .2 C .3 D .4答案 B解析 设两球半径分别为R 1,R 2,且R 1>R 2,则4π(R 21-R 22)=48π,2π(R 1+R 2)=12π,所以R 1-R 2=2.5.正方体的外接球的体积是其内切球的体积的______倍. 答案 3 3解析 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32. ∴外接球的体积为43π×⎝⎛⎭⎫323,内切球的体积为43π×⎝⎛⎭⎫123,∴外接球的体积是内切球的体积的33倍.1.球的体积和表面积公式 设球的半径为R (1)体积公式:V =43πR 3.(2)表面积公式:S =4πR 2.2.用一个平面截球所得截面的特征 (1)用一个平面去截球,截面是圆面. (2)球心和截面圆心的连线垂直于截面.(3)球心到截面的距离d 与球的半径R 以及截面的半径r ,有下面的关系r =R 2-d 2.3.常见的几何体与球的切、接问题的解决策略:解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.一、选择题1.若两球的体积之和是12π,经过两球球心的截面圆周长之和为6π,则两球的半径之差为( ) A .1 B .2 C .3 D .4答案 A解析 设两球的半径分别为R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧43πR 3+43πr 3=12π,2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2,r =1,∴R -r =1.2.如图所示的是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为豪的发现,则圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,32B.43,1C.32,1 D.43,43答案 A解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R , ∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3,则V 圆柱V 球=2πR 343πR 3=32, S 圆柱S 圆=6πR 24πR 2=32. 3.一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,如果正四棱柱的底面边长为2 cm ,那么该棱柱的表面积为( ) A .(2+42) cm 2 B .(8+162) cm 2 C .(4+82) cm 2 D .(16+322) cm 2 答案 B解析 ∵一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,正四棱柱的底面边长为2 cm ,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4 cm ,正四棱柱的底面对角线长为2 2 cm , ∴正四棱柱的高为16-8=2 2 cm ,∴该棱柱的表面积为2×22+4×2×22=8+16 2 (cm 2),故选B.4.一平面截一球得到直径为6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.4163π3cm 3答案 C解析 如图,根据题意,OO 1=4 cm ,O 1A =3 cm , ∴OA =R =OO 21+O 1A 2=5(cm),故球的体积V =43πR 3=500π3(cm 3).故选C.5.若与球外切的圆台的上、下底面半径分别为r ,R ,则球的表面积为( ) A .4π(r +R )2 B .4πr 2R 2 C .4πRr D .π(R +r )2答案 C解析 方法一 如图,设球的半径为r 1,则在Rt △CDE 中,DE =2r 1,CE =R -r ,DC =R +r .由勾股定理得4r 21=(R +r )2-(R -r )2,解得r 1=Rr .故球的表面积为S 球=4πr 21=4πRr .方法二 如图,设球心为O ,球的半径为r 1,连接OA ,OB ,则在Rt △AOB 中,OF 是斜边AB 上的高.由相似三角形的性质得OF 2=BF ·AF =Rr ,即r 21=Rr ,故r 1=Rr ,故球的表面积为S 球=4πRr .6.等体积的球和正方体的表面积S 球与S 正方体的大小关系是( ) A .S 正方体>S 球 B .S 正方体<S 球 C .S 正方体=S 球 D .无法确定答案 A解析 设正方体的棱长为a ,球的半径为R ,由题意,得V =43πR 3=a 3,∴a =3V ,R =33V 4π,∴S 正方体=6a 2=63V 2=3216V 2,S 球=4πR 2=336πV 2<3216V 2.7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为( ) A.32π3 B .4π C .2π D.43π 答案 D解析 ∵正四棱柱的底面边长为1,侧棱长为2,∴正四棱柱的体对角线的长为1+1+(2)2=2.又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,∴球的半径R =1. 故球的体积为V =43πR 3=43π.二、填空题8.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则 V 柱=πR 2·2R =2πR 3, V 锥=13πR 2·2R =23πR 3,V 球=43πR 3,故V 柱∶V 锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2.9.圆柱形容器的内壁底半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53 cm ,则这个铁球的表面积为________cm 2.答案 100π解析 设该铁球的半径为r ,则由题意得43πr 3=π×102×53,解得r =5,∴这个铁球的表面积S =4π×52=100π(cm 2).10.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.答案 3π4 解析 由题意得,该圆柱底面圆周半径r =12-⎝⎛⎭⎫122=32. ∴该圆柱的体积为V =πr 2h =π⎝⎛⎭⎫322×1=3π4. 11.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为________.答案 3∶2⎝⎛⎭⎫或32解析 如图,△ABC 为圆锥的轴截面,截球面得圆O ,由题意知AD =3OE ,则OA =2OE ,设OE =r ,则OA =2r ,AD =3r , 在Rt △AEO 中,sin ∠EAO =12, 又∵0°<∠EAO <90°,∴∠EAO =30°.在Rt △ABD 中,tan ∠BAD =BD AD =BD 3r =33,BD =3r . 则AB =AD 2+BD 2=(3r )2+(3r )2=23r ,圆锥的侧面积为π×BD ×AB =6πr 2,球的表面积为4πr 2,∴所求的比值为6πr 2∶4πr 2=3∶2.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AC =3,AB =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.答案 132解析 可将直三棱柱ABC -A 1B 1C 1补形到长方体ABEC -A 1B 1E 1C 1中如图所示,则BC 1为直三棱柱ABC -A 1B 1C 1的外接球的直径,∴BC 1=32+42+122=13,∴球O 的半径为132. 三、解答题13.一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求:(1)圆锥的侧面积;(2)圆锥的内切球的体积.解 (1)如图作轴截面,则等腰三角形CAB 内接于⊙O ,⊙O 1内切于△ABC .设⊙O 的半径为R ,由题意,得43πR 3=972π, 所以R 3=729,R =9,所以CE =18.已知CD =16,所以ED =2.连接AE ,因为CE 是直径,所以CA ⊥AE ,所以CA 2=CE ·CD =18×16=288,所以CA =122,因为AB ⊥CD ,所以AD 2=CD ·DE =16×2=32,所以AD =42,S 圆锥侧=π×42×122=96π.(2)设内切球O 1的半径为r ,因为△ABC 的周长为2×(122+42)=322,所以S △ABC =12r ·322=12×82×16,解得r =4, 所以内切球O 1的体积V 球=43πr 3=2563π. 四、探究与拓展14.已知长方体共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________. 答案 9π解析 如图,是过长方体的一条体对角线AB 的截面,设长方体有公共顶点的三条棱的长分别为x ,y ,z ,则由已知,得⎩⎪⎨⎪⎧ xy =3,yz =5,zx =15,解得⎩⎪⎨⎪⎧ x =3,y =1,z = 5.所以球的半径R =12AB =12x 2+y 2+z 2=32, 所以S 球=4πR 2=9π. 15.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个项点,求这三个球的表面积之比.解 设正方体棱长为a ,三个球的半径依次为R 1,R 2,R 3,则有2R 1=a ,R 1=a 2,2a =2R 2,R 2=22a ,3a =2R 3,R 3=32a ,所以R 1∶R 2∶R 3=1∶2∶ 3. 所以S 1∶S 2∶S 3=R 21∶R 22∶R 23=1∶2∶3.即这三个球的表面积之比为1∶2∶3.。

高一数学必修二 1.3.2 球的体积和表面积


B.81π
C.27π
解析:V=
4π 3
×
33
=
36π.
答案:D
D.36π
12
知识梳理
2.球的表面积 如果球的半径为R,那么它的表面积S=4πR2.
【做一做 2】 半径为 5的球的表面积等于 . 解析:S=4π×( 5)2 = 20π. 答案:20π
与球有关的组合体问题的解题策略 剖析:可通过画过球心的截面来分析.例如,底面半径为r,高为h的 圆锥内部有一球O,且球与圆锥的底面和侧面均相切.
如图,过球心O和圆锥的顶点A作圆锥的截面,则球心是等腰三角 形ABC的内接圆的圆心,AB和AC均是圆锥的母线,BC是圆锥的底面 直径,D是圆锥底面的圆心.
用同样的方法可得出以下结论: (1)若长方体的8个顶点在同一个球面上,则长方体的体对角线是 球的直径; 若球与正方体的六个面均相切,则球的直径等于正方体的棱长; 若球与正方体的12条棱均相切,则球的直径是正方体的面对角线. (2)若球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高, 也等于圆柱底面圆的直径. (3)若球与圆台的底面和侧面均相切,则球的直径等于圆台的高.
3π.
答案:3π
题型一 题型二 题型三
反思1.由三视图计算球或球与其他几何体的组合体的表面积或体 积,最重要的是还原组合体,并弄清组合体的结构特征和三视图中 数据的含义.此时要特别注意球的三种视图都是直径相同的圆.
2.计算球或与球有关的组合体的表面积与体积时要恰当地分割 与拼接,避免重叠和交叉.
题型一 题型二 题型三
题型一 题型二 题型三
重点例题
【例 1】 (1)已知球的表面积为 64π,求它的体积;
(2)已知球的体积为
500π 3

第二节 空间几何体的表面积与体积

第二节 空间几何体的表面积与体积考试要求了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.[知识排查·微点淘金]知识点1 圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展 开图侧面积 公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l[微拓展] 圆台、圆柱、圆锥之间的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 知识点2 空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h台体(棱台和圆台)S 表面积=S 侧+ S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3[微拓展]柱体、锥体、台体的体积公式间的联系:V 柱体=Sh ――→S ′=SV 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 常用结论 几个与球有关的切、接问题的常用结论(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.[小试牛刀·自我诊断]1.思维辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高的乘积.(×) (2)球的体积之比等于半径比的平方.(×) (3)台体的体积可转化为两个锥体的体积之差.(√) (4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .(√) 2.(链接教材必修2 P 27T 1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD .32cm解析:选B.S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.(链接教材必修2P 28A 组T 3)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体的体积的比为 .解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ·12b ·12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 答案:1∶474.(忘记分类讨论)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,所以S底=4π,S侧=6π·4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3,所以S底=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).答案:6π(4π+3)或8π(3π+1)5.(对组合体不能合理分割)如图所示,由圆柱与圆锥组合而成的几何体的三视图如图所示,则该几何体的表面积为.解析:设圆柱底面半径为r,周长为c,圆锥母线长为l,圆柱高为h.由题中三视图得r=2,c=2πr=4π,h=4,由勾股定理得:l=22+(23)2=4,S表=πr2+ch+12cl=4π+16π+8π=28π.答案:28π一、基础探究点——空间几何体的表(侧)面积(题组练透)1.(2021·新高考卷Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.4 2解析:选B由题意知圆锥的底面周长为22π.设圆锥的母线长为l,则πl=22π,即l=2 2.故选B.2.如图为某几何体的三视图,则该几何体的表面积是()A.6+4 2B.4+4 2C .6+2 3D .4+2 3解析:选C 由三视图还原几何体知,该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝⎛⎭⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.3.如图,一个棱长为4的正方体被挖去一个高为4的正四棱柱后得到图中的几何体,若该几何体的体积为60,则该几何体的表面积为 .解析:设正四棱柱的底面边长为m ,则4(42-m 2)=60,解得m =1,则该几何体的表面积为42×4+(42-12)×2+4×1×4=110.答案:1104.已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为 . 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =13×π·62·h =30π,解得h =52.所以l =r 2+h 2=62+⎝⎛⎭⎫522=132,故圆锥的侧面积S =πrl =π·6×132=39π.答案:39π求空间几何体表面积时应注意(1)以三视图为载体的几何体的表面积问题,关键 是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理.(3)旋转体的表面积问题应注意其侧面展开图的应用.二、综合探究点——空间几何体的体积(多向思维)[典例剖析]思维点1直接利用公式求体积问题[例1](1)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为.解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图所示,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′=OQ2-O′Q2=52-42=3. 据此可得圆台的体积V=1π×3×(52+5×4+42)=61 π.3答案:61π对于规则几何体的体积问题,可以直接利用公式进行求解. 要注意准确记忆基本体积公式.思维点2割补法求体积问题[例2]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为()A.12 000立方尺B.11 000立方尺C.10 000立方尺D.9000立方尺解析:由题意,将锲体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V 1=12×3×2×2=6,四棱锥的体积V 2=13×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V =V 1+2V 2=10立方丈=10 000立方尺.故选C .答案:C割补法求体积的解题思路首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.思维点3 等积转换法求体积[例3] 如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1­ABC 1的体积为( )A .312 B .34 C .612D .64解析:易知三棱锥B 1­ABC 1的体积等于三棱锥A -B 1BC 1的体积,又三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 答案:A等积转化法求体积的解题思路选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换.[学会用活]1.如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A .3B .4C .6D .12解析:选B 因为S △BCD =12S 四边形ABCD ,CE =23CC 1,VABCD ­A 1B 1C 1D 1=S 四边形ABCD ·CC 1=36,所以V E ­BCD =13S △BCD ·CE =13×12S 四边形ABCD ·23CC 1=19×36=4.故选B.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:选B 解法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π·32×4+π·32×6×12=63π.故选B.解法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π·32×10=90π,∴45π<V几何体<90π.观察选项可知只有63π符合.故选B.3.某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD ­A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C .三、应用探究点——与球有关的切、接问题(多向思维)[典例剖析]思维点1 几何体的外接球问题[例4] 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3解析:由等边△ABC 的面积为93可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.答案:B [拓展变式][变条件、变结论]若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.解:将直三棱柱补形为长方体ABEC -A ′B ′E ′C ′(图略),则球O 是长方体ABEC -A ′B ′E ′C ′的外接球,∴体对角线BC ′的长为球O 的直径.因此2R =32+42+122=13,故S 球=4πR 2=169π.处理“相接”问题,要抓住空间几何体“外接”的特点,即球心到多面体的顶点的距离等于球的半径.思维点2 几何体的内切球问题[例5] 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .解析:解法一:如图,在圆锥的轴截面ABC 中,CD ⊥AB ,BD =1,BC =3,圆O 内切于△ABC ,E 为切点,连接OE ,则OE ⊥B C .在Rt △BCD 中,CD =BC 2-BD 2=2 2.易知BE =BD =1,则CE =2.设圆锥的内切球半径为R ,则OC =22-R ,在Rt △COE 中,OC 2-OE 2=CE 2,即(22-R )2-R 2=4,所以R =22,圆锥内半径最大的球的体积为43πR 3=23π. 解法二:如图,记圆锥的轴截面为△ABC ,其中AC =BC =3,AB =2,CD ⊥AB ,在Rt △BCD 中,CD =BC 2-BD 2=22,则S △ABC =2 2.设△ABC 的内切圆O 的半径为R ,则R =2·S △ABC 3+3+2=22,所以圆锥内半径最大的球的体积为43πR 3=23π. 答案:23π处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.[学会用活]4.长方体ABCD -A 1B 1C 1D 1的长、宽、高分别为2,2,1,其顶点都在球O 的球面上,则球的表面积为 .解析:因为长方体的外接球O 的直径为长方体的体对角线,长方体的长、宽、高分别为2,2,1,所以长方体的外接球O 的直径为4+4+1=3,故长方体的外接球O 的半径为r =32,所以球O 的表面积为S =4πr 2=9π.答案:9π5.已知正四面体P -ABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则S 1S 2= .解析:设正四面体的棱长为a ,则正四面体的表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 答案:63π限时规范训练 基础夯实练1.(2021·四川乐至中学月考)已知圆锥的轴截面是边长为2的等边三角形,则该圆锥的侧面积为( )A .33π B .2π C .3πD .4π解析:选B 由题意,圆锥的轴截面是边长为2的等边三角形,即圆锥的底面圆的半径为r =1,母线长为l =2,所以该圆锥的侧面积为S =πrl =π·1×2=2π. 故选B.2.在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π解析:选C 由题意可知旋转后的几何体如图所示,直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为V =V 圆柱-V 圆锥=π·12×2-13·π·12×1=53π,故选C .3.(2021·云南昆明月考)某锥体的三视图如图所示,则该几何体的体积为( )A .2B .533C .433D .233解析:选C 由三视图还原几何体得,原几何体是一个四棱锥E -ABCD ,如图所示,四棱锥的高为3,底面是边长为2的正方形,因此体积为13×2×2×3=433,故选C . 4. 《九章算术》中给出了一个圆锥体积近似计算公式V ≈l 2·h36,其中l 为底面周长,它实际上是将圆锥体积中圆周率近似取为3得到的,那么若圆锥体积近似公式为V ≈l 2·275·h ,则相当于圆周率近似取值为( )A .227B .217C .238D .258解析:选D 设圆锥底面圆的半径为r ,高为h ,则l =2πr ,13πr 2h =275(2πr )2 h ,所以π=258. 故选D.5.(2021·四川石室中学开学考试)某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S 1,其内切球的表面积为S 2,且S 1=λS 2,则λ=( )A .1B .23C .43D .32解析:选D 由已知可得,此柱体为底面直径与高相等的圆柱,设底面圆的半径为r ,则高为2r ,则S 1=2πr 2+2πr ·(2r )=6πr 2,又此柱体内切球的半径为r ,则S 2=4πr 2, 则λ=S 1S 2=6πr 24πr 2=32,故选D. 6.某几何体的三视图如图所示,则该几何体的体积为( )A .π+43B .2π+4C .3π+4D .4π+43解析:选A 由三视图还原原几何体如图,该几何体为组合体,上半部分为半圆柱,下半部分为正四棱锥,圆柱的底面半径为1,高为2,棱锥的底面边长为2,高为1,∴该几何体的体积为12π·12×2+13×22×1=π+43.故选A .7.若圆锥的内切球与外接球的球心重合,且圆锥内切球的半径为1,则圆锥的表面积为 .解析:因为圆锥的内切球与外接球的球心重合,所以圆锥的轴截面为等边三角形,设其边长为a ,则13×32a =1,a =23,所以圆锥的底面圆半径为3,从而利用圆锥的表面积公式可得S =πrl +πr 2=π·3×23+π·(3)2=9π.答案:9π8.(2021·陕西渭南月考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体称为正八面体,则图中正八面体体积为 .若图中正八面体的各个顶点都在同一个球面上,则此球的体积为 .解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的对角线是正方体的棱长2,故正方形的边长等于2,所以该多面体的体积为2×13×(2)2×1=43.由图中几何关系知正八面体的外接球,即正方体的内切球,故半径R =1,所以体积V =43π·13=43π.答案:43 43π9.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为1个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积 .解析:由三视图知,该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为43π·13+13π·22×7=323π,设制成的大铁球半径为R ,则43πR 3=323π,解得R =2,故大铁球的表面积为4πR 2=16π.答案:16π综合提升练10.最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”“圆罂测雨”“峻积验雪”和“竹器验雪”.其中“天池测雨”法是下雨时用一个圆台形的天池盆收集雨水.已知天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.当盆中积水深九寸(注:1尺=10寸)时,平地降雨量是( )A .9寸B .7寸C .8寸D .3寸解析:选D 由已知天池盆上底面半径是14寸,下底面半径为6寸,高为18寸,由积水深9寸知水面半径为12×(14+6)=10寸,则盆中水的体积为13π·9×(62+102+6×10)=588π(立方寸),所以平地降雨量为588ππ·142=3(寸),故选D.11.(2021·四川成都月考)一块边长为10 cm 的正方形铁片如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,则这个正四棱锥的外接球的表面积为( )A .2894πB .28916πC .28948πD .28964π解析:选A 由题设知:底面ABCD 的外接圆半径为r =32,且EO =4,令正四棱锥外接球的半径为R ,且外接球的球心必在直线EO 上,∴(R -EO )2+r 2=R 2,即R =174.∴正四棱锥的外接球的表面积为4πR 2=289π4.故选A .12.(2021·安徽合肥一中模拟)学生到工厂劳动实践,利用3D 打印技术制作一个机械零件模型,该零件模型是由两个相同的正四棱柱镶嵌而成的几何体,其三视图如图所示.这个几何体的体积为( )A .16B .403C .16-423D .163解析:选B 由三视图还原几何体如图所示,两个四棱柱的体积均为V 1=12×2×2×4=8,中间重复的部分为两个小正四棱锥,其体积为2V 2=13×2×2×2=83,故该几何体体积为V =16-83=403,故选B.13.有一个圆锥与一个圆柱的底面半径相等,圆锥的母线长是底面半径的2倍,若圆柱的外接球的表面积是圆锥的侧面积的6倍,则圆柱的高是底面半径的 倍.解析:设圆柱的高为h ,底面半径为r ,圆柱的外接球的半径为R ,则R 2=⎝⎛⎭⎫h 22+r 2. ∵母线长l =2r ,∴圆锥的高为3r ,∴圆锥的侧面积为πrl =2πr 2,∴4πR 2=4π⎣⎡⎦⎤⎝⎛⎭⎫h 22+r 2=6×2πr 2,∴h 24+r 2=3r 2,整理得h 2=8r 2,∴hr =2 2.答案:2 214.某市民广场有一批球形路障球(如图1所示). 现公园管理处响应市民要求,决定将每个路障球改造成方便市民歇脚的立方八面体石凳(如图2所示). 其中立方八面体有24条棱、12个顶点、14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.经过测量,这批球形路障球每个直径为60 cm ,若每个路障球为改造后所得的立方八面体的外接球,则每个改造后的立方八面体表面积为 cm 2.解析:由题意知,立方八面体表面有8个正三角形,再加上6个小正方形,且正方形边长与正三角形边长相等,路障球为立方八面体的外接球. 设立方八面体的棱长为a ,则外接球直径d =2a 2+2a 2=2a =60,则a =30.立方八面体表面积S =6a 2+8×34a 2=5400+1800 3.答案:5400+1800 315.如图1,在一个正方形S 1S 2S 3S 4内,有一个小正方形和四个全等的等边三角形.将四个等边三角形折起来,使S 1,S 2,S 3,S 4重合于点S ,且折叠后的四棱锥S -ABCD 的外接球的表面积是16 π(如图2),则四棱锥的体积是 .解析:在题图2中,连接AC ,BD 交于点O ,连接OS ,如图,因为SD =SB =CD ,BD =2CD ,所以SD ⊥SB ,故OA =OB =OC =OD =OS ,则O 是正四棱锥外接球的球心,正四棱锥的所有棱都相等,设棱长为x ,则外接球的半径是OA =22x ,所以4π⎝⎛⎭⎫22x 2=16π,x =2 2.因此SO =OA =22x =2.故四棱锥S -ABCD 的体积是13·x 2·SO=13×(22)2×2=163. 答案:163创新应用练16.某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为43的正方体的六个面所截后剩余的部分(球心与正方体的中心重合),若其中一个截面圆的周长为4π,则该球的半径是( )A .2B .4C .26D .4 6解析:选B 设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即23,根据截面圆的周长可得4π=2πr ,得r =2,故由题意知R 2=r 2+(23)2,即R 2=22+(23)2=16,所以R =4,故选B.17.(2021·安徽黄山二模)棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其能到达的空间的体积为( )A .32+22π3B .36+4π3C .44+13π3D .12+12π解析:选A 在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为8⎣⎡⎦⎤13-18⎝⎛⎭⎫4π3·13=8-4π3,除此之外,在以正方体的棱为一条棱的12个1×1×2的正四棱柱空间内,小球不能到达的空间共为12×⎣⎡⎦⎤1×1×2-14(π·12)×2=24-6π.其他空间小球均能到达.故小球不能到达的空间体积为⎝⎛⎭⎫8-43π+24-6π=32-223 π.∴小球可以经过的空间的体积V =43-⎝⎛⎭⎫12-π4·12×2×12-⎝⎛⎭⎫8-43 π=32+22π3.故选A .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时空间几何体的表面积(1)直棱柱:侧棱和底面垂直的棱柱.(2)正棱柱:底面为正多边形的直棱柱.(3)正棱锥:底面是正多边形,并且顶点在底面的正投影是底面中心的棱锥.(4)正棱台:正棱锥被平行于底面的平面所截,截面和底面之间的部分.观察下列多面体:问题1:直棱柱的侧面展开图是什么?提示:以底面周长为长,高为宽的矩形.问题2:正棱锥的侧面展开图是什么?提示:若干个全等的等腰三角形.问题3:正棱台的侧面展开图是什么?提示:若干个全等的等腰梯形.几个特殊的多面体的侧面积公式(1)S 直棱柱侧=ch (h 为直棱柱的高); (2)S 正棱锥侧=12ch ′(h ′为斜高);(3)S 正棱台侧=12(c +c ′)h ′(h ′为斜高).观察下列旋转体:问题1:圆柱的侧面展开图是什么? 提示:以底面周长为长,高为宽的矩形. 问题2:圆锥的侧面展开图是什么? 提示:扇形.问题3:圆台的侧面展开图是什么? 提示:扇环.几种旋转体的侧面积公式 (1)S 圆柱侧=cl =2πrl . (2)S 圆锥侧=12cl =πrl .(3)S 圆台侧=12(c +c ′)h =π(r +r ′)l .1.柱、锥、台的表面积即全面积应为侧面积与底面积的和.2.柱、锥、台的侧面积的求法要注意柱、锥、台的几何特性,必要时要展开. 3.柱、锥、台的侧面积之间的关系(1)正棱柱、正棱锥、正棱台侧面积之间的关系: S 正棱柱侧――→h ′=hc ′=cS 正棱台侧――→c ′=0S 正棱锥侧. (2)圆柱、圆锥、圆台表面积之间的关系: S 圆柱侧――→r 1=r 2S 圆台侧――→r 1=0S 圆锥侧.[例1] 正四棱锥的侧面积是底面积的2倍,高是3,求它的表面积.[思路点拨] 由S 侧与S 底的关系,求得斜高与底面边长之间的关系,进而求出斜高和底面边长,最后求表面积.[精解详析] 如图,设PO =3,PE 是斜高,∵S 侧=2S 底,∴4·12·BC ·PE =2BC 2.∴BC =PE .在Rt △POE 中,PO =3,OE =12BC =12PE .∴9+(PE2)2=PE 2.∴PE =2 3.∴S 底=BC 2=PE 2=(23)2=12. S 侧=2S 底=2×12=24. ∴S 表=S 底+S 侧=12+24=36.[一点通] 求棱锥、棱台及棱柱的侧面积和表面积的关键是求底面边长,高,斜高,侧棱.求解时要注意直角三角形和梯形的应用.1.已知一个三棱锥的每一个面都是边长为1的正三角形,则此三棱锥的表面积为________.解析:三棱锥的每个面(正三角形)的面积都是34,所以三棱锥 的表面积为4×34= 3. ★★答案★★: 32.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是________.解析:设直棱柱底面边长为a ,高为h ,则h =6-2=2,a =2×22=1, 所以S 棱柱侧=4×1×2=8. ★★答案★★:83.正四棱台的高是12 cm ,两底面边长之差为10 cm ,表面积为512 cm 2,求底面的边长.解:如图,设上底面边长为x cm ,则下底面边长为(x +10)cm ,在Rt △E 1FE 中,EF =x +10-x2=5(cm).∵E 1F =12 cm ,∴斜高E 1E =13 cm. ∴S 侧=4×12(x +x +10)×13=52(x +5),S 表=52(x +5)+x 2+(x +10)2=2x 2+72x +360. ∵S 表=512 cm 2, ∴2x 2+72x +360=512. 解得x 1=-38(舍去),x 2=2. ∴x 2+10=12.∴正四棱台的上、下底面边长分别为2 cm 、12 cm.[例2] 圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?[思路点拨] 解答本题可先把空间问题转化为平面问题,即在展开图内求母线的长,再进一步代入侧面积公式求出侧面积,进而求出表面积.[精解详析]如图所示,设圆台的上底面周长为c ,因为扇环的圆心角是180°,故c =π·SA =2π×10,所以SA=20,同理可得SB=40,所以AB=SB-SA=20,∴S表面积=S侧+S上+S下=π(r1+r2)·AB+πr21+πr22=π(10+20)×20+π×102+π×202=1 100π(cm2).故圆台的表面积为1 100πcm2.[一点通](1)求圆柱、圆锥和圆台的侧面积和表面积,只需求出上、下底半径和母线长即可,求半径和母线长时常借助轴截面.(2)对于与旋转体有关的组合体的侧面积和表面积问题,首先要弄清楚它是由哪些简单几何体组成,然后再根据条件求各个简单组合体的半径和母线长,注意方程思想的应用.4.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是________.解析:根据轴截面面积是3,可得圆锥的母线长为2,底面半径为1,所以S=πr2+πrl=π+2π=3π.★★答案★★:3π5.如图所示,在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.解:设圆柱的底面半径为x,圆锥高h=42-22=23,画轴截面积图(如图),则3 23=2-x2.故圆锥内接圆柱的底半径x=1.则圆柱的表面积S=2π·12+2π·1·3=(2+23)π.6.一个直角梯形的上、下底的半径和高的比为1∶2∶3,求它绕垂直于上、下底的腰旋转后形成的圆台的上底面积、下底面积和侧面积的比.解:如图所示,设上、下底的半径和高分别为x、2x、3x,则母线长l=(2x-x)2+(3x)2=2x,∴S上底=πx2,S下底=π(2x)2=4πx2,S侧=π(x+2x)·2x=6πx2,∴圆台的上底面积、下底面积和侧面积之比为1∶4∶6.1.正棱柱、正棱锥、正棱台的所有侧面都全等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的个数.2.棱台是由棱锥所截得到的,因此棱台的侧面积可由大小棱锥侧面积作差得到.3.旋转体的轴截面是化空间问题为平面问题的重要工具,因为在轴截面中集中体现了旋转体的“关键量”之间的关系.在推导这些量之间的关系时要注意比例性质的应用.课下能力提升(十)1.一个圆锥的底面半径为2,高为23,则圆锥的侧面积为________.解析:S侧=πRl=π×2×(23)2+22=8π.★★答案★★:8π2.正三棱锥的底面边长为a,高为33a,则此棱锥的侧面积为________.解析:如图,在正三棱锥S-ABC中,过点S作SO⊥平面ABC于O点,则O为△ABC的中心,连结AO并延长与BC相交于点M,连结SM,SM即为斜高h′,在Rt△SMO中,h ′=(33a )2+(36a )2=156a ,所以侧面积S =3×12×156a ×a =154a 2. ★★答案★★:154a 23.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为________.解析:设圆台的上、下底面半径分别为r ′、r ,则母线l =12(r ′+r ).∴S 侧=π(r +r ′)·l =π·2l ·l =2πl 2=32π.∴l =4.★★答案★★:44.一个圆柱的底面面积是S ,其侧面积展开图是正方形,那么该圆柱的侧面积为________.解析:设圆柱的底面半径为R ,则S =πR 2,R =Sπ,底面周长c =2πR . 故圆柱的侧面积为S 圆柱侧=c 2=(2πR )2=4π2Sπ=4πS .★★答案★★:4πS5.如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为________.解析:设正方体棱长为1,则其表面积为6,三棱锥D 1­AB 1C 为正四面体,每个面都是边长为2的正三角形,其表面积为4×12×2×62=23,所以三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为1∶ 3.★★答案★★:1∶ 36.以圆柱的上底中心为顶点,下底为底作圆锥,假设圆柱的侧面积为6,圆锥的侧面积为5,求圆柱的底面半径.解:如图所示,设圆柱底面圆的半径为R ,高为h ,则圆锥的底面半径为R ,高为h ,设圆锥母线长为l ,则有l =R 2+h 2.①依题意,得⎩⎪⎨⎪⎧2πRh =6,πRl =5,②由①②,得R =2ππ,即圆柱的底面半径为2ππ.7.设正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的全面积.解:设正三棱锥底面边长为a ,斜高为h ′,如图所示,过O 作OE ⊥AB ,则SE ⊥AB ,即SE =h ′.∵S 侧=2S 底,∴12×3a ×h ′=34a 2×2,∴a =3h ′. ∵SO ⊥OE ,∴SO 2+OE 2=SE 2, ∴32+(36×3h ′)2=h ′2. ∴h ′=23,∴a =3h ′=6. ∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 全=S 侧+S 底=183+93=27 3. 8.如图所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2),半球形物体的表面积为S 2≈2×3.1×(12)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.第2课时 空间几何体的体积观察下列几何体:问题1:你能否求出上述几何体的体积吗? 提示:能.问题2:要求上述几何体的体积,需要知道什么? 提示:底面积和高.柱体、锥体、台体的体积公式(1)柱体体积:V 柱体=Sh .其中S 为柱体的底面积,h 为高. (2)锥体体积:V 锥体=13Sh .其中S 为锥体的底面积,h 为高.(3)台体体积:V 台体=13h (S +SS ′+S ′).其中S ,S ′分别为台体的两底面面积,h 为台体的高.2009年12月4日,阿迪达斯和国际足联在开普敦共同发布2010年南非世界杯官方比赛用球“JABULANI ”,“JABULANI ”源于非洲祖鲁语,意为“普天同庆”,新的比赛用球在技术上取得历史性突破,设计上融入了南非元素.问题1:根据球的形成定义,体育比赛中用到的足球与数学中的球有何不同? 提示:比赛中的足球是空心的,而数学中的球是实体球. 问题2:给你一个足球能否计算出这个足球表皮面积和体积? 提示:能,只要知道球的半径即可求出.1.球的表面积设球的半径为R ,则球的表面积S =4πR 2,即球的表面积等于它的大圆面积的4倍. 2.球的体积设球的半径为R ,则球的体积V =43πR 3.1.求柱、锥、台的体积要注意底面积与高的确定,必要时注意分割. 2.柱体、锥体、台体之间体积公式的关系3.要求球的表面积,只需求出球的半径.4.球的体积与球的半径的立方成正比,即球的体积是关于球的半径的增函数.[例1] (1)底面为正三角形的直棱柱的侧面的一条对角线长为2.且与该侧面内的底边所成的角为45°,求此三棱柱的体积.(2)如图,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD = 2.求此四棱锥的体积.[思路点拨] (1)由条件求出高和底面边长,再利用公式求体积;(2)解本题的关键是求四棱锥的高,可证明P A ⊥底面ABCD ,再利用公式求体积.[精解详析] (1)如图,由条件知此三棱柱为正三棱柱.∵正三棱柱的面对角线AB 1=2. ∠B 1AB =45°.∴AB =2×sin 45°=2=BB 1. ∴V 三棱柱=S △ABC ·BB 1=34×(2)2×2=62. (2)在△P AD 中,P A =AD =1,PD =2, ∴P A 2+AD 2=PD 2.∴P A ⊥AD ,又P A ⊥CD ,且AD ∩CD =D , ∴P A ⊥平面ABCD ,从而P A 是底面ABCD 上的高, ∴V 四棱锥=13S 正方形ABCD ·P A =13×12×1=13.[一点通] 求柱体、锥体的体积,关键是求其高,对柱体而言,高常与侧棱、斜高及其在底面的射影组成直角三角形,对棱锥而言,求高时,往往要用到线面垂直的判定方法,因为棱锥的高实际上是顶点向底面作垂线,垂线段的长度.1.一圆锥母线长为1,侧面展开图圆心角为240°,则该圆锥的体积为________. 解析:设圆锥侧面展开图的弧长为l , 则l =240°×π×1180°=4π3.设圆锥的底面半径为r ,则4π3=2πr ,r =23.V =π3·⎝⎛⎭⎫232·12-49=4π33·59=4581π. ★★答案★★:4581π2.一个正方体和一个圆柱等高并且侧面积相等,则正方体与圆柱的体积之比为________.解析:设正方体棱长为1,则S 正方体侧=S 圆柱侧=4, 设圆柱的底面半径为r ,则2πr ×1=4,r =2π,V 正方体=1,V 圆柱=π⎝⎛⎭⎫2π2·1=4π.∴V 正方体∶V 圆柱=π∶4. ★★答案★★:π∶4[例2] 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?[思路点拨] 解答本题作轴截面可以得到等腰梯形,为了得到高,可将梯形分割为直角三角形和矩形,利用它们方便地解决问题.[精解详析]如图,由题意可知,圆台的上底圆半径为4 cm , 于是S 圆台侧=π(r +r ′)l =100π(cm 2). 圆台的高h =BC=BD 2-(OD -AB )2 =102-(6-4)2=46(cm),V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π)=3046π3(cm 3).[一点通] 求台体的体积关键是求高,为此常将有关计算转化为平面图形(三角形或特殊四边形)来计算.对于棱台往往要构造直角梯形和直角三角形;在旋转体中通常要过旋转轴作截面得到直角三角形、矩形或等腰梯形.3.正四棱台两底面边长为20 cm 和10 cm ,侧面积为780 cm 2,求其体积. 解:如图所示,正四棱台ABCD ­A 1B 1C 1D 1中,A 1B 1=10 cm ,AB =20 cm.取A 1B 1的中点E 1,AB 的中点E ,连结E 1E ,则E 1E 是侧面ABB 1A 1的高.设O 1,O 分别是上,下底面的中心,则四边形EOO 1E 1是直角梯形.S 侧=4×12×(10+20)·E 1E ,即780=60E 1E ,解得E 1E =13 (cm).在直角梯形EOO 1E 1中,O 1E 1=12A 1B 1=5 (cm),OE =12AB =10 (cm),所以O 1O =E 1E 2-(OE -O 1E 1)2=132-52=12(cm).所以V =13×12×(102+202+102×202)=2800(cm 3).[例3] 一个球内有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2.求球的表面积.[思路点拨] 由于题中没有说明截面的位置,故需分类讨论.[精解详析] (1)当截面在球心的同侧时,如图所示为球的轴截面.由球的截面性质知,AO 1∥BO 2,且O 1,O 2分别为两截面圆的圆心, 则OO 1⊥AO 1,OO 2⊥BO 2.设球的半径为R.因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7.同理,因为π·O1A2=400π,所以O1A=20.设OO1=x,则OO2=(x+9).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(x+9)2+72,所以,x2+202=(x+9)2+72,解得x=15.即R2=x2+202=252.故S球=4πR2=2 500π.所以,球的表面积为2 500πcm2.(2)当截面位于球心O的两侧时,如图所示为球的轴截面.由球的截面性质知,O1A∥O2B,且O1,O2分别为两截面圆的圆心,则OO1⊥AO1,OO2⊥O2B.设球的半径为R.因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7.同理,因为π·O1A2=400π,所以O1A=20.设O1O=x,则OO2=(9-x).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(9-x)2+72.所以x2+400=(9-x)2+49,解得x=-15,不合题意,舍去.综上所述,球的表面积为2 500πcm2.[一点通]球的截面性质:球心与截面圆心的连线垂直于截面,本题利用球的截面将立体几何问题转化为平面几何问题,借助于直角三角形中的勾股定理解决问题.4.(新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为________ cm3.解析:设球半径为R cm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4 cm,球心到截面的距离为(R-2) cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=43πR3=43π×53=500π3cm3.★★答案★★:500π35.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为________.解析:过球心作球的截面,如图所示,设球的半径为R,截面圆的半径为r,则有r=R2-⎝⎛⎭⎫R22=32R,则球的表面积为4πR2,截面的面积为π⎝⎛⎭⎫32R2=34πR2,所以截面的面积与球的表面积的比为34πR24πR2=316.★★答案★★:3166.长方体的一个顶点上的三条棱长分别是3,4,5,且它的八个顶点都在同一球面上,则这个球的表面积和体积是多少?解:设球的半径为R,则由已知得(2R)2=32+42+52,故R2=252,∴R=522,∴S球=4πR2=50π,∴V球=43πR3=43π·(522)3=12532π.1.求柱、锥、台体的体积时,由条件画出直观图,然后根据几何体的特点恰当进行割补,可能使复杂问题变得直观易求.2.求球与多面体的组合问题,通过多面体的一条侧棱和球心,或“切点”“接点”作出截面图.3.球的截面是一个圆面、圆心与球心的连线与截面圆垂直,且满足d =R 2-r 2(d 为球心到截面圆的距离).课下能力提升(十一)1.一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,圆锥的高与底面半径之比为________.解析:设球的半径为r ,则圆锥的底面半径是3r ,设圆锥的高为h ,则43πr 3=13π(3r )2h ,解得h =49r ,所以圆锥的高与底面半径之比为427.★★答案★★:4272.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于________. 解析:设圆柱的底面半径为r ,则圆柱的母线长为2r , 由题意得S 圆柱侧=2πr ×2r =4πr 2=4π,所以r =1, 所以V 圆柱=πr 2×2r =2πr 3=2π. ★★答案★★:2π3.(福建高考)三棱锥P -ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.解析:依题意有,三棱锥P -ABC 的体积V =13S △ABC ·|P A |=13×34×22×3= 3.★★答案★★: 34.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是________.解析:V =V 大圆锥-V 小圆锥=13π(3)2(1+1.5-1)=32π.★★答案★★:32π5.(天津高考)已知一个正方体的所有顶点在一个球面上.若球的体积为9π2, 则正方体的棱长为________.解析:设正方体的棱长为x ,其外接球的半径为R ,则由球的体积为9π2,得43πR 3=9π2,解得R =32.由2R =3x ,得x =2R3= 3.★★答案★★: 36.如图所示,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF 与平面AC 的距离为2,求该多面体的体积.解:如图,设G ,H 分别是AB ,DC 的中点,连结EG ,EB ,EC ,EH ,HG ,HB ,∵EF ∥AB ,EF =12AB =GB ,∴四边形GBFE 为平行四边形,则EG ∥FB ,同理可得EH ∥FC ,GH ∥BC ,得三棱柱EGH -FBC 和棱锥E ­AGHD . 依题意V E ­AGHD =13S AGHD ×2=13×3×32×2=3, 而V EGH ­FBC =3V B ­EGH =3×12V E ­BCHG =32V E ­AGHD =92,∴V 多面体=V E ­AGHD +V EGH ­FBC =152.7.已知正四棱台两底面面积分别为80 cm 2和245 cm 2,截得这个正四棱台的原棱锥的高是35 cm ,求正四棱台的体积.解:如图,SO =35,A ′O ′=25,AO =752,由SO ′SO =A ′O ′AO ,得SO ′=35×25752=20.∴OO ′=15.∴V 正四棱台=13×15×(80+80×245+245)=2 325.即正四棱台的体积为2 325 cm 3.8.如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面P AC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积. 解:(1)证明:因为PH 是四棱锥P -ABCD 的高,所以AC ⊥PH .又AC ⊥BD ,PH ,BD 都在平面PBD 内,且PH ∩BD =H , 所以AC ⊥平面PBD ,故平面P AC ⊥平面PBD .(2)因为ABCD 为等腰梯形,AB ∥CD ,AC ⊥BD ,AB =6,所以HA =HB = 3. 因为∠APB =∠ADB =60°, 所以P A =PB =6,HD =HC =1, 可得PH = 3.等腰梯形ABCD 的面积为S =12AC ×BD =2+ 3.所以四棱锥的体积为V =13×(2+3)×3=3+233.一、空间几何体1.多面体与旋转体(1)棱柱有两个面互相平行,其余各面都是平行四边形.但是要注意“有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱”.(2)有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.注意:一个棱锥至少有四个面,所以三棱锥也叫四面体.(3)棱台是利用棱锥来定义的,用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个称之为棱台,截面叫做上底面,原棱锥的底面叫做下底面.注意:解决台体常用“台还原成锥”的思想.(4)将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台,这条直线叫做轴,垂直于轴的边旋转一周而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.2.直观图画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.画立体图形与画水平放置的平面图形相比多了一个z 轴,最大区别是空间几何体的直观图有实线与虚线之分,而平面图形的直观图全为实线.二、平面的基本性质1.平面的基本性质公理内容图形符号公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内A∈α,B∈α⇒AB⊂α公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线P∈α,且P∈β⇒α∩β=l,且P∈l公理3经过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α公理3的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.三个公理的主要作用(1)公理1的作用:①判断直线是否在平面内,点是否在平面内.②用直线检验平面.(2)公理2的作用:①判定两个平面是否相交;②证明点共线.(3)公理3的作用:①确定平面;②证明点线共面.三、空间直线与直线的位置关系空间两条直线的位置关系有且只有相交、平行、异面三种.注意:两直线垂直有“相交垂直”与“异面垂直”两种.1.证明线线平行的方法 (1)线线平行的定义;(2)公理4:平行于同一条直线的两条直线互相平行; (3)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b ; (4)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b ; (5)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .2.证明线线垂直的方法(1)线线垂直的定义:两条直线所成的角是直角,在研究异面直线所成的角时,要通过平移把异面直线转化为相交直线;(2)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; (3)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . 四、空间直线与平面的位置关系空间中直线与平面有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行. 注意:直线在平面外包括平行和相交两种关系. 1.证明线面平行的方法 (1)线面平行的定义;(2)判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α; (3)平面与平面平行的性质:α∥β,a ⊂α⇒a ∥β. 2.证明线面垂直的方法 (1)线面垂直的定义;(2)线面垂直的判定定理:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)面面平行的性质:α∥β,l ⊥α⇒l ⊥β;(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β . 五、空间平面与平面的位置关系空间平面与平面的位置关系有且只有平行和相交两种. 1.证明面面平行的方法 (1)面面平行的定义; (2)面面平行的判定定理:a ∥β,b ∥β,a ⊂α,b ⊂α,a ∩b =A ⇒α∥β; (3)线面垂直的性质:垂直于同一条直线的两个平面平行.2.证明面面垂直的方法(1)面面垂直的定义:两个平面相交所成的二面角是直二面角; (2)面面垂直的判定定理:a ⊥β,a ⊂α⇒α⊥β. 3.证明空间线面平行或垂直需注意三点 (1)由已知想性质,由求证想判定; (2)适当添加辅助线(面);(3)用定理时先明确条件,再由定理得出相应结论. 六、空间几何体的表面积和体积1.棱锥、棱台、棱柱的侧面积公式间的联系S 正棱台侧=12(c +c ′)h ′ ――→c ′=0 S 正棱锥侧=12ch ′――→c =c ′h =h ′S 正棱柱侧=ch 2.圆锥、圆台、圆柱的侧面积公式间的联系S 圆台侧=π(r ′+r )l ――→r ′=0 S 圆锥侧=πrl ――→r ′=rS 圆柱侧=2πrl 3.锥、台、柱的体积之间的联系V 台体=13(S 上+S 下+S 上S 下)h ――→S 上=0 V 锥体=13Sh ――→S 上=S下V 柱体=Sh 4.球的表面积与体积 设球的半径为R ,则球的表面积S =4πR 2,体积V =43πR 3.一、填空题(本大题共14小题,每小题5分,共70分) 1.下列几何体是旋转体的是________.①圆柱;②六棱锥;③正方体;④球体;⑤四面体. 答案:①④2.若两个平面互相平行,则分别在这两个平行平面内的直线________.解析:由于直线分别位于两平行平面内,因此它们无公共点,因此它们平行或异面. 答案:平行或异面3.圆台的一个底面周长是另一个底面周长的3倍,母线长l =3,侧面积为84π,则圆台较小底面的半径为________.解析:设圆台较小底面半径为r ,则S 侧面积=π(r +3r )l =84π,r =7. 答案:74.已知一个表面积为24的正方体,设有一个与每条棱都相切的球,则此球的体积为________.解析:设正方体的棱长为a ,则6a 2=24,解得a =2.又球与正方体的每条棱都相切,则正方体的面对角线长22等于球的直径,则球的半径是2,则此球的体积为43π(2)3=823π.答案:823π5.一个三角形用斜二测画法画出来是一个边长为1的正三角形,则此三角形的面积是________.解析:如图所示,将△A ′B ′C ′还原后为△ABC ,由于O ′C ′=2C ′D ′=2×1×32=62,所以CO =2O ′C ′= 6.∴S △ABC =12×1×6=62.答案:626.如图,如果MC ⊥菱形ABCD 所在的平面,那么MA 与BD 的位置关系是________.解析:连结AC ,由于四边形ABCD 是菱形,所以AC ⊥BD ,又MC ⊥平面ABCD ,所以MC ⊥BD ,又MC ∩AC =C ,所以BD ⊥平面AMC ,所以MA ⊥BD .答案:垂直7.已知直线a ∥平面α,平面α∥平面β,则直线a 与平面β的位置关系为________. 解析:∵a ∥α,α∥β,∴a ∥β或a ⊂β. 答案:a ∥β或a ⊂β8.圆锥侧面展开图的扇形周长为2m ,则全面积的最大值为________. 解析:设圆锥底面半径为r ,母线为l ,则有2l +2πr =2m . ∴S 全=πr 2+πrl =πr 2+πr (m -πr )=(π-π2)r 2+πrm . ∴当r =πm 2(π2-π)=m2(π-1)时,S 全有最大值πm 24(π-1).答案:πm 24(π-1)9.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:如图设点A 为圆O 和圆K 公共弦的中点,则在Rt △OAK 中,∠OAK 为圆O 和圆K 所在的平面所成的二面角的一个平面角,即∠OAK =60°.由OK =32,可得OA =3,设球的半径为R ,则(3)2+⎝⎛⎭⎫R 22=R 2,解得R =2,因此球的表面积为4π·R 2=16π.答案:16π10.如图,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________.解析:如图,作AO ⊥β于O ,AC ⊥l 于C ,连结OB ,OC ,则OC ⊥l .设AB 与β所成角为θ,则∠ABO =θ, 由图得sin θ=AO AB =AC AB ·AO AC =sin 30°·sin 60°=34.答案:3411.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中错误的是________.①若m ∥α,n ∥α,则m ∥n ; ②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,m ∥β,则α∥β; ④若m ⊥α,n ⊥α,则m ∥n .解析:对于①,m ,n 均为直线,其中m ,n 平行于α,则m ,n 可以相交也可以异面,故①不正确;对于②,③,α,β还可能相交,故②,③错;对于④,m ⊥α,n ⊥α,则同垂直于一个平面的两条直线平行,故④正确.答案:①②③12.若一个圆柱、一个圆锥的底面直径和高都等于一个球的直径,则圆柱、球、圆锥的体积之比是________.解析:设球的半径为R ,圆柱、圆锥的底面半径为r ,高为h ,则r =R ,h =2R ,V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3,V圆锥=13πR 2×2R =23πR 3,所以V 圆柱∶V 球∶V圆锥=2πR 3∶43πR 3∶23πR 3=3∶2∶1.答案:3∶2∶113.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .解析:由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.令CF ⊥DF ,设AF =x ,则A 1F =3a -x ,由Rt △CAF ∽Rt △F A 1D ,得ACA 1F =AF A 1D ,即2a 3a -x =x a.整理得x 2-3ax +2a 2=0,解得x =a 或x =2a . 答案:a 或2a14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则三棱锥S ­ABC 的体积的最大值为________.解析:记球O 的半径为R ,作SD ⊥AB 于D ,连线OD 、OS ,易求R =23,又SD ⊥平面ABC ,注意到SD =SO 2-OD 2=R 2-OD 2,因此要使SD 最大,则需OD 最小,而OD 的最小值为12×23=33,因此高SD 的最大值是⎝⎛⎭⎫232-⎝⎛⎭⎫332=1,又三棱锥S -ABC 的体积为13S △ABC ·SD =13×34×22×SD =33SD ,因此三棱锥S -ABC 的体积的最大值是33×1=33.答案:33二、解答题(本大题共6小题,共90分)15.(14分)圆柱的轴截面是边长为5 cm 的正方形ABCD ,圆柱侧面上从A 到C 的最短距离是多少?解:如图,底面半径为52cm ,母线长为5 cm.沿AB 展开,则C 、D 分别是BB ′、AA ′的中点. 依题意AD =π×52=52π.∴AC =(52π)2+52=5 π2+42. ∴圆柱侧面上从A 到C 的最短距离为5π2+42cm.16.(14分)如图所示,已知ABCD 是矩形,E 是以DC 为直径的半圆周上一点,且平面CDE ⊥平面ABCD .求证:CE ⊥平面ADE .证明:∵E 是以DC 为直径的半圆周上一点,∴CE ⊥DE . 又∵平面CDE ⊥平面ABCD ,且AD ⊥DC , ∴AD ⊥平面CDE .又CE ⊂面CDE ,∴AD ⊥CE .又DE ∩AD =D ,∴CE ⊥平面ADE .17.(14分)(新课标全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.解:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC ­A 1DE =13×12×6×3×2=1.18.(16分)已知等腰梯形PDCB 中(如图①),PB =3,DC =1,PD =BC =2,A 为PB 边上一点,且DA ⊥PB .现将△P AD 沿AD 折起,使平面P AD ⊥平面ABCD (如图②).(1)证明:平面P AD ⊥平面PCD ;(2)试在棱PB 上确定一点M ,使截面AMC 把几何体分成两部分,其两部分体积比为V PDCMA ∶V M ­ACB =2∶1.解:(1)证明:依题意知,CD ⊥AD , 又∵平面P AD ⊥平面ABCD , ∴DC ⊥平面P AD .又DC ⊂平面PCD , ∴平面P AD ⊥平面PCD . (2)由题意知P A ⊥平面ABCD ,∴平面P AB ⊥平面ABCD .如上图,在PB 上取一点M ,作MH ⊥AB ,则MH ⊥平面ABCD ,设MH =h ,。

相关文档
最新文档