2011-2012学年第二学期高二理科数学第一次月考试卷(含答案)

合集下载

安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题(含答案解析)

安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题(含答案解析)

安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设()*211111N 123n a n n n n n n=++∈+++,则2a 等于()A .14B .1123+C .111234++D .11112345+++2.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .23.若命题()()*A n n N ∈在()*n k k N =∈时命题成立,则有1n k =+时命题成立,现知命题对()*00n n n N=∈时命题成立,则有().A .命题对所有正整数都成立B .命题对小于0n 的正整数不成立,对大于或等于0n 的正整数都成立C .命题对小于0n 的正整数成立与否不能确定,对大于或等于0n 的正整数都成立D .以上说法都不正确4.我国古代著作《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭.”其含义是:一尺长的木棍,每天截去它的一半,永远也截不完.在这个问题中,记第n 天后剩余木棍的长度为n a ,数列{}n a 的前n 项和为n S ,则使得不等式6164n S >成立的正整数n 的最小值为().A .6B .5C .4D .35.已知正项等比数列{an }满足6856846832a a a =+,若存在两项m a ,n a ,12a =,则14m n+的最小值为()A .9B .73C .94D .1336.已知数列{}n a 的前n 项和122n n S +=-,若*n ∀∈N ,24n n a S λ≤+恒成立,则实数λ的最大值是()A .3B .4C .5D .67.等差数列{}n a 满足:10a >,31047a a =.记12n n n n a a a b ++=,当数列{}n b 的前n 项和n S 取最大值时,n =A .17B .18C .19D .208.“提丢斯数列”,是由18世纪德国数学家提丢斯给出,具体如下:0,3,6,12,24,48,96,192,…,容易发现,从第3项开始,每一项是前一项的2倍;将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,…;再将每一项除以10后得到:“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中,正确的是()A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9832410⋅+C .“提丢斯数列”前31项和为30321012110⋅+D .“提丢斯数列”中,不超过20的有9项二、多选题9.(多选题)已知三角形的三边构成等比数列,它们的公比为q ,则q 可能的一个值是()A .52B .32C .34D .1210.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则()A .45n a n =-B .23n a n =+C .223n S n n=-D .24n S n n=+11.(多选题)已知等比数列{}n a 的公比23q =-,等差数列{}n b 的首项112b =,若99a b >且1010a b >,则以下结论正确的有()A .9100a a ⋅<B .910a a >C .100b >D .910b b >12.设{}n a 是无穷数列,若存在正整数k ,使得对任意*N n ∈,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是()A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列C .已知2(1)nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22022n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<三、填空题13,…,则________项.14.已知数列{}n a 的前n 项和23nn S =-,则数列{}n a 的通项公式是______.15.如图,第n 个图形是由正2n +边形扩展而来的,则第2n -个图形中共有______个顶点.16.设等差数列{}n a 的前n 项和为n S ,若376,28S S ==,则14nn a a S ++的最大值是__四、解答题17.在数列{}n a 中,11a =,13n n a a +=.(1)求{}n a 的通项公式;(2)数列{}n b 是等差数列,n S 为{}n b 前n 项和,若1123b a a a =++,33b a =,求n S .18.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.19.已知数列{}n a 的前n 项和为n S ,且()22n n S a n N *=-∈(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .20.已知函数()f x 满足()()()f x y f x f y +=⋅且1(1)2f =.(1)当*n N ∈时,求()f n 的表达式;(2)设*()n a n f n n N =⋅∈,,求证:1232n a a a a +++⋯+<;21.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求n a ﹔(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <.22.习近平总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.山东某新能源公司年初购入一批新能源汽车充电桩,每台12800元,第一年每台设备的维修保养费用为1000元,以后每年增加400元,每台充电桩每年可给公司收益6400元.(15.7≈)(2)每台充电桩在第几年时,年平均利润最大.参考答案:1.C【分析】由已知通项公式,令2n =写出2a 即可.【详解】()*211111N 123n a n n n n n n=++++⋯+∈+++ ,2111234a ∴=++.故选:C.2.C【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{an }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.C【详解】由已知可得00(*)n n n =∈N 时命题成立,则有01n n =+时命题成立,在01n n =+时命题成立的前提下,可推得0(1)1n n =++时命题也成立,以此类推可知命题对大于或等于0n 的正整数都成立,但命题对小于0n 的正整数成立与否不能确定.本题选择C 选项.4.B【解析】将问题转化为等比数列求和问题,利用等比数列求和公式求得n S ,解不等式求得结果.【详解】由题意可知:数列{}n a 是以12为首项,12为公比的等比数列,11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,若6164n S >,则1611264n ->,即31642n >,6423n ∴>,又n N *∈,4642163=<,5642323=>,∴使得不等式6164n S >成立的正整数n 的最小值为5.故选:B.5.B【分析】利用等比数列的通项公式求出公比q 及m 与n 的关系式4m n +=,由于*,N m n ∈,所以采取逐一代入法求解最值即可.【详解】依题意,正项等比数列{an }满足6856846832a a a =+,所以6846836821112a qa q a q =+,即220q q --=,解得q =2或q =-1.因为数列{an }是正项等比数列,所以2q =,所以11·2n n a a -=.12a =,所以4m n +=,且*,N m n ∈,当m =1,n =3时,1473m n +=,当m =n =2时,1452m n +=,当m =3,n =1时,14133m n +=,则14m n +的最小值为73.故选:B .6.C【解析】先由n S 求出n a ,根据24n n a S λ≤+得到24n nS a λ+≤,求出24nn S a +的最小值,即可得出结果.【详解】因为数列{}n a 的前n 项和122n n S +=-,当2n ≥时,()()1122222n n nn n n a S S +-=-=---=;当1n =时,211222a S ==-=满足上式,所以2n n a =()*n N ∈,又*n ∀∈N ,24n n a S λ≤+恒成立,所以*n ∀∈N ,24nnS a λ+≤恒成立;令22121142222222224n n n n n n n n nS b a ++++-+====++,则211112212220222n n n n n n n n b b +++++⎛⎫⎛⎫-=+-+=-> ⎪⎝⎭⎝⎭对任意*n ∈N ,显然都成立,所以1222n n n b +=+单调递增,因此()21min 2252n b b ==+=,即24n n S a +的最小值为5,所以5λ≤,即实数λ的最大值是5.故选:C【点睛】思路点睛:根据数列不等式恒成立求参数时,一般需要分离参数,构造新数列,根据新数列的通项公式,判断其单调性,求出最值,即可求出参数范围(或最值).7.C【解析】根据已知条件求得1,a d 的关系,由此求得n b 的表达式,根据判断n b 的符号,由此求得数列{}n b 的前n 项和n S 取最大值时n 的值.【详解】设等差数列{}n a 的公差为d ,依题意10a >,31047a a =,则()()114279a d a d +=+,即1550,03a d d =-><.所以数列{}n a 的通项公式为()()155581133n a a n d d n d dn d =+-=-+-⋅=-.所以12n n n n b a a a ++=585552333dn d dn d dn d ⎛⎫⎛⎫⎛⎫=-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3585552333d n n n ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于30d <,所以当117n ≤≤时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当33185855528181818033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,331958555210191919033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=-⋅> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当20n ≥时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于318192027b b d +=->,所以当19n =时,n S 取得最大值.故选:C【点睛】本小题主要考查等差数列通项公式的基本量计算,考查分析、思考与解决问题的能力,属于中档题.8.C【分析】根据已知定义,结合等比数列的通项公式、前n 项和公式进行判断即可.【详解】记“提丢斯数列”为数列{}n a ,则当3n ≥时,310462n n a --=⋅,解得232410n n a -⋅+=,当2n =时,20.7a =,符合该式,当1n =时,10.550.4a =≠,故20.4,1324,2,10n n n a n n N -*=⎧⎪=⎨⋅+≥∈⎪⎩,故A 错误,而979932410a ⋅+=,故B 错误;“提丢斯数列”前31项和为()3002923232121223051051010⋅++⋅⋅⋅++⨯=+,故C 正确;令23242010n -⋅+≤,则219623n -≤,故2,3,4,5,6,7,8n =,而120a <,故不超过20的有8项,故D 错误,故选:C 9.BC【分析】由题意可设三角形的三边分别为aq,a ,aq (aq ≠0),再对q 分类讨论,解不等式即得解.【详解】解:由题意可设三角形的三边分别为aq,a ,aq (aq ≠0).因为三角形的两边之和大于第三边,①当q >1时,a q +a >aq ,即q 2-q -1<0,解得1<q;②当0<q <1时,a +aq >a q ,即q 2+q -1>0,解得12-+<q <1.综上,q 的取值范围是1(2-+∪,则可能的值是32与34.故选:BC 10.AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=,所以()4445n a a n d n =+-=-,()2451232n n nS n n --==-.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.11.AD【分析】根据等比数列{}n a 的公比203q =-<,可知9100a a ⋅<,A 正确;由于不确定9a 和10a 的正负,所以不能确定9a 和10a 的大小关系;根据题意可知等差数列{}nb 的公差为负,所以可判断出C 不正确,D 正确.【详解】对A , 等比数列{}n a 的公比23q =-,9a ∴和10a 异号,9100a a ∴<,故A 正确;对B ,因为不确定9a 和10a 的正负,所以不能确定9a 和10a 的大小关系,故B 不正确;对C D ,9a 和10a 异号,且99a b >且1010a b >,9b ∴和10b 中至少有一个数是负数,又1120b => ,0d ∴<910b b ∴>,故D 正确,10b ∴一定是负数,即100b <,故C 不正确.故选:AD.12.BCD【分析】设等比数列{}n a 的公比为(1)q q >,则11(1)n kn k n a a a q q -+-=-,当10a <时,n k n a a +<,可判断A ;24()n kn n kn a a k n k n++--=⋅+,令24()f n n kn =+-,利用其单调性可判断B ;]21()[(1)1n k n k n a a k +-=-⋅+--,分n 为奇数、偶数两种情况讨论可判断C ;若{}n a 是间隔递增数列且最小间隔数是3,则22)0(n k n a a k n t k +-=+->,*N n ∈成立,问题转化为对于22)2(2()0k n t k k t k +-≥+->,存在3k ≥使之成立,且对于20()2k t k +-≤,存在2k ≤使之成立,求解可判断D .【详解】设等比数列{}n a 的公比为(1)q q >,则111111()1n k n n k n k n a a a qa q a q q +---+-=-=-.因为1q >,所以当10a <时,n k n a a +<,故A 错误;244441()()n kn n kn a a n k n kk n k n n k n n k n +⎛⎫+-⎛⎫-=++-+=-=⋅⎪ ⎪+++⎝⎭⎝⎭,令24()f n n kn =+-,则()y f n =在*N n ∈上单调递增,令0(1)14f k =+->,解得3k >,此时0())1(f n f ≥>,n k n a a +>,故B 正确;()()[()]21212111]()[()n k n n k n k n a a n k n k ++-=++--+-⋅-=+--,当n 为奇数时,2()11kn k n a a k +-=--+,存在1k ≥,使0n k n a a +->成立;当n 为偶数时,2()11kn k n a a k +-=+--,存在2k ≥,使0n k n a a +->成立.综上{}n a 是间隔递增数列且最小间隔数是2,故C 正确;若{}n a 是间隔递增数列且最小间隔数是3,则2222()202202220()()()n k n a a n k t n k n tn k n t k +-=+-++--+=+->,*N n ∈成立,则对于22)2(2()0k n t k k t k +-≥+->,存在3k ≥使之成立,且对于20()2k t k +-≤,存在2k ≤使之成立.即对于(2)0k t +->,存在3k ≥使之成立,且对于0()2k t +-≤,存在2k ≤使之成立,所以23t -<,且22t -≥,解得45t ≤<,故D 正确.故选:BCD.13.7【分析】根据题中所给的数据,推出数列的通项公式,即可得出答案.【详解】解:∵1a =2a =3a =4a =n a =.=3n -1=20⇒n =7,∴7项.故答案为:7.14.1112,2n n n a n --=⎧=⎨≥⎩,【分析】根据21n n S =-求出首项、第二项,从而得出公比,从而求出数列{}n a 的通项公式.【详解】解:当1n =时,111231a S ==-=-,所以11a =-,当2n =时,2212231a a S +==-=,即得到22a =,因为23n n S =-①,所以当2n ≥时,1123n n S --=-②,①-②得()()11123232n n n n n n a S S ---=-=---=,当1n =时,11121a -==不满足11a =-,所以1112,2n n n a n --=⎧=⎨≥⎩,,故答案为:1112,2n n n a n --=⎧=⎨≥⎩,.【点睛】本题考查由数列的前n 项和求数列的通项公式,注意验证1n =的情况,属于中档题.15.()1n n +【分析】由n 边形有n 个顶点及图形的生成规律确定.【详解】由题意第2n -个图形是由n 边形的每边中间向外扩展n 边形得到,顶点数为2(1)n n n n +=+.故答案为:(1)n n +.16.17【分析】根据题意求得n a n =及4(4)(5)2n n n S +++=,化简14212(1)71n n a a S n n ++=++++,结合基本不等式,即可求解.【详解】设等差数列{}n a 的公差为d ,因为376,28S S ==,可得1133672128a d a d +=⎧⎨+=⎩,解得11,1a d ==,所以n a n =,所以4(4)(14)(4)(5)22n n n n n S ++++++==,则141221(4)(5)12127(1)747214n n a a n n n S n n +++==≤=++++++++,当且仅当3n =时,等号成立,所以14n n a a S ++的最大值是17.故答案为:17.17.(1)13n n a -=;(2)214n n -+.【分析】(1)由等比数列的定义可知数列{}n a 是首项为1,公比为3的等比数列,则{}n a 的通项公式易求;(2)由(1)得:1313,19b b ==,由此求得公差d ,代入等差数列前n 公式计算即可.【详解】(1)因为111,3n na a a +==所以数列{}n a 是首项为1,公比为3的等比数列,所以13n n a -=.(2)由(1)得:1123313913,19b a a a b =++=++==,则3124,2b b d d -==-=-,,所以()()21132142n n n n S n S n n +=+⨯-⇒=-+.【点睛】本题考查等差数列,等比数列的基本量计算,属基础题.18.(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--==-++,当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n ,有222221112221212121k k nn n k k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑,和223111211352321444444n n k k n n k k k n n c -==---==+++++∑∑ ①由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑ ,由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯-⨯=-⨯-,从而得:21565994n k n k n c =+=-⨯∑.因此,2212111465421949n n n n k k k n k k k n c c c n -===+=+=--+⨯∑∑∑.所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯.【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.19.(1)2nn a =(2)332n nn T +=-【分析】(1)根据11,1,2,N n nn S n a S S n n -=⎧=⎨-≥∈⎩,再结合等比数列的定义,即可求出结果;(2)由(1)可知12n nn b +=,再利用错位相减法,即可求出结果.【详解】(1)解:因为22n n S a =-,当1n =时,1122S a =-,解得12a =当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n n n a -=⨯=.(2)解:由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,所以2323412222n n n T +=++++L ①231123122222n n n n n T ++=++++ ②,①-②得23111111122222n n n n T ++⎛⎫=++++- ⎝⎭L 21111112211212n n n -+⎛⎫- ⎪+⎝⎭=+--1111133122222n n n n n ++++=+--=-.所以数列{}n b 的前n 项和332n n n T +=-20.(1)()*1()2n f n n ⎛⎫=∈ ⎪⎝⎭N ;(2)详见解析.【分析】(1)令1y =,将函数表示为等比数列,根据等比数列公式得到答案.(2)将n a 表示出来,利用错位相减法得到前N 项和,最后证明不等式.【详解】(1)令1y =,得()()()11f x f x f +=⋅,∴()()()11f n f n f +=⋅,即()()()()*111,22n f n f n n N f n +⎛⎫=∴=∈ ⎪⎝⎭(2)12n n a n ⎛⎫=⋅ ⎪⎝⎭,设121n a n n T a a a a a -=+++⋯++,则()23111111123122223n n n T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,①()()23111111111221322322n n n n T n n n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅++-+-+⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,②来①-②得11122n n ⎛⎫⎛⎫=-+⋅ ⎪ ⎪⎝⎭⎝⎭,23111111221111111112222222212n n n n n n T n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=+++++-⋅=-⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭- ()12222n n T n ⎛⎫∴=-+⋅< ⎪⎝⎭【点睛】本题考查了函数与数列的关系,错位相减法,综合性强,意在考查学生的计算能力和综合应用能力.21.条件选择见解析;(1)32n a n =-;(2)证明见解析.【解析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- -+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =;②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=;选择①②、①③、②③条件组合,均得11a =,3d =,故()13132n a n n =+-=-.(2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n nT b b b b =++++ 11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111331n ⎛⎫=- ⎪+⎝⎭,∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.22.(1)公司从第3年开始获利;(2)在第8年时,每台充电桩年平均利润最大【分析】(1)由题意知每年的维修保养费用是以1000为首项,400为公差的等差数列,由此可得第n 年时累计利润的解析式()6400[10001400(400600)]12800f n n n =-++++-L ,则()0f n >,解之即可;(2)每台充电桩年平均利润为()6420028f n n n n ⎛⎫=-+- ⎪⎝⎭,由基本不等式可求出最大值,注意等号成立的条件.【详解】(1)由题意知每年的维修保养费用是以1000为首项,400为公差的等差数列,设第n 年时累计利润为()f n ,()6400[10001400(400600)]12800f n n n =-++++-L 6400(200800)12800n n n =-+-2200560012800n n =-+-()22002864n n =--+,开始获利即()0f n >,∴()220028640n n --+>,即228640n n -+<,解得1414n -<<+5.7≈,∴2.625.4n <<,∴公司从第3年开始获利;(2)每台充电桩年平均利润为()642002828)2400f n n n n ⎛⎫=-+--= ⎪⎝⎭,当且仅当64n n=,即8n =时,等号成立.即在第8年时每台充电桩年平均利润最大为2400元.【点睛】本题考查等差数列的实际应用和利用基本不等式求最值,考查学生分析问题,解决问题的能力,根据条件列出符合题意的表达式是解本题的关键,属中档题.。

2010-2011学年高二年级第二学期期末考试(理科数学)

2010-2011学年高二年级第二学期期末考试(理科数学)

2010-2011学年高二年级第二学期期末考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上.在本试卷上答题无效。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上;2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚;3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效;4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.参考公式:样本数据n x x x ,,21的标准差 锥体体积公式s = 13V Sh = 其中x 为样本平均数 其中S 为底面面积,h 为高 如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()()()(1)(k 0,1,2,,n)k k n k n n p k P k C P P ξ-∴===-= 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,A x x a x R =-<∈,{}15,B x x x R =<<∈。

若A B ⋂=∅,则实数a 的取值范围是 ( ) A. {06}a a ≤≤ B. {24}a a a ≤≥或 C. {06}a a a ≤≥或 D. {24}a a ≤≤2.函数f (x )的图象是两条直线的一部分(如图所示),其定义域为[)(]1,00,1-⋃,则不等式f (x )- f (-x )>-1的解集是 ( ) A. {110}x x x -≤≤≠且 B. {10}x x -≤< C. 1{101}2x x x -≤<<≤或D. 1{101}2x x x -≤<-<≤或 3.10(1)x -的展开式的第6项的系数是 ( )A. 610CB. -610CC. 510CD. -510C4.函数()3sin(2)3f x x π=-的图象为C ,①图象C 关于直线1112x π=对称;②函数()f x 在区间5(,)1212ππ-内是增函数;③由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C.以上三个论断中,正确论断的个数是 ( )(A)0 (B)1 (C)2 (D)35.已知满足约束条件 5003x y x y x -+≥+≥≤ ,则2z x y =+的最小值是( )A .2.5B .-3C .5D .-56. 现有高一年级的学生2名,高二年级的学生4名,高三年级的学生3名,从中任选一人参见接待外宾的活动和从3个年级各选一人参见接待外宾的活动分别多少种不同选法( )A. 9,24B. 24,84C.24,504D.9, 847.设5,11213x y x y R i i i∈-=---且,求x ,y ( ) A. x=-1,y=-5 B. x=5,y=10 C. x=-1,y=5 D. x=-5,y=-10 8.已知2~(0,6),N ξξ≤≤且P(-20)=0.4,则2ξ>P()=_________ ( )A.0.1B. 0.2C. 0.6D. 0.89.下表是某厂1~4月份用水量(单位:百吨)的一组数据:有散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是 0.7y x a ∧=-+,则a=________ ( )A. 10.5B. 5.15C. 5.2D. 5.2510.连续投掷两次骰子得到的点数分别为m 、n ,作向量a =(m,n).则向量a 与向量b =(1,-1)的夹角成为直角三角形内角的概率是( )A .712 B .512 C .12 D 34. 11.已知函数21()1f x a x =+-,则曲线()f x在点P f 处的切线方程为( )(A)50y a +--=(B)50y a ---=(C)250x y a +--=50y a +--=12.已知等差数列{n a }的前项和为n S ,且3100(12)S x dx =+⎰,2017S =,则30S 为( )(A)15 (B)20 (C)25 (D)30第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

伊川县实验高中2011-2012学年上学期第一次月考高三数学试卷(理科)

伊川县实验高中2011-2012学年上学期第一次月考高三数学试卷(理科)

伊川县实验高中2011-2012学年上学期高三第一次月考数 学 试 卷(理科) 命题人:张晓锋一、选择题 (本大题共12小题,每小题5分,共60分)1、复数1z i =+,z 为z 的共轭复数,则1z z z --= ( )(A )2i - (B )i - (C )i (D )2i2.下面四个条件中,使a b >成立的充分而不必要的条件是 ( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >3、设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( ) (A )8 (B )7 (C )6 (D )5 4、设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 ( ) (A )13(B )3 (C )6 (D )95、某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 ( )(A)4种 (B)10种 (C)18种 (D)20种6、下列区间中,函数()f x =ln(2)x ∣-∣在其上为增函数的是 ( ) (A )(-,1∞] (B )41,3⎡⎤-⎢⎥⎣⎦ (C ))30,2⎡⎢⎣ (D )[)1,27.曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( )(A)13(B)12(C)23(D)18、从1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各数字之和等于9的概率为 ( )A 、12513 B 、12516 C 、12518 D 、125199、设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=( )(A) -12(B)1 4- (C)14(D)1210、已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos A F B ∠= ( )(A)45(B)35(C)35-(D)45-11、在符合互化条件的直角坐标系和极坐标系中,直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是 ( )A 34k <-B 43-≥k C R k ∈ D R k ∈但0≠k12、已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 ( )(A)7π (B)9π (C)11π (D)13π二、填空题(本大题共4小题,每小题5分,共20分)13、(1-20的二项展开式中,x 的系数与x 9的系数之差为_________________.14、已知1sin cos 2α=+α,且0,2π⎛⎫α∈ ⎪⎝⎭,则cos 2sin 4πα⎛⎫α- ⎪⎝⎭的值为__________.15、椭圆22221(0)x y a b ab+=>>过左焦点F 1且倾斜角为60的直线l 交椭圆于A,B 两点,若112F A BF =,则椭圆离心率e=_______________.16.己知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1 ,则面AEF 与面ABC 所成的二面角的正切值等于____________________.伊川县实验高中2011-2012学年上学期高三第一次月考数 学 试 卷(理科) 命题人:张晓锋一、选择题 (本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.____________________ 14._______________________15.____________________ 16._______________________ 三、解答题 (17题10分,其余各12分,共70分)17.(本题满分10分)已知等差数列{a n }满足a 2=0,a 6+a 8= -10。

青海省湟川中学第二分校2011-2012学年高二4月月考数学(文)试题(无答案)

青海省湟川中学第二分校2011-2012学年高二4月月考数学(文)试题(无答案)

1.下列说法正确的是( )A. 由合情推理得出的结论一定是正确的B. 归纳推理是一种从特殊到特殊的推理C. 归纳推理具有由具体到抽象的认知功能D. 演绎推理是由特殊到一般的推理 2.证明不等式6372+<+的最适合的方法是( )A.综合法 B.分析法 C.间接证法 D.合情推理法3.用反证法证明“如果a >b,则 33b a >”假设的内容是( )A.33b a = B.33b a < C. 33b a = 且33b a < D.33b a = 或33b a < 4.使不等式ba 11<成立的条件是( )A.a >b B.a <b C.a >b 且ab <0 D.a> b 且 ab >0 5. 若复数z=(452+-x x )+(x-4)i 为纯虚数,则实数x 的值为( ) A. 1 B. -1 C. 4 D. 1或46. 已知a+5i=i(b+i)(a,b ∈R),其中i 是虚数单位,则a+b=( ) A. 1 B. -1 C. 4 D. 37. 在复平面内,复数z=sin1+icos1对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 8. 若复数z=2+i,i 为虚数单位,则()z z ⋅+1=( )A. 1+3iB. 3+3iC. 2-iD. 5+5i 9.1,bi a +,ai b +是某等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a10. 点P(2,3)关于点A(1,-2)的对称点坐标为( )A. (1,7)B. (1,-7)C. (0,7)D. (0.-7)11. 在极坐标系中,点A (2,3π)与B (2,3-π)之间的距离为( )A. 3B. 23 C. 32 D. 2 12. 在极坐标系中,点(2,6π)到圆θρsin 2=的圆心的距离为( )A. 2B.1C. 32D. 3A .已知推理:“因为()x x f cos =是余弦函数,因此()x x f cos =是偶函数。

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若直线3x +2y−3=0和直线6x +my +1=0互相平行,则m 的值为( )A. −9B. 32C. −4D. 42.若两个非零向量a ,b 的夹角为θ,且满足|a |=2|b |,(a +3b )⊥a ,则cosθ=( )A. −23B. −13C. 13D. 233.已知直线3x−(a−2)y−2=0与直线x +ay +8=0互相垂直,则a =( )A. 1B. −3C. −1或3D. −3或14.为了得到函数y =sin (5x +π3)的图象,只要将函数y =sin5x 的图象( )A. 向左平移π15个单位长度 B. 向右平移π15个单位长度C. 向左平移π3个单位长度D. 向右平移π3个单位长度5.过点(3,−2)且与椭圆4x 2+9y 2−36=0有相同焦点的椭圆方程是( )A. x 215+y 210=1 B. x 25+y 210=1 C. x 210+y 215=1 D. x 225+y 210=16.已知圆的方程为x 2+y 2−2x =0,M(x,y)为圆上任意一点,则y−2x−1的取值范围是( )A. [− 3,3]B. [−1,1]C. (−∞,− 3]∪[3,+∞)D. [1,+∞)∪(−∞,−1]7.已知圆C :(x−3)2+(y−4)2=1和两点A(−m ,0),B(m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 ( )A. 7B. 6C. 5D. 48.已知向量a ,b 满足|a |=1,|2a +b |+|b |=4,则|a +b |的取值范围是( )A. [2−3,2]B. [1,3]C. [2− 3,2+3]D. [3,2]二、多选题:本题共3小题,共18分。

2012东城二模理科数学带详细答案

2012东城二模理科数学带详细答案

北京市东城区2011-2012学年度第二学期高三综合练习(二)数学 (理科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)下列命题中,真命题是(A )x ∀∈R ,210x --< (B )0x ∃∈R ,2001x x +=-(C )21,04x x x ∀∈-+>R (D )2000,220x x x ∃∈++<R (2)将容量为n 的样本中的数据分成6组,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 的值为(A )70 (B )60 (C )50 (D )40(3)41(2)x x-的展开式中的常数项为(A )24- (B )6- (C )6 (D )24(4)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为(A (B )2(C )(D )4(5)若向量a ,b 满足1=a,=b ,且()⊥a a +b ,则a 与b 的夹角为(A )2π (B )23π (C )34π (D )56π (6)已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β 的是(A )⊥αβ,且m ⊂α (B )m ∥n ,且n ⊥β (C )⊥αβ,且m ∥α (D )m ⊥n ,且n ∥β(7)若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率为 (A )2(B(C )2或2(D )2(8)定义:()00>>=y ,x y)y ,x (F x,已知数列{}n a 满足:()()n ,F ,n F a n22=()n *∈N ,若对任意正整数n ,都有k n a a ≥()k *∈N 成立,则k a 的值为(A )12 (B )2 (C )89 (D )98第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

2012-2013学年度第一学期9月月考高二数学试卷及答案201305

()f x2012-2013学年度第一学期9月月考高二数学试卷注意:1.选择题填在机读卡上2.解答题必须答在相应题号所在位置,否则不予计分,选做题10分记入总成绩,但100分至110分一律记为100分。

第Ⅰ卷一、选择题:本大题共6小题,每小题5分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1()A.(x=1B.(log2x) 'C.(3x) '=3x log3e D.(x2cosx) '=-2xsinx2.下列结论中正确的是( )A. 导数为零的点一定是极值点B. 如果)(xf是极大值,那么在x附近的左侧0)('>xf,右侧0)('<xfC. 如果)(xf是极小值,那么在x附近的左侧0)('>xf,右侧0)('<xfD. 如果)(xf是极大值,那么在x附近的左侧0)('<xf,右侧0)('>xf3. 函数2()f x x x=+在[,x]x x+∆(其中0x∆≠)的平均变化率为()A.2x B.2x x+∆ C. 12+x D.21x x+∆+4. 关于函数32()f x x x x=-+,下列说法正确的是()A.有极大值,没有极小值B.有极小值,没有极大值C.既有极大值也有极小值D.既无极大值也无极小值5. 已知直线l经过(1-,0),(0,1)两点,且与曲线)(xfy=(2,3)A,则(2)(2)limxf x fx∆→+∆-∆的值为()A. 2- B. 1- C.1 D. 26. 若函数()f x ax bx c=++2的导函数f ’(x)的图象如右图所示,则函数()f x的图象可7. 函数211()22f x x=+在点(1,1)处的切线方程是__________.8.函数()ln2f x x x=-的极值点为_________.9. (理科)若xxx f 2sin )(=,则=)1('f _________ (文科)若()sin e x f x x =+,则)0('f =________.10.若函数f(x)=x 3+ax-2在区间(1,+ ∞)内是增函数,则实数a 的取值范围是________11.已知函数f (x )=x 3-3x 的图象与直线y =a 有相异三个公共点,则a 的取值范围是________.12.已知f (x )=x ³-6x ²+9x-abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0.其中正确结论的序号是_________第Ⅱ卷三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.13.(满分10分)已知函数x x x x f 331)(23--=. ( I ) 求()f x 的单调区间;(II) 求()f x 在区间[3,3]-上的最大值和最小值.14.(本小题满分10分)设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,f (2) )处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值.15.(满分10分)已知函数()x f x e ax =-,a ∈R .(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当[0,)x ∈+∞时,都有()0f x ≥成立,求实数a 的取值范围.16.(满分10分)已知函数2()ln 20)f x a x a x=+-> (. (Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直,求函数()y f x =的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,试求a 的取值范围;(Ⅲ)记()()()g x f x x b b =+-∈R .当1a =时,函数()g x 在区间1[, ]e e -上有两个零点,求实数b 的取值范围.17(选做10分). 设函数()(1)ln(1).f x x x =++若对所有的0,x ≥都有()f x ax ≥成立,求实数a 的取值范围高二数学试卷答题纸核分栏第Ⅰ卷选择题答案涂在机读卡上!第Ⅱ卷三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.13.(满分10分)14.(本小题满分10分)15.(本小题满分10分)16.(满分10分)17(选做10分)高二数学试卷答案第Ⅰ卷一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

人教版高二第一章三角函数单元测试精选(含答案)1

人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题(含答案解析)

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将5封信投入3个邮筒,不同的投法有()A .35种B .53种C .3种D .15种2.已知二项式((0)na >的展开式的第五、六项的二项式系数相等且最大,且展开式中2x 项的系数为84,则a 为A .2B .1C .15D .3103.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种4.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系:x24568y3040605070y 与x 的线性回归方程为ˆ 6.517.5y x =+,当广告支出5万元时,随机误差的效应(残差)为()A .10-B .20-C .20D .105.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有A .240B .480C .720D .9606.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有A .150种B .180种C .200种D .280种7.形如45132这样的数称为“波浪数”,即十位上的数字,千位上的数字均比与它们各自相邻的数字大,则由1,2,3,4,5可组成数字不重复的五位“波浪数”的个数为A .20B .18C .16D .118.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有A .1344种B .1248种C .1056种D .960种二、双空题9.已知离散型随机变量X 的分布列如下:X 012Px4x5x由此可以得到期望E (X )=___________,方差D (X )=___________.三、填空题10.设随机变量()~3,1X N ,若()4P X p >=,则()24P X <<=___________.11.若2019220190122019(12)()x a a x a x a x x R -=++++∈ ,则010********()()()()a a a a a a a a ++++++++ =_______.(用数字作答)12.某学校要对如图所示的5个区域进行绿化(种花),现有4种不同颜色的花供选择,要求相邻区域不能种同一种颜色的花,则共有___________种不同的种花方法.13.用数字0,1,2,3,4,5,6组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.14.投掷3枚骰子,记事件A :3枚骰子向上的点数各不相同,事件B :3枚骰子向上的点数中至少有一个3点,则()P A B =___________.四、解答题15.从4名男生和2名女生中任选3人参加演讲比赛.(1)求所选3人既有女生又有男生的概率;(2)设随机变量ξ表示所选3人中女生的人数,求ξ的分布列和数学期望.16.考取驾照是一个非常严格的过程,有的人并不能够一次性通过,需要补考.现在有一张某驾校学员第一次考试结果汇总表,由于保管不善,只残留了如下数据(见下表):成绩性别合格不合格合计男性4510女性30合计105(1)完成此表;(2)根据此表判断:是否可以认为性别与考试是否合格有关?如果可以,请问有多大把握;如果不可以,试说明理由.参考公式:①相关性检验的临界值表:()20P k x ≥0.400.250.150.100.050.0250.100x 0.7081.3232.0722.7063.8415.0246.635②卡方值计算公式:()()()()()22n ad bc k a b c d a c b d -=++++.其中n a b c d =+++.17.有4个编号为1,2,3,4的小球,4个编号为1,2,3,4的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?18.已知在()*n n N ∈的展开式中,第6项为常数项.()I 求n 的值;()II 求展开式的所有项的系数之和;()III 求展开式中所有的有理项.19.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望;(2)求乙至多击目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.20.某银行招聘,设置了A,B,C三组测试题供竞聘人员选择.现有五人参加招聘,经抽签决定甲、乙两人各自独立参加A组测试,丙独自参加B组测试,丁、戊两人各自独立参加C组测试.若甲、乙两人各自通过A组测试的概率均为23;丙通过B组测试的概率为12;而C组共设6道测试题,每个人必须且只能从中任选4题作答,至少答对3题者就竞聘成功.假设丁、戊都只能答对这6道测试题中4道题.(1)求丁、戊都竞聘成功的概率;(2)记A、B两组通过测试的总人数为ξ,求ξ的分布列和期望.参考答案:1.B【分析】本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【详解】:由题意知本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知共有35种结果,故选:B .2.B【分析】如果n 是奇数,那么是中间两项的二次项系数最大,如果n 是偶数,那么是最中间那项的二次项系数最大,由此可确定n 的值,进而利用展开式,根据二次项的系数,即可求出a 的值.【详解】∵二项式(0)na ⎛> ⎝的展开式的第五、六项的二项式系数相等且最大,∴9n =,又∵9⎛⎝的通项为:275999362199r r r r r r r r T C a x x a C x -----+==,令27526r-=,解得3r =,又∵展开式中2x 项的系数为84,即63984a C =,解得1a =或1a =-(舍去)故选B.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,根据展开式中某项的系数求参数,属于中档题3.B【详解】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解:最左端排甲,共有55A =120种,最左端只排乙,最右端不能排甲,有1444C A =96种,根据加法原理可得,共有120+96=216种.故选B .【分析】随机误差的效应(残差)为观测值减去预测值【详解】当广告支出5万元时,观测值为60,预测值为ˆ 6.5517.550y=⨯+=,则随机误差的效应(残差)为605010-=.故选:D.5.B【详解】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有24+43=20⨯⨯,所以不同坐法有4420480A =,选B.6.A【详解】人数分配上有两种方式即122,,与113,,若是113,,,则有311352132260C C C A A ⨯=种若是122,,,则有122354232290C C C A A ⨯=种则不同的分派方法共有150种故选A点睛:本题主要考查的知识点是排列,组合及简单计数问题.由题意知本题是一个分类问题,根据题意可知人数分配上两种方式即122,,与113,,,分别计算出两种情况下的情况数目,相加即可得到答案.7.C【分析】根据“波浪数”的定义,可得“波浪数”中,十位数字,千位数字必有5、另一数是3或4,分别计算出每种的个数,相加即可.【详解】此“波浪数”中,十位数字,千位数字必有5、另一数是3或4;是4时“波浪数”有232312A A =;另一数3时4、5必须相邻即45132;45231;13254;23154四种.则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为16,故选C .【点睛】本题主要考查了排列组合的应用,要对该问题准确分类,做到不充分,不遗漏,正确求解结果,属于中档题.【详解】首先确定中间行的数字只能为1,4或2,3,共有1222C A 4=种排法.然后确定其余4个数字的排法数.用总数46A 360=去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有24A 12=种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有43121248⨯=种不同的排法,选B .9. 1.40.44【详解】根据分布列的性质可知:45101x x x x ++==,解得110x =.()042514 1.4E x x x x x =⨯++⨯==.()()()()2220 1.41 1.442 1.45 1.960.64 1.80.44D x x x x x x x =-⨯+-⨯+-⨯=++=.10.12p-【分析】由正态曲线的对称性直接求得.【详解】因为随机变量()~3,1X N ,()4P X p >=,所以由正态曲线的对称性可得:()2P X p <=,所以()()()2112442p P X P X P X <<=->=--<.故答案为:12p -.11.2017【分析】由题意,根据二项式的展开式,令0x =和1x =可得00120191,1a a a a =+++=- ,进而得01020201900122019()()()2018()a a a a a a a a a a a ++++++=+++++ ,即可求解,得到答案.【详解】由题意,可知201922018201901220182019(12)x a a x a x a x a x -=+++++ ,令0x =,可得01a =,令1x =,可得012320191a a a a a +++++=- ,所以01020302019001232019()()()()2018()a a a a a a a a a a a a a a ++++++++=++++++ 2018112017=⨯-=,故答案为2017.【点睛】本题主要考查了二项式定理的应用问题,其中解答中利用二项展开式,合理化简、赋值是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.72【分析】根据题意,分4步进行分析:依次分析区域1、2、3、4和5的着色方法数目,由分步计数原理计算可得答案.【详解】根据题意,分4步进行分析:①对于区域1,有4种颜色可选,即有4种着色方法,②对于区域2,与区域1相邻,有3种颜色可选,即有3种着色方法,③对于区域3,与区域1、2相邻,有2种颜色可选,即有2种着色方法,④对于区域4,若其颜色与区域2的相同,区域5有2种颜色可选,若其颜色与区域2的不同,区域4有1种颜色可选,区域5有1种颜色可选,所以区域4、5共有2+1=3种着色方法;综上,一共有4×3×2×(1+2)=72种着色方法;故答案为:7213.90【分析】一共有3个奇数,故只能是3个奇数加1个偶数,分类讨论该偶数是不是为0.【详解】一共有3个奇数,故只能是3个奇数加1个偶数.当该偶数不为0时,则有1434C A 72=种;当该偶数为0时,0不能作为首位,则有1333C A 18=种;故共有721890+=种.故答案为:90.14.6091【分析】分别求出事件B 和事件AB 所包含的基本事件的个数,再根据条件概率公式求解即可.【详解】解:投掷3枚骰子,3枚骰子向上的点数共有36216=种情况,其中3枚骰子向上的点数没有一个3点的有35125=种,则3枚骰子向上的点数中至少有一个3点有21612591-=种,即()91n B =,3枚骰子向上的点数中至少有一个3点且3枚骰子向上的点数各不相同有1235C A 60=种,即()60n AB =,所以()6091P A B =.故答案为:6091.15.(1)45(2)分布列见解析,1【分析】(1)根据对立事件的概率和为1得,之需求两人来自同一性别即可.(2)此分布为超几何分布,对应的概率为()32436C C C k kP k ξ-==.【详解】(1)3个人来自于两个不同专业的概率为3436C 41C 5-=(2)ξ可能取的值为0,1,2.()32436C C C k k P k ξ-==,0,1,2k =.∴ξ的分布列为ξ012P153515∴ξ的数学期望为1310121555E ξ=⨯+⨯+⨯=16.(1)答案见解析(2)可以,有97.5%的把握【分析】(1)直接根据题意即可完成表格;(2)计算得出2 6.109k ≈,根据独立性检验思想即可得结果.【详解】(1)成绩合格不合格合计性别男性451055女性302050合计7530105(2)假设0H :性别与考试是否合格无关,()2210545203010 6.10975305550k ⨯-⨯=≈⨯⨯⨯.若0H 成立,()25.2040.025P k ≥=,∵2 6.109 5.204k ≈≥,∴有97.5%的把握认为性别与考试是否合格有关.17.(1)24(2)256(3)144(4)8【分析】(1)4个球全放4个盒中,没有空盒则全排列即可求得.(2)有4个球,每个球有4种放法,此时随意放,盒子可以空也可以全用完.(3)恰有一个空盒,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球.(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种.【详解】(1)没有空盒子的方法:4个球全放4个盒中,没有空盒则全排列共44A 24=种;(2)可以有空盒子,有4个球,每个球有4种放法共44256=种;(3)恰有一个空盒子,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球,先将四盒中选一个作为空盒,再将四球中选出两球绑在一起,再排列共123443C C A 144=种;(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种,则共14C 28⋅=种.18.(I )10n =;(II )11024;(III )有理项分别为23454T x =,6638T =-;2945256T x -=⋅.【分析】()1在二项展开式的第六项的通项公式1055361()2n n T C x -=⋅-⋅中,令x 的幂指数等于0,求出n 的值;()2在二项展开式中,令1x =,可得展开式的所有项的系数之和;()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可求出r 的值,即可求得展开式中所有的有理项.【详解】()1在()*n n N ∈的展开式中,第6项为1055361(2n n T C x -=⋅-⋅为常数项,1003n -∴=,10n ∴=.()2在()*10)n n N ∈=的展开式中,令1x =,可得展开式的所有项的系数之和为1011(1)21024-=.()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可得2r =,5,8,故有理项分别为22231014544T C x x =⋅⋅=,50610163328T C x ⎛⎫=⋅-⋅=- ⎪⎝⎭;8822910145(2256T C x x --=⋅-⋅=⋅.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.19.(1)分布列见解析,1.5;(2)1927;(3)124.【分析】(1)ξ的可能取值为0,1,2,3,根据独立事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得ξ的数学期望;(2)根据独立事件与对立事件的概率公式求解即可;(3)根据互斥事件的概率公式以及独立事件的概率公式求解即可.【详解】(1)ξ的概率分布列为ξ0123P()E ξ=0×+1×+2×+3×=1.5或()E ξ=3×=1.5.(2)乙至多击中目标2次的概率为1-C ()3=.(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,则A =B 1+B 2,B 1、B 2为互斥事件,P (A )=P (B 1)+P (B 2)=×+×=.20.(1)925(2)分布列见解析,116【分析】对于(1),因两人竞聘成功相互独立,算出一人竞聘成功概率即可.而一人竞聘成功概率,相当于从6道题中至少抽中3道会做题的概率;对于(2),由题意可知通过的总人数可能为3,2,1,0.又甲,乙,丙竞聘成功相互独立,结合题目条件可分别算得人数为3,2,1,0的概率,即可得答案.【详解】(1)设参加C 组测试的每个人竞聘成功为A 事件,则()43144246C C C 183C 155P A ++===又两人竞聘成功相互独立,故丁、戊都竞聘成功的概率等于3395525⨯=(2)由题意可知ξ可取0,1,2,3,又3人竞聘成功相互独立,则()21210112318P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()221121512113323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22112182213323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()221433218P ξ⎛⎫==⨯= ⎪⎝⎭,故ξ的分布列为:ξ0123P 118518818418所以()15843311 0123 181********E=⨯+⨯+⨯+⨯==ξ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 一、选择题:本大题共10小题,每小题5分,共50分,把答案填在答题卡的相应位置. 1.函数f(x)=xxcos2sin的最小正周期是( )

A.2 B.π C.2π D.4π 2.抛物线2xy的焦点坐标是( ) A. )0,41( B.)41,0( C.)0,21(

D.)21,0( 3.当x在(,)上变化时,导函数/()fx的符号变化如下表: x (,1)

1 (1,4) 4 (4,)

/()fx

- 0 + 0 -

则函数()fx的图象的大致形状为( )

4.已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为( ) A.3 B.2 C.23 2

D.43 5. 函数y=3x-x3的单调增区间是( ) A.(0,+∞) B.(-∞,-1) C.(-1,1) D.(1,+∞)

6.曲线y=4x-x3在点(-1,-3)处的切线方程是 ( ) A.y=7x+4 B.y=7x+2 C.y=x-4 D.y=x-2

7.若2(2)3ln21axdxx,则常数a的值为( ) A、2 B、1 C、-1 D、0 8.由曲线y=x与直线x=4,y=0围成的曲边梯形的面积为( ) A、163 B、83 C、323 D、16 9.若直线l//平面,直线a,则l与a的位置关系是( ) A、l// B、l与a异面 C、l与a相交 D、l与

a没有公共点为了从甲乙两 3

10.中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是x甲

、x乙,则下列说法正确的是( )

A.x甲>x乙,乙比甲成绩稳定,应选乙参加比赛 B.x甲>x乙,甲比乙成绩稳定,应选甲参加比赛 C. x甲D.x甲

二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置. 11. 对于函数()fx,定义域为D, 若存在0xD使00()fxx, 则称00(,)xx为()fx的图象上的不动点. 由此,函数95()3xfxx

的图象上不动点的坐标

为 . 12.过点A(1,2)且与两定点(2,3)、(4,-5)等距离的直线方程为 。

13.. 设曲线2axy在点(1,a)处的切线与直线

第十题图 4

062yx平行,则a 14.已知正项等比数列{}na中,前n和为nS,若

362,4SS,则公比q= 。

15.设函数f(x)=ax2+c(a≠0).若)()(010xfdxxf,0≤x0

≤1,则x0的值为___ ___.

16.已知函数y=13xx的最大值为M,最小值为m,

则mM的值为 三、解答题:本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分16分)已知函数()2sin(fxxxx.

(1)求函数()fx的最小正周期和最大值;(2)求

()yfx在R上的单调区间. 18.(本小题满分18分)设函数32()2338fxxaxbxc在1x及2x时取极值. (1)求a、b的值;(2)若对于任意的[0,3]x,都有2()fxc

成立,求c的取值范围.

19.(本小题满分18分)用总长为14.8m的钢条,作一个长方体容器的框架,如果制作容器的底面的一边比另一边长0.5m,那么高为多少m时容器的容积最大?并求它的最大容积。 5

20.(本小题满分18分)如图所示,曲线段OMB是函数f(x)=x2(0<x<6=的图象,BA⊥x轴于A,曲线段OMB上一点M(t,f(t))处的切线PQ交x轴于P,交线段AB于Q.(1)试用t表示切线PQ的方程;(2)试用t表示出 △QAP的面积g(t);若函数g(t)在(m,n)上单调递减,试求出m的最小值;(3)若S△QAP∈[64,4121],试求

出点P横坐标的取值范围。

一、选择题:本大题共8小题,每小题5分,共40分 题号 1 2 3 4 5 6 7 8 9 10 得分 C B C A C D B A D D 6

7、B 【解析】2(2)1axdxx=(x2+a·lnx)121 =(22+a·ln2)-(12+a·ln1) =3+a·ln2 ∴a=1 故选B 8、A 【解析】334422002216|40333SSxdxxx。故选A 二、填空题:本大题共6小题,每小题5分,共30分. 11. (1,1),(5,5); 12. 4x+y-6=0或3x+2y-7=0; 13. a=1 【解析】 由题意,切线的斜率为2,

axy2' 所以1,22aa 14.1 15 . 33 【解析】取cxaxxF331)(,caxFF20)0()1(,

得330x 16. 22 【解析】 令31)(xxxf,先考虑函数的定义域,定义域为13-,令0'y,得1x,,比较)1(),1(),3(fff

的大小。知)1(fM,

)3()1(ffm ∴ mM=22 三、解答题:本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 【解析】(Ⅰ)2()2sin2sincos1cos2sin2fxxxxxx 7

12(sin2coscos2sin)12sin(2)444xxx………..6分 所以函数()fx的最小正周期为,最大值为12………….8分 (Ⅱ)由

)(224222Zkkxk

……………………………10

分 得

)(838Zkkxk

…………………………………………

……12分 由

)(2324222Zkkxk

……………………………………..

14分 得

)(8783Zkkxk

………………………………………

……….15分 所以,单调增区间)](83,8[Zkkk;单调减区间

)](87,83[Zkkk

……………………..……………………………………………………………………16分 18. 【解析】(Ⅰ) 8

2()663fxxaxb

,………………………………………….…2

分 因为函数()fx在1x及2x取得极值,则有(1)0f,

(2)0f…….…4分 即6630241230abab

解得3a,4b…………………………………………………………..……..…8分 (Ⅱ)由(Ⅰ)可知,32()29128fxxxxc,

2()618126(1)(2)fxxxxx

…………………………………

…..10分 当(0,1)x时,()0fx;当(1,2)x时,()0fx; 当(2,3)x时,

(fx………………………………………………12分 所以,当1x时,()fx取得极大值(1)58fc,又(0)8fc,(3)98fc 则当[0x时,()fx的最大值为

(3)98fc…………………..14分 因为对于任意的[0,3]x,有2()fxc恒成立, 所以298cc,解得1c或9c, 因此c的取值范围为

(,1)(9,)…………………………………18分 19.【解析】:设底面的一边长为xm,则别一边长 9

为(x+0.5)m,从而长方体的高14.84(0.5)3.224xxhx. 由03.220xx得0∴长方体容器的体积V=x(x+0.5)(3.2-2x)=-2x3+2.2x2+1.6x(0…………8分 V′=-6x2+4.4x+1.6 令V′=0得x=1或x=-415(舍去)……………12分 且当00,1∴x=1是V的极大值,又在(0,1.6)内V只有一个极大值。 故x=1时V取最大值 Vmax=-2+2.2+1.6=1.8(m3) ……………15分 此时高h=3.2-2×1=1.2(m) ……………16分 答:当高为1.2m时,容积最大为1.8m3。……………18分 20【解析】(1)设点M(t,t2),又f'(x)=2x, ∴过点M的切线PQ的斜率k=2t , ∴切线PQ的方程为:y=2tx-t2 .…………………………5分

相关文档
最新文档