用反证法证明是无理数

用反证法证明是无理数
用反证法证明是无理数

据说最初发现

p

q

,这里p和q是无公约数的正整数

传说毕达哥拉斯太珍惜这个发现,不打算公开这个结果。他的学生之一为了好奇,悄悄走进老师的家里偷文件,这方法才被公开出来。

我们下面介绍五个用反证法证明这结果,大家可以学习这种证明。

p

q

=,p,q是无公约数的整数。

(1)毕达哥拉斯方法:

p

q

=两边平方得22

2

p q

=,所以2p是偶数,因此p也须是偶数(因为奇数2k

+1的平方后是4k2+4k+1=2(2k2+2k)+1仍旧是奇数)。所以我们可以设p是2a的样子,代入上式得(2a)2=2q2,即4a2=2q2两边同时消掉2可得2a2=q2,即q也是偶数。

由于p,q都是偶数,它们有一个公约数2,这和我们最初假设p,

q

(2)利用整数的个位数性质:我们知道任何整数平方其最后一位数是等于原数最后一位数的平方后的最后一位数。例如(12)2=144,最后一位数4=(2)2。而(17)2=289,(7)2=49,最后一位数是一样。

最后一位数可能出现0,1,2,3,4,5,6,7,8,9。

因此任何数的平方最后一位数只可能是0,1,4,5,6,9。

因此2q2的最后一位数只可能是0,2或8。

由于p2的最后一位数可能是0,1,4,5,6,9。而且由P2=2q2,故必须有2q2最后一位数是0,因此推到q2的最后一位数是0或5。

可是如果P2的最后一位数是0,而q2的最后一位数是0或5的话,则P的最后一位数是0,q的最后一位数是0或5,这样5就能整除p和q,这和p,q无公约数的假定矛盾。

(3)利用素因子的性质:

p

q

=得22

2

p q

=,这里q要大于1,如果是等于1

=p,这是个整数,明显是不合理的。现在我们可以得到2

2

p

q p

??

=?

?

??

,我们知道:

(一)任何整数不是素数就是合数。

(二)如果一个素数s 能整除u ×v ,则必须是s 能整除u 或s 能整除v.

由整数的性质,我们知道由q >1,存在一个素数s 是q 的约数。

因此s 能整除22p q p ??=? ???

,故s 能整除2p 或p .由这两种情形推出s 能整除p ,因此我们得到s 能同时整除p 和q ,显然这是不合理的。

(4)用素因子的性质:由p 2=2q 2我们得q 2=p 2-q 2=(p+q)(p-q)

由于 q >1,存在一个素数s 能整除q ,由此可知s 能整除p+q 或p-q 。

因此p+q=su 或p -q=sv,但q =St (t 是某一个整数),因此由p+q=su ,得p=s(u -t),所以p ,q 有公共素因子s ,这产生矛盾。

(5)利用代数方程根与系数的关系:p q ,则p q

是代数方程x 2-2=0的解,我们知道在代数方程a 0x n +a 1x n-1

…+a n =0中如果有有理根r s ,则r 能整除a n ,s 能整除a 0.现在在x 2-2=0

中,a 0=1,a 1=0,a 2=-2;既然p q

是有理根,就有q 能整除1,即q =1p 是一个整数,明显这是不可能的。

怎样证明根号2是一个无理数

怎样证明2是一个无理数 2是一个非常著名的无理数, 第一个发现并坚持这个结果的希帕索斯因此付出了生命的代价——后世的数学史家所说的“第一次数学危机”盖源于此.风暴过去后,唤醒的却是数学家们对数的重新认识,实数的概念开始确立,在此意义上讲,2的发现是人们对真理的追求、探索以致明朗的一个极好例证. 换一个角度来看这个数,我们可以把它看作一根“晾衣绳”,上面挂着许多有趣的方法,值得你仔细玩味.我们准备从不同的角度来证明2是一个无理数,从而体会这一点. 证法1:尾数证明法.假设2是一个有理数,即2可以表示为一个分数的形式2=b a .其中(a,b )=1,且a 与b 都是正整数.则222b a =.由于完全平方数2b 的尾数只能是0、1、4、5、6、9中的一个,因此22b 的尾数只能是0、2、8中的一个.因为222b a =,所以2a 与22b 的尾数都是0,因此2b 的尾数只能是0或5,因此a 与b 有公因数5,与(a,b )=1矛盾!因此2是无理数. 这个证法可以证明被开方数的尾数是2、3、7、8的平方根都是无理数. 证法2:奇偶分析法.假设2=b a .其中(a, b )=1,且a 与b 都是正整数.则222b a =.可知a 是偶数,设a =2 c ,则2224b c =,222c b =,可知b 也是偶数,因此a 、b 都是偶数,这与(a,b )=1矛盾!因此2是无理数. 希帕索斯就是用这种方法证明了2不是有理数,动摇了毕达哥拉斯学派的“万物皆数(任何数都可表示成整数之比)”的数学信仰,使毕达哥拉斯学派为之大为恐慌,希帕索斯因此葬身海底. 证法3:仿上,得到222b a =,易见b >1,否则b=1,则2=a 是一个整数,这是不行 的.222b a =改写成a a b ?= 22.因为b >1,因此b 有素因子p ,因此p 整除2 a 或a ,总之,p 整除a ,因此p 同时整除a 与 b ,这与(a,b )=1矛盾. 证法4:仿上,得到222b a =,等式变形为))((222b a b a b a b -+=-=,因为b >1,因此存在素因子p ,p 整除a+b 或a-b 之一,则同时整除a+b 与a-b ,因此p 整除a ,因此p 是a 、b 的公因数,与(a,b )=1矛盾. 证法5:利用代数基本定理,如果不考虑素因子的顺序,任何一个正整数都可以唯一地写成素数幂的积的形式,因此m r m r r p p p a 2121=,n s n s s q q q b 2121=,其中m p p ,,1 与n q q ,,1 都是素数,m r r ,,1 与n s s ,1都是正整数,因此m r m r r p p p 2222121 =2n s n s s q q q 2222121 ,素数2在等式左边是偶数次幂,但在右边是奇数次幂,矛盾,因此2是无理数.

用反证法证明是无理数

据说最初发现 p q ,这里p和q是无公约数的正整数 传说毕达哥拉斯太珍惜这个发现,不打算公开这个结果。他的学生之一为了好奇,悄悄走进老师的家里偷文件,这方法才被公开出来。 我们下面介绍五个用反证法证明这结果,大家可以学习这种证明。 p q =,p,q是无公约数的整数。 (1)毕达哥拉斯方法: p q =两边平方得22 2 p q =,所以2p是偶数,因此p也须是偶数(因为奇数2k +1的平方后是4k2+4k+1=2(2k2+2k)+1仍旧是奇数)。所以我们可以设p是2a的样子,代入上式得(2a)2=2q2,即4a2=2q2两边同时消掉2可得2a2=q2,即q也是偶数。 由于p,q都是偶数,它们有一个公约数2,这和我们最初假设p, q (2)利用整数的个位数性质:我们知道任何整数平方其最后一位数是等于原数最后一位数的平方后的最后一位数。例如(12)2=144,最后一位数4=(2)2。而(17)2=289,(7)2=49,最后一位数是一样。 最后一位数可能出现0,1,2,3,4,5,6,7,8,9。 因此任何数的平方最后一位数只可能是0,1,4,5,6,9。 因此2q2的最后一位数只可能是0,2或8。 由于p2的最后一位数可能是0,1,4,5,6,9。而且由P2=2q2,故必须有2q2最后一位数是0,因此推到q2的最后一位数是0或5。 可是如果P2的最后一位数是0,而q2的最后一位数是0或5的话,则P的最后一位数是0,q的最后一位数是0或5,这样5就能整除p和q,这和p,q无公约数的假定矛盾。 (3)利用素因子的性质: p q =得22 2 p q =,这里q要大于1,如果是等于1 =p,这是个整数,明显是不合理的。现在我们可以得到2 2 p q p ?? =? ? ?? ,我们知道: (一)任何整数不是素数就是合数。

初中数学_根号2是有理数吗第一课时教学设计学情分析教材分析课后反思

八年级下册第七章实数第三节2是有理数吗(第一课时) 教学设计 《7.32是有理数吗(第一课时)》来源于九年八年级下册第7章第3节。这是一节概念课,所以我把这节课的重心放在探究活动上,也就是探究2是无理数和无理数与有理数概念的辨析。教学设计如下: 一、复习导入环节 1. 复习有理数的分类,主要是让学生回顾有理数按整数,分数分类。 2. 练习题,将下列各数填在适当的括号内。这样设计的目的是加深对有理数概念,分类的理解,另外设计了0.262662666…(每两个2之间依次多一个6)这个数。有的学生可能错把这个数当成分数或有理数,课堂上,我抓住这个错误,让一名优秀的学生做了解释,它是无限不循环小数。这个数自然而然成为了学习无理数的切点,导入新课。 二、合作探究环节 我把这部分的要求展示在课件上,学生能做到心中有数。分为三部分:自主学习、合作探究、小组展示。 导学案我是这样设计的: 探究一:无理数的定义 探究二:构造2 探究三:说明2是无限不循环小数 探究二中,通过求腰长是1的等腰直角三角形中斜边AC的长度,构造新数2。紧接着,探究2到底是一个什么样的数。通过证明它不是整数不是分数,得出它不是有理数。又借助计算机,求出2小数点后的十分位和百分位,让学生感受到2是无限小数,并且小数位数没有规律,得出2是无限不循环小数,也就是无理数。 我又通过课件展示了2更多的小数位数,加深了学生对2是无限不循环小数的认可。进而,找到了3,π……等更多的无理数。这里设计了填空和选择题,巩固概念。这时,

再让学生总结无理数的一般形式就水到渠成了。后面设计了6个判断题,目的是区分无理数和有理数的概念。 通过对教材资源的整合,我设计了这样三个环节。我感觉这样更符合学生认识规律,学生更易于理解接受 三 、小结 归纳这节课的知识点,说出心中疑惑。学生提出问题 32+π是不是无理数。 四、达标侧评环节 这一环节设计了选择题和判断题,目的巩固学生对无理数概念的掌握和无理数与有理数定义的区分。 最后,评选得分最高的小组,并鼓掌鼓励。 由于运用了新课程教学方法和理念,知识从不同的方向得到了渗透。基本完成了课前制定的教学目标和教学要求,为进一步的深入理解打下了基础。 八年级下册第七章实数第三节2是有理数吗(第一课时) 学情分析 一、学生年龄段分析 : 1.记忆力强 初中阶段是学生思维发育的黄金时期,记忆力强。这为我们的教学带来很大的好处,

高中数学 2.1证明中的几种常见错误总结 新人教A版选修2-2 (2)

证明中的几种常见错误总结 1. 偷换论题 例1 求证四边形的内角和等于0 360. 证明:设四边形ABCD 是矩形,则它的四个角都是直角,有 0000036090909090=+++=∠+∠+∠+∠D C B A , 所以,四边形的内角和等于0 360. 剖析:上述推理过程是错误的.犯了偷换论题的错误.在证明过程中,把论题中的四边形改为矩形. 2. 虚假论据 例2 已知2和3是无理数,试证32+也是无理数. 证明:依题设2和3是无理数, 而无理数与无理数的和是无理数, 所以32+也是无理数. 剖析:上述推理过程是错误的.犯了虚假论据的错误.使用的论据是:“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数.因此,原题的真假性仍无法断定. 3. 循环论证 例3 在ABC Rt ?中,090=∠C ,求证:222c b a =+. 证明:因为A c b A c a cos ,sin ==, ∴A c A c b a 222222cos sin +=+ =2 222)cos (sin c A A c =+. 剖析:上述推理过程是错误的.犯了循环论证的错误.本题的论证就是人们熟知的勾股定理.上述证明中用了“1cos sin 22=+A A ”这个公式,按照现行中学教材系统,这个公式是由勾股定理推出来的,这就间接地用待证命题的真实性作为证明的论据,犯了循环论证的错误. 4. 不能推出 例4 设81tan 51tan 21tan 2 0===∈γβαπγβα,,),且,(、、. 求证:4π γβα=++. 证明:因为γβγαβαγβαγβαγβαtan tan tan tan tan tan 1tan tan tan tan tan tan )tan( ----++=++

pi为无理数的简洁证法

π为无理数的比较简洁的证法 用反证法。 如果π为有理数,令πb a /=,其中均是整数且。对于任意自然数,构造 多项式b a ,0>b n ! n bx a x x f n n )()(?=,先回忆一下一个多项式的系数与其各阶导数的关系。假设 0111)(a x a x a x a x g n n n n ++=??++L 是任意一个次多项式,则常数项n )0(0g a =。对求导后,可以知道一次项的系数。一般的,不难归纳出的次项系数,其中表示表示的k 阶导数。 )(x g )0(1g a ′=)(x g k !/)0()(k g a k k =)()(x g k )()(x g k )(x g 现在令 n n bx a x x f n x g )()(!)(?==, 则显然是一个次的整系数多项式,最低次项为。根据上述多项式的求导规律,当时有,即;而当时为整数。注意到,这说明)(x g n 2n n x a n k <0!/)0()(==k k a k g 0)0()(=k g n k ≥k k a k g =!/)0()()(!)()()(x f n x g k k =n k <时,而当时为 整数,此时本身必为整数。总之,对于任意的,证明了都是整数。 0!/)0()(=k f k n k ≥!/)0(!)(k f n k )0()(k f k )0()(k f 因为已经假设了b a /=π,不难看出)()(x f x f ?=π,根据求导的简单性质可知 , )()())1)(()(k k k x f x f ??=π从而 )()())1)(0()(k k k f f ?=π, 所以也总是整数。 )()πk f 从出发,再构造一个多项式 )(x f )()1()()()()()2()4()2(x f x f x f x f X F n n ?+?+?=L , 不难看出 )()()(x f x F x F =+′′。

证明:无理数比有理数多。

证明:无理数比有理数多 证明之前需要清楚以下几个概念和定义。 1、有理数包含整数和分数,任意一个有理数可以化成a/b,a、b为整数且b不等于0 2、无理数是无限不循环小数,是一切不属于有理数的实数。 3.证明两个数集一样多可以用一一对应的方法。可数集合是指能和自然数一一对应的集合。 例如偶数2 4 6 8 10…… 自然数1 2 3 4 5 6 7 8…… 任意一个自然数n,都可以有偶数2n与之对应。 所以整数与偶数一样多。偶数集是一个可数集合。 --------------------------------------------------------------------------------------- 首先证明,任意两个可数集的合集仍为可数集。 设集合A={a1,a2,a3...},B={b1,b2,b3...}且A,B集合均为可数集合 也就是 A: a1 a2 a3 ... B: b1 b2 b3 ... 分别与自然数相对应 1 2 3 ... 1 2 3 ... 则AB合集{a1,b1,a2,b2,a3,b3...} 可与自然数一一对应 a1 b1 a2 b2 a3 b3 ... 1 2 3 4 5 6 ... 所以两个可数集的合集是可数集。 下面证明有理数是可数集,也就是有理数和自然数一样多。

有理数可以化成a/b,a,b皆为整数且b不为0,将它化成集合C=(a,b) 因为a为整数,b为不为0的整数,所以a、b都是可数的。 设a=1,则可以得到新的集合Ca={(1,1),(1,-1),(1,2),(1,-2)...} 因为b是可数的,所以Ca集合也是可数的。 设b=1,得到集合Cb={(1,1),(-1,1),(2,1),(-2,1)...} 同上,Cb也是可数集合。 根据前一证明,两个可数集的合集可数,所以Ca与Cb的合集C为可数集合,即有理数为可数集,所以有理数和自然数一样多。 然后证明,实数集是不可数的。 设一个无理数H=0.abcdefgh.... ,a,b,c,d,e,f,g,h..是1-8间的正整数。 假设a=4,b=2,c=3,d=4,e=7,f=6,g=3,h=5,... 则H=0.42347635... 假设0和1间的所有实数是可数的。 设它的集合X={x1,x2,x3,...} x1 x2 x3 x4 x5 .... 1 2 3 4 5 .... 设a和x1小数点第一位不同 b和x2的小数点第一位不同 c和x3的小数点第一位不同

带根号的数未必是无理数

带根号的数未必是无理数 鹿泉市获鹿镇第三中学 崔怀平 在新教材七年级数学下册第十章第三节讲到:“很多数的平方根和立方根都是无限不循环小数。”接着引出定义:“无限不循环小数又叫无理数。”例如: 2,3,是无理数,π=3.14159265......,也是无理数。时间一长, 有的学生把无理数和带根号的数混淆起来,误认为带根号的数就是无理数。其实带根号的数不一定是无理数,无理数也不一定都是带根号的数得来的。 无理数的定义是:“无限不循环小数叫无理数”。最本质特征是无限不循环。 我们知道,开方开不尽的数,开方后可以得到无限不循环小数,既无理 数。但是无限不循环小数不一定非得由开方得来,例如圆周率=3.14159265......,它不是开放得来的,它是圆的周长除以直径得到的,它是一个比值。还有自然对数的底数e=2.718……也是无理数;它是通过求极限的方法得到的。还有我们也可以有意识地构造一些无理数,如:0.101001000…..,(构成的规律是1后面0的个数逐次增加一个),显然这个数是无限不循环的小数,也是一个无理数。就是说无理数并不都是开方开不尽而得来,还有其他方式可以形成无理数。 另一方面,虽然很多带根号的数都是无理数,例如:2、45、33等,但不是带根号的数就一定是无理数。例如:35 2++35 2-,从感觉上看,这个数很像无理数,但是他确实是一个有理数。现在证明一下:设x= 35 2++35 2- 两边3次方得:3x= 3 3 35 2 5 2? ? ? ? ?- + + = 3 35 2? ? ? ? ?++3? ? ? ? ? ?+ ? 2 35 235 2-+3? + ?35 2 2 35 2? ? ? ? ?-+

经典证明:几乎所有有理数都是无理数的无理数次方

一个无理数的无理数次方是否有可能是一个有理数?这是一个非常经典的老问题了。答案是肯定的,证明方法非常巧妙:考虑根号 2 的根号 2 次方。如果这个数是有理数,问题就已经解决了。如果这个数是无理数,那么就有: 我们同样会得到一个无理数的无理数次方是有理数的例子。 这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子。毕竟我们也不知道,真实情况究竟是上述推理中的哪一种。那么,真实情况究竟是上述推理中的哪一种呢?Gelfond-Schneider 定理告诉我们,假设α 和β 都是代数数,如果α 不等于0 和1 ,并且β 不是有理数,那么α 的β 次方一定是超越数。根据这一定理我们可以立即看出,根号 2 的根号 2 次方真的是一个无理数,实际情况应该是上述推理中的后者。 那么,是否存在一个无理数a ,使得a 的a 次方是有理数呢?最近,Stan Dolan 证明了这样一个结论:事实上,几乎所有(1, ∞) 里的有理数都是某个无理数a 的 a 次方。 注意到当x 大于1 时,函数f(x) = x x是连续单调递增的,因而对于所有(1, ∞) 里的有理数r ,一定存在唯一的a ,使得a a = r 。不妨假设a 是一个有理数,它的最简分数形式是n / m 。如果m = 1 ,那么我们会有平凡解n n = r 。下面我们证明,m 是不可能大于 1 的,否则会产生矛盾。 假设有理数r 的最简分数形式是c / b ,于是我们有: (n / m)n / m = c / b 或者说: n n · b m = m n · c m 注意到,m n是n n · b m的约数。然而,m 和n 是互质的,m n与n n没有公共因子,因而m n一定是b m的约数。同理,b m是m n · c m的约数,但由于b

初二证明(一)

如何证明存在一种不能表示为两个整数之比的数? 古希腊曾有“万物皆数”的思想,这种认为“大自然的一切皆为整数之比”的思想统治了古希腊数学相当长的一段时间,许多几何命题都是根据这一点来证明的。当时的很多数学证明都隐性地承认了“所有数都可以表示为整数之比”,“万物皆数”的思想是古希腊数学发展的奠基。直到有一天,毕达哥拉斯的学生Hippasus告诉他,单位正方形的对角线长度不能表示为两个整数之比。被人们公认的假设被推翻了,大半命题得证的前提被认定是错的,古希腊时代的数学大厦轰然倒塌,数学陷入了历史上的第一次危机。最后,Eudoxus的出现奇迹般地解决了这次危机。今天我们要看的是,为什么单位正方形的对角线长度不能表示为两个整数之比。 单位正方形的对角线长度怎么算呢?从上面的这个图中我们可以看到,如果小正方形的面积是1的话,大正方形的面积就是2。于是单位正方形的对角线是面积为2的正方形的边长。换句话说,Hippasus认为不可能存在某个整数与整数之比,它的平方等于2。 中学课程中安排了一段反证法。当时有个题目叫我们证根号2是无理数,当时很多人打死了也想不明白这个怎么可能证得到,这种感觉正如前文所说。直到看了答案后才恍然大悟,数学上竟然有这等诡异的证明。 当然,我们要证明的不是“根号2是无理数”。那个时候还没有根号、无理数之类的说法。我们只能说,我们要证明不存在一个数p/q使得它的平方等于2。证明过程地球人都知道:假设p/q已经不能再约分了,那么p^2=2*q^2,等式右边是偶数,于是p必须是偶数。p是偶数的话,p^2就可以被4整除,约掉等式右边的一个2,可以看出q^2也是偶数,即q是偶数。这样,p也是偶数,q也是偶数,那么p和q就还可以继续约分,与我们的假设矛盾。 根号2是无理数,我们证明到了。根号3呢?根号5呢?你可能偶尔看到过,Theodorus 曾证明它们也是无理数。但Theodorus企图证明17的平方根是无理数时却没有继续证下去了。你可以在网上看到,Theodorus对数学的贡献之一就是“证明了3到17的非平方数的根是无理数”。这给后人留下了一个疑问:怪了,为什么证到17就不证了呢?一个俄国的数学历史家“猜”到了原因。 他猜测,当时Theodorus就是用类似上面的方法证明的。比如,要证明根号x不是有理数,于是p^2=x*q^2。我们已经证过x=2的情况了,剩下来的质数都是奇数。如果x是奇数且p/q已经不能再约分,那么显然p和q都是奇数。一个奇数2n+1的平方应该等于4(n^2+n)+1,也即8 * n(n+1)/2 + 1,其中n(n+1)/2肯定是一个整数。如果p=2k+1,q=2m+1,把它们代进p^2=x*q^2,有8[k(k+1)/2 - x*m(m+1)/2] = x-1。于是x-1必须是8的倍数。如果当时Theodorus 是这么证明的,那么他可以得到这样一个结论,如果x-1不能被8整除,那么它不可能被表示成(p/q)^2。好了,现在3、5、7、11、13减去1后都不是8的倍数,它们的平方根一定不是有理数。在x=9时发生了一次例外,但9是一个平方数。而当x=17时这种证明方法没办

根号2是无理数的8种证明

1 2是无理数的8种证明 南京师大附中江宁分校 叶军 2是一个非常著名的无理数,第一个发现并坚持这个结果的希帕索斯因此付出了生命的代价——后世的数学史家所说的“第一次数学危机”盖源于此.“危机”过去后,唤醒的却是数学家们对数的重新认识,实数的概念开始确立,在此意义上讲,2的发现是人们对真理的追求、探索以致明朗的一个极好见证. 换一个角度来看这个数,我们可以把它看作一根“晾衣绳”,上面悬挂着许多有趣的方法,从中可以窥见数学的趣味.我们准备从不同的角度来证明2是一个无理数,以体会这一点. 证法1:尾数证明法.假设2是一个有理数,即2可以表示为一个分数的形式2=b a .其中(a,b )=1,且a 与b 都是正整数.则222b a =.由于完全平方数2b 的尾数只能是0、1、4、5、6、9中的一个,因此22b 的尾数只能是0、2、8中的一个.因为222b a =,所以2a 与22b 的尾数都是0,因此2b 的尾数只能是0或5,因此a 与b 有公因数5,与(a,b )=1矛盾!因此2是无理数. 这个证法可以证明被开方数的尾数是2、3、7、8的平方根都是无理数. 证法2:奇偶分析法.假设2=b a .其中(a,b )=1,且a 与b 都是正整数.则222b a =.可知a 是偶数,设a =2c ,则2224b c =,222c b =,可知b 也是偶数,因此a 、b 都是偶数,这与(a,b )=1矛盾!因此2是无理数. 希帕索斯就是用这种方法证明了2不是有理数,动摇了毕达哥拉斯学派的“万物皆数(任何数都可表示成整数之比)”的数学信仰,使毕达哥拉斯学派为之大为恐慌,希帕索斯因此葬身海底. 证法3:仿上,得到222b a =,易见b >1,否则b=1,则2=a 是一个整数,这是不行的.222b a =改写成a a b ?=22.因为b >1,因此b 有素因子p ,因此p 整除2a

根号二故事

根号二的故事 古希蜡有一位著名的数学家叫毕达哥拉斯,他对数学的研究是很深的,对数学的发展做出了不可磨灭的贡献。 当时他成立“毕达哥拉斯学派”。其中有这样一个观点:“万物皆数”,他们认为:“人们所知道的一切事物都包含数,因此,没有数就既不可能表达,也不可能理解任何事物”。其中,毕达哥拉斯学派所说的数仅指整数,而分数是被看作两个整数之比,他们相信宇宙万物总可以归结为简单的整数和整数之比。 毕达戈拉斯首先发现并证明了“直角三角形中,两直角边的平方和等于斜边的平方”,证明了这个定理后,他们学派内外都非常高兴,宰了100牛大肆庆贺,这个定理在欧洲叫“毕达戈拉斯定理”或“百牛定理”,我国叫勾股定理。可是,他的观点和发现的日后使他狼狈不堪,几乎无地自容。 毕达戈拉斯的一个学生西伯斯他勤奋好学,善于观察分析和思考。一天,他研究了这样的问题:“边长为1的正方形,其对角线的长是多少呢?”他根据毕达戈拉斯定理,发现了正方形的对角线与边的长度之比不能用整数或整数之比(即现在所说的有理数)表示,也就是找不到一个数(指整数或整数之比,即有理数)使它平方后等于2,即正方形的对角线和边的不可公度性(所谓线段的可公度性是指:对于两条给定的线段,能找到某第三条线段,以它为单位线段能将给定的两条线段划分成整数段)。 他既高兴又感到迷惑,根据老师的观点,根号2 是不应该存在的,但对角线有客观地存在,他无法解释,他把自己的研究结果告诉了老师,并请求给予解释。毕达戈拉斯思考了很久,都无法解释这种“怪”现象,他惊骇极了,又不敢承认根号 2 是一种新数,否则,这就动摇了他们“万物皆数”的根本信念,整个学派的理论体系将面临崩溃,他忐忑不安,最后,他采取了错误的方式:下令封锁消息,也不准西佰斯再研究和谈论此事。 西佰斯在毕达戈拉斯的高压下,心情非常痛苦,在事实面前,通过长时间的思考,他认为根号2 是客观存在的,知识老师的理论体系无法解释它,这说明老师的观有问题。后来,他不顾一切的将自己的发现和看法传扬了出去,整个学派顿时轰动了,也使毕达戈拉斯恼羞成怒,无法容忍这个“叛逆”。决定对西伯斯严加惩罚。西伯斯听到风声后,连夜成船逃走了。然而,他没想到,就在他所成坐的海船后面追来了几艘小船,他还正憧憬着美好的未来,当他还未醒悟过来的时候,毕达戈拉斯学派的打手已出现在他的面前,他手脚被绑后,投入到了浩瀚无边的大海之中,他们要把他发现的秘密和他们的困惑一起抛入大海,永不泄露,他为根号2的诞生献出了自己的宝贵的生命! 然而,真理是不会被淹没的。人们很快发现不可公度并非罕见:面积等于3,5,6,…,17的正方形的边与单位正方形的边也不可公度。新的问题促使人们重新认识曾经被看成是完美无缺的有理数理论,数学发展出现了“第一次危机”,这次危机使毕达哥拉斯学派迅速瓦解。随着对于数的认识的发展,无理数终于在人们心口中取得了合法地位,并逐渐发展了实数的严格理论,也使数学本身发生了质的飞跃。 人们会永远记住西伯斯,他是真正的无理数之父,他的不谓权威,勇于创新,敢于坚持真理的精神永远激励着后来人!关于实数的理论现在已广泛应用于科学技术和口常生活之中。不过用“√”的符号表示平方根却是在16世纪由法国数学家笛卡儿(Descartes,1596—1650)首先采用的,那时离发现是无理数已有两千多年了。

无理数教学案

无理数教学案 课题:无理数 课型:新授课 课程标准: 1、了解无理数的概念; 2、能用有理数估计一个无理数的大致范围。 学习内容与学情分析: 1.激励学生积极参与教学活动,提高大家学习数学的热情; 2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神; 3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神。 学习目标: 1、通过拼图活动,让学生感受无理数产生的实际北景和引入的必要性; 2、借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想; 3、会判断一个数是有理数还是无理数。 教学重点难点: 重点:1、无理数概念的探索过程; 2、用计算器进行无理数的估算; 3、了解无理数与有理数的区别,并正确进行判断。 难点:1、无理数概念的建立及估算; 2、用所学定义正确判断所给数的属性。 教学过程: 一、创设问题情境,引入新课: 同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢? 我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题。 二、讲授新课 1、问题的提出 请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形。 经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示

一下。 同学们非常踊跃地呈现自己的作品给老师。 现在我们一齐把大家的做法总结一下: 下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢? 大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a是分数吗?请大家分组讨论后回答。 (小组交流,分组起来回答见解) 经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了。 2、做一做:投影片 (1)在下图中,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b,则b应满足什么条件? (3)b是有理数吗? 请大家先回忆一下勾股定理的内容。 在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答。 (学生积极回答问题) 大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数。我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进。

有关有理数与无理数的证明

狄利克雷函数(Dirichlet Function),在实数上处处不连续的证明(2006年10月25日修改版)声明:前天下午在与曲建勋的讨论中找到其证明方式 本证明过程,最关键的两个步骤,由我和曲建勋分别提出,在此对曲建勋表示感谢,并郑重声明,并非我一人完成此证明 √2代表根号2 证明过程我写得很啰嗦,尤其是前面三个命题,可能有些人会认为太显而易见了,但为了严谨我还是写出来了,高人可以略过其证明过程 前提:1、任何有理数均可写成既约分数p/q (p,q∈Z 且q≠0) 2、任何无理数据不可写成这样的形式,且均可写成无限不循环小数 3、任何实数必定属于有理数或无理数中的一类,且不能同时属于两类数 命题1:任何有理数与无理数相加结果都是无理数 证明:假设命题不成立 设p/q (p,q∈Z 且q≠0)为任意有理数 X为任意无理数 则p/q+X=m/n (m,n∈Z 且n≠0) X=m/n-p/q=(mq-np)/(n*q) 则根据前提1,X为有理数,与假设矛盾 故假设不成立,命题1成立 命题2:任何无理数除以非零有理数结果都是无理数 证明:假设命题不成立 设p/q (p,q∈Z 且q≠0,p≠0)为任意非零有理数 X为任意无理数 则X/(p/q)=m/n (m,n∈Z 且n≠0) X=(p*m)/(q*n) 则根据前提1,X为有理数,与假设矛盾 故假设不成立,命题2成立 命题3:√2为无理数 证明:假设命题不成立 则√2为有理数,设√2=p/q (p,q∈Z 且q≠0) 2=(p*p)/(q*q) 则p必须是偶数 ∵p/q是既约分数 ∴q是奇数 ∴设p=2n q=2m+1(m,n∈Z)

(完整word版)证明根号2为无理数的方法

试证明2是无理数. 证明:易知2是方程022=-x 的一个根,设它有有理根,a b 即)0(2≠=a a b 先证明一个引理:若整系数方程: 0...02211=+++++--a ax x a x a x a n n n n )0(0≠?a a n 有有理根p q 0(≠pq 且q p ,互质),则有: p a n ,q a 0. 证明:把p q x =代入原方程,得: 0...02211=++??? ? ??++???? ??+???? ??--a p q a p q a p q a p q a n n n n ,两边同乘n p ,得: .00...0122211== +++++----n n n n n n n n p p a aqp p q a p q a q a 那么,由于0≠p ,所以一定有0p ,那么一定有: ....0122211n n n n n n n p a aqp p q a p q a q a p +++++---- 由于n p p p ,...,,2都满足被p 整除,那么有:n n q a p ,又因1),(=q p ,所以有: .n a p 同理,由于0≠q ,所以一定有0q ,那么一定有: ....0122211n n n n n n n p a aqp p q a p q a q a q +++++---- 由于n q q q ,...,,2都满足被q 整除,那么有:n p a q 0,又因1),(=q p ,所以有: q a 0. 回到原命题,由于0)2(1≠-?,1)2,1(=-,所以方程022=-x 的有理根 a b 满足: 1a ,2-b .22,1±=?±=±=?a b b a 经检验,2±都不是方程022=-x 的根,那么022=-x 无有理根,即2为无理数. ...D E Q

七年级数学下册6.3实数《根号2的近似值》素材新人教版

无理数2的近似值 虽然发现“2是无理数”应该归功于“万物皆数”的毕达哥拉斯(Pythagoras 约580-500 BC )及其学派成员,但是关于2的近似值,历史上不同时期有不同的计算方法. 1古巴比伦人的贡献 1.1 计数的进位制 公元前二千多年的古巴比伦王国时代,人们计数采用的是60进制.而当时的美索不达米亚人就有表示平方、平方根、立方和立方根的数表.当方根是整数时,给出的是准确值,对于其他的方根,相应的60进制数值只是近似的. 1.2 使用的公式 古巴比伦人在计算高为h 宽为w 的矩形对角线d 时出现了平方根.他们使用的公式是 h w h d 22 +≈.曾有一个问题是求给定宽和高的一扇门的对角线,他们当时给出的解答并未说明 公式的来历,只是使用了这个近似公式.这个公式在h >w 时是求d 的很好的近似值. 1.3 2的近似值 耶鲁大学收藏了一块当时的古巴比伦人的泥板,上面是标有数字的正方形,其中数30表示正方形的边长,而对角线上的两个数字分别表示对角线长和2的近似值,在这里2是准确到60进制的三位小数,即414213.160 10 605160241232≈+++ ≈,这是有关2的最早的结果. 另外,大约在公元前六世纪,印度的婆罗门教的经典《吠陀》中关于庙宇、祭坛的设计与 测量部分《绳经法》(sulvasutrus )中关于正方形祭坛的对角线计算公式中取 414215686.1) 34)(4)(3(1 )4)(3(13112=-++ =,这里所有的分数都是单位分数. 2 渐近分数法——欧几里得《原本》中的发现 柏拉图(Plato 400 BC)指出,在毕达哥拉斯学派成员之前就有对正方形边和对角线方面的研究,但是作为理论最早出现在欧几里得《原本》中. 在正方形ABCD 对角线AC 的延长线上截取与边长相等的线段CE ,然后以AE 为边长做正方形AEFG ,再在AF 的延长线上截取FH=AE ,再以AH 为边做正方形AHIJ ……如此下去我们得到如下的费波那契数列,并令111D S ==

阅读课程-无理数(1)

阅读课程 为什么说2不是有理数 一、中国数学家对无理数的研究: 中国古代在处理开方问题时,不可避免地碰到了无理根数。中国早期的开方术见于刘徽的《九章算术》少广、勾股两章,起源于长度的测度。已知面积求正方形边长;已知体积求立方体棱长;已知圆面积求圆的直径;已知球体积求球的直径或直角三角形勾、股、弦互求。《九章算术》“少广”章的开(平)方术有“若开之不尽者,为不可开,当以面命之”,“令不加借算而命分,则常微少;其加借算而命分,则又微多。其数不可得而定。……故惟以面命之,为不失耳”,这说明刘徽认识到“加不加借算命分”都得到是精确值,只有用被开方数的方根表示才是精确的,接着他在“开方术注”中提一种更为精确的表示方根近似值的方法,即求微数法:“不以面命之,加定法如前,求其微数。微数无名者以为分子,其一退以十为母,其二退以百为母。退之弥下,其分弥细,则朱幂虽有所弃之数,不足言之”,就是用10进制小数来无限逼近无理数[3]。中算学家没有像希腊人那样在发现无理数时出现逻辑上的困难,又能顺利地将理数运算规则推广到无理数,因此把数学向前推进的同时,并没有深究无理数与有理数实质上的不同。由于并没有经历过西方的数学危机革命,中国的数学仍停留在“算术”阶段,在筹算开平方和开立方的基础上,我国从1世纪开始,逐渐摸索数值解高次方程的一般规律。北宋数学家贾宪,在前人的基础上,发明了开任意次幂的“增乘开方法”,它是我国古代数学史上一项杰出创造,是一个非常有效和高度机械化的算法,公元1819年英国数学家霍纳才得出同样的算法。贾宪的“增乘开方法”不仅适用于开任意高次方,而且能得出高次方程的数值解法。经过200多年的不断改善,到13世纪上半叶,由秦九韶最后完成完整的体系——秦九韶求实根法,即解高次方程的“正负开方术”。其方程的各系数可正可负,可以是整数或小数,开方得到无理根时,秦九韶发挥了刘徵首创的计算“微数”的思想,用十进小数作无理根的近似值。这一时期,数学人才辈出,有北宋的沈括、贾宪和刘益;南宋的秦九韶、杨辉;元代的李冶、朱世杰、郭守敬等,使宋元时期的数 学达到了中国古代数学的顶峰,尤其在代数领域达到了西方望尘莫及的水平

证明根号2是无理数的八种方法

怎样证明 是一个无理数 2 2 是一个非常著名的无理数,第一个发现并坚持这个结果的希帕索斯因此付出了生命的 代价——后世的数学史家所说的“第一次数学危机”盖源于此.风暴过去后,唤醒的却是数学家 们对数的重新认识,实数的概念开始确立,在此意义上讲, 2 的发现是人们对真理的追求、 探索以致明朗的一个极好例证. 换一个角度来看这个数,我们可以把它看作一根 “晾衣绳”,上面挂着许多有趣的方法, 值得你仔细玩味.我们准备从不同的角度来证明 2 是一个无理数,从而体会这一点. a 证法 1:尾数证明法.假设 2 是一个有理数,即 2 可以表示为一个分数的形式 2 = . b 其中(a ,b )=1,且 a 与 b 都是正整数.则 2 .由于完全平方数 的尾数只能是 0、1、4、5、 a 2 b 2 b 2 6、9 中的一个,因此 2 的尾数只能是 0、2、8 中的一个.因为 2 ,所以 与2 的尾 b 2 a 2 b 2 a 2 b 2 数都是 0,因此 的尾数只能是 0 或 5,因此 a 与 b 有公因数 5,与(a ,b)=1 矛盾!因此 2 是 b 2 无理数. 这个证法可以证明被开方数的尾数是 2、3、7、8 的平方根都是无理数. a 证法 2:奇偶分析法.假设 2 = .其中(a , b )=1,且 a 与 b 都是正整数.则 2 .可知 a a 2 b 2 b 是偶数,设 a=2 c ,则 4 2 , 2 ,可知 b 也是偶数,因此 a 、b 都是偶数,这与(a,b )=1 c 2 b 2 b 2 c 2 矛盾!因此 2 是无理数. 希帕索斯就是用这种方法证明了 2 不是有理数,动摇了毕达哥拉斯学派的“万物皆数(任 何数都可表示成整数之比)”的数学信仰,使毕达哥拉斯学派为之大为恐慌,希帕索斯因此葬 身海底. 证法 3:仿上,得到 2 ,易见 b>1,否则 b=1,则 2 =a 是一个整数,这是不行的. a 2 b 2 a a 改写成 2 .因为 b>1,因此 b 有素因子 p ,因此 p 整除 或 a ,总之,p 整除 a , a 2 2b 2 b a 2 2 因此 p 同时整除 a 与 b ,这与(a ,b )=1 矛盾. 证法 4:仿上,得到 2 ,等式变形为b a b (a b )(a b) ,因为 b>1,因此 a 2 b 2 2 2 2 , 存在素因子 p p 整除 a+b 或 a-b 之一,则同时整除 a+b 与 a-b ,因此 p 整除 a ,因此 p 是 a 、 b 的公因数,与(a ,b )=1 矛盾. 证法 5:利用代数基本定理,如果不考虑素因子的顺序,任何一个正整数都可以唯一地 写成素数幂的积的形式,因此 a p p p ,b q q q ,其中 , , 与 , , p p q q r r r m s s s 1 2 1 2 n 1 2 m 1 2 n 1 1 m n

π是无理数的证明

π是无理数的证明 大家都知道是π无理数,但是它是如何证明的呢?我们下面就给出一个证明。首先给出π一个定义。 定义 }0cos ,0min{2=>=ααπ,即π是使0cos =α的最小正数的两倍。 按这个定义,利用定积分容易得到半径为r 的圆的面积为2r π,因此这样的定义是合理的。下面证明π是无理数。 利用反证法。设π是有理数,则2π也是有理数,于是存在正整数p ,q ,使得q p =2π。由于0!→n p n (∞→n ),因此存在正整数N ,使得1!

无理数的发现 确定

无理数的发现──第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?──第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn 以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。悖论的产生--- 第三次数学危机 数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。 1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。 罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之

相关文档
最新文档