Supramolecular Science Laboratory 主任研究员 和田达夫
易位聚合法合成柱芳烃聚合物及其主客体性质的研究

摘要超分子化学是多种学科的相互结合,在药物附载与释放、多功能材料以及传感器等方面都发挥着巨大的作用。
近年来,由非共价键作用力所构建的超分子聚合物将高分子特性与超分子化学特性相结合,受到越来越多研究者们的关注。
这类聚合物既具有高分子强度高、稳定性好的优点,同时又具有超分子动态可逆的特性,是一类新的功能材料。
作为主体大环分子中的新星,柱芳烃结构对称,并且还可以和多种客体分子进行络合,正逐渐成为主客体化学研究的热点。
但目前大多数的研究集中于柱芳烃小分子,对于柱芳烃聚合物的研究依然相对较少,这是由于柱芳烃位阻较大,用传统的自由基聚合方法难以得到柱芳烃均聚物或者嵌段共聚物。
本论文采用易位环化或开环易位聚合的方法,将柱芳烃引入到聚合物中,得到含柱芳烃的聚合物,进一步加入合适的客体分子,构建超分子聚合物,探究主客体络合作用对聚合物性能的影响。
内容包括:设计合成柱芳烃修饰的1,6-庚二炔单体DYP5A,通过易位环化聚合方法得到柱芳烃均聚物pDYP5A、嵌段共聚物pDYP5A-b-pMPBPY和无规共聚物p(DYP5A-co-MPBPY),随后引入吡啶盐客体分子构建超分子体系。
通过调节主客体之间的摩尔比例,可以对超分子体系的导电率进行调节。
同时,由于聚合物的规整度不同,相同客体分子含量时其导电率也不同,表现为均聚物体系导电率最大,嵌段共聚物体系导电率其次,无规共聚物体系导电率最小。
其次,通过对比实验,证明主客体络合作用的存在使体系的玻璃化转变温度发生了明显的下降,从而提高导电率。
设计合成柱芳烃修饰的降冰片烯单体NMP5A,通过开环易位聚合方法得到柱芳烃均聚物pNNMP5A、嵌段共聚物pNMP5A-b-pMPHMB和无规共聚物p(NMP5A-co-MPHMB)。
随后引入聚乙二醇和四苯乙烯基修饰的两种吡啶盐客体分子形成超分子刷状聚合物,进一步自组装形成具有AIE性质的胶束。
通过调节主客体间的摩尔比例,胶束大小和荧光强度可以得到改变。
嗜热栖热菌发酵液延缓衰老及促进修复功效评价研究

SUBJECT R ESE AR C H丨学科研究嗜热栖热菌发酵液延缓衰老及促进修复功效评价研究嗜热栖热菌具有促进细胞生长、延缓衰老、阻抗日光对皮肤的损害和修复皮肤的能力。
本文采用高温发酵制备嗜热栖热菌发酵液(Thermus thermophilus fermentation broth),从细胞层面对其安全性、延缓衰老、防晒和创伤修复能力进行评价。
结果表明,积分数<10%的嗜热栖热菌发酵液对人永生化表皮细胞(HAC AT)和人皮肤成纤维细胞(H SF)都是安全无毒的,并具有促进细胞增殖的作用;UVB光紫外照射损伤修复模型中,体积分数为1 %〜10 %的嗜热栖热菌发酵液均有较强的防晒能力和促进细胞生长能力,且具有延缓细胞衰老的功效;在细胞创伤修复模型中,体积分数为1 %~ 10 %的嗜热栖热菌发酵液具有不同程度的创伤修复能力。
上述结果表明嗜热栖热菌发酵液安全无毒,并具有一定的延缓衰老、防晒和创伤修复功效。
文/郑雅方颜贵卉姚雨辰章鹏坤编辑/姚丽China Cosmetic's Rev嗜热栖热菌中较为独特的“生长因子”以核酸、维生素 A、维生素B2、烟酰胺、P类胡萝卜素、谷胱甘肽、聚多氨(多聚氨基酸)等为主要成分,近年来,研究发现其还含有烟酰 胺单核苷酸(Nicotinamide Mononucleotide)等延缓衰老 的活性物质。
核酸是细胞代谢的必需物质,有助于表皮细胞 基因的营养及其损伤的修复,对皮肤进行深层滋润,使皮肤 柔软。
维生素、谷胱甘肽、多聚氨为细胞生长因子,能够恢复 和促进细胞生理机能,在慢性、非治疗伤口(如糖尿病溃疡 的伤口)修复时能够促进细胞生长,还可以减轻皮肤炎症反 应和抵抗日光的损害。
耐热活性酶使嗜热栖热菌在高温条 件下仍具备超强的D N A保护与修复能力。
利用该耐热特性,K.B.Mullis将嗜热菌中的t a q D N A聚合酶应用开发了多聚酶 链式反应,获得了 1993年的诺贝尔奖,基因工程研究也因此 技术得以飞速发展141。
JACS25位副主编的研究兴趣和实验室主页

JACS所有25位副主编列表:/page/jacsat/editors.htmlEric V. Anslyn: Supramolecular Analytical Chemistry, small molecule therapeutics/research/sm.htmlStephen J. Lippard: bioinorganic chemistry. The core activities include both structural and mechanistic studies of macromolecules as well as synthetic inorganic chemistry. The focus is on the synthesis, reactions, physical and structural properties of metal complexes as models for the active sites of metalloproteins and as anti-cancer drugs. Also included is extensive structural and mechanistic work on the natural systems themselves. A program in metalloneurochemistry is also in place./lippardlab/Weston Thatcher Borden: Computational Chemistry; Organic Chemistry; Organometallic Chemistry; Application of quantitative electronic structure calculations and qualitative molecular orbital theory to the understanding and prediction of the structures and reactivities of organic and organometallic compounds./people-node/weston-t-bordenThomas E. Mallouk: Chemistry of Nanoscale Inorganic Materials: Solar Photochemistry and Photoelectrochemistry; Nanowires; Functional Inorganic Layered Materials; In-Situ Remediation of Contaminants in Soil and Groundwater Using Nanoscale Reagents/mallouk/Benjamin F. Cravatt: Chemical Strategies for the Global Analysis of Enzyme Function; Technology Development: Activity-Based Protein Profiling (ABPP); Biological applications of ABPP - profiling enzyme activities in human cancer.; Advancing the ABPP technology; Technology Development: Protease Substrate Identification; Basic Discovery: The Enzymatic Regulation of Chemical Signaling /cravatt/research.htmlChad A. Mirkin: He is a chemist and a world renowned nanoscience expert, who is known for his development of nanoparticle-based biodetection schemes, the invention of Dip-Pen Nanolithography, and contributions to supramolecular chemistry. Our research focuses on developing strategic and surface nano-optical methods for controlling the architecture of molecules and materials on a 1-100 nm scale. Our researchers, with backgrounds ranging from medicine, biology, chemistry, physics and material science, are working together in solvingfundamental and applied problems of modern nanoscience. Research in the Mirkin laboratories is divided into the five areas listed below: Anisotropic Nanostructures; On-Wire Lithography (OWL); Dip-Pen Nanolithography; Organometallic Chemistry; Spherical Nucleic Acids/mirkin-group/research/Paul Cremer: works at the crossroads of biological interfaces, metamaterials, spectroscopy, and microfluidics. Biophysical and analytical studies are tied together through the employment of novel lab-on-a-chip platforms which enable high throughput/low sample volume analysis to be performed with unprecedented signal-to-noise. From neurodegenerative diseases to artificial hip implants, a huge variety of processes occur at biological interfaces. Our laboratory uses a wide variety of surface specific spectroscopy and microfluidic technologies to probe mechanisms of disease, build new biosensors against pathogens, and understand the molecular-level details of the water layer hugging a cell membrane. Research projects in the Cremer Group are divided into the five areas listed below. Click on your area(s) of interest to learn more. SFG of Water and Ions at Interfaces; Hofmeister Effects in Protein Solutions; Bioinorganic Chemistry and Biomaterial Properties of Lipid Bilayers; pH Modulation Sensing at Biomembranes; Metamaterialshttps:///cremer/Jeffrey S. Moore:Our research involves the synthesis and study of large organic molecules and the discovery of new polymeric materials. Most projects relate to one of three areas: new macromolecular architectures and their supramolecular organization; responsive polymers including self-healing materials; mechanochemical transduction. In general, our group uses the tools of synthetic and physical organic chemistry to address problems at the interface of chemistry and materials science. More in-depth information about our research can be found on our research page./Lyndon Emsley: NMRhttp://perso.ens-lyon.fr/lyndon.emsley/Lyndon_Emsley/Research.htmlKlaus Müllen: The group pursues a broad program of experimental research in macromolecular chemistry and material science. It has a wide range of research interests: from new polymer-forming reactions including methods of organometallic chemistry, multi-dimensional polymers with complex shape-persistent architectures, molecular materials with liquid crystalline properties for electronic and optoelectronic devices to the chemistry and physics of single molecules, nanocomposites or biosynthetic hybrids.http://www2.mpip-mainz.mpg.de/groups/muellenJean M. J. Fréchet:Our research is largely concerned with functional polymers, from fundamental studies to applications. The research is highly multidisciplinary at the interface of several fields including organic, polymer, biological, and materials chemistry. Chemical Engineering is also well represented with our research in energy-related materials and microfluidics./Eiichi Nakamura: Fascination to learn about the nature of the elements and molecules and to control their behavior goes back to ancient times. The research programs in our laboratories focus on the development of new and efficient synthetic reactions, new reactive molecules, and new chemical principles that will exert impact on the future of chemical, biological and material sciences. Under the specific projects listed below, we seek for the new paradigm of chemical synthesis and functional molecules. Discovery based on logical reasoning and imagination is the key term of our research and educational programs.http://www.chem.s.u-tokyo.ac.jp/users/common/NakamuraLabE.htmlGregory C. Fu: Transition Metal Catalysis; Nucleophilic Catalysis/research.htmlWilliam R. Roush:Our research centers around themes of total synthesis, reaction development and medicinal chemistry. Over 25 structurally complex, biologically active natural products have been synthesized in the Roush lab. These serve both as testing grounds for new methods and as inspiration for potential therapeutics.Our total synthesis projects are often attempted in parallel with reaction design. Synthetic applications of intramolecular Diels-Alder reactions and acyclic diastereoselective syntheses involving allylmetal compounds are of especial interest.Total synthesis and methods development interact synergistically toward the development of medicinally relevant compounds. Current targets of interest include chemotherapeutics built upon the exploitation of tumor cell metabolism, cystein protease inhibitors for treatment of parasitic diseases and diagnostic probes for the Scripps Molecular Screening Center./roush/Research.htmlMiguel García-Garibay:Our group is currently investigating the photochemical decarbonylation of crystalline ketones. Because the reactions take place in the solid state, they exhibit high selectivites that are not possible by the analogous solution reaction. From our experience, the solution photolysis yields many products, while there is often only one product in the solid. In order for the decarbonylation reaction to proceed in crystals, there are a few requirements forthe decarbonylation precursor: (1) The compound must be a crystalline solid. (2) There must be suitable radical stabilizing substituents present at both alpha centers./dept/Faculty/mgghome/Alanna Schepartz: The Schepartz laboratory develops chemical tools to study and manipulate protein–protein and protein–DNA interactions inside the cell. Our approach centers on the design of molecules that Nature chose not to synthesize--miniature proteins, ß-peptide foldamers, polyproline hairpins, and proto-fluorescent ligands--and the use of these molecules to answer biological questions that would otherwise be nearly impossible to address. Current topics include the use of miniature proteins to identify the functional role of discrete protein-protein interactions and rewire cellular circuits, the use of cell permeable molecules to image misfolded proteins or protein interactions in live cells, and the design of protein-like assemblies of ß-peptides that are entirely devoid of -amino acids./research/index.htmlMartin Gruebele:The Gruebele Group is engaged in experiments and computational modeling to study a broad range of fundamental problems in chemical and biological physics. A common theme in the experiments is the development of new instruments to interrogate and manipulate complex molecular systems. We coupled experiments with quantum or classical simulations as well as simple models. The results of these efforts are contributing to a deeper understanding of RNA and proteins folding in vitro and in vivo, of how vibrational energy flows around within molecules, of single molecule absorption spectroscopy, and of the dynamics of glasses./mgweb/Matthew S. Sigman: Our program is focused on the discovery of new practical catalytic reactions with broad substrate scope, excellent chemoselectivity, and high stereoselectivity to access novel medicinally relevant architectures. We believe the best strategy for developing new classes of catalysts and reactions applicable to organic synthesis is using mechanistic insight to guide the discovery process. This allows us to design new reaction motifs or catalysts in which unique bond constructions can be implemented furthering new approaches to molecule construction. An underlying theme to these methodologies is to convert relatively simple substrates into much more complex compounds allowing for access to known and novel pharmacaphores in a modular manner. This provides us the ability to readily synthesis analogs enabling us to understand the important structural features responsibility for a phenotypic response in a given biological assay. We are currently engaged in several collaborative projects to evaluate our compound collections for various cancer types at the Huntsman Cancer Institute atthe University of Utah and are engaged in follow-up investigations to identify improved compounds as well as understanding the mechanism of action. The group is engaged in the following diverse projects:/faculty/sigman/research.htmlSidney M. Hecht: Sidney M. Hecht, PhD, is the co-director for the Center for Bioenergetics in the Biodesign Institute at Arizona State University. He researches diseases caused by defects in the body's energy production processes. Energy production is similar mechanistically to other molecular processes that he has studied extensively. Hecht played a key role in the development of Hycamtin, a drug used to treat ovarian and lung cancer, as well as the study of the mechanism of the anti-tumor agent bleomycin./people/sidney-hechtDonald G. Truhlar: Theoretical and Computational ChemistryWe are carrying out research in several areas of dynamics and electronic structure, with a special emphasis on applying quantum mechanics to the treatment of large and complex systems. Dynamical calculations are being carried out for combustion (with a special emphasis on biofuel mechanisms) and atmospheric reactions in the gas phase and catalytic reactions in the condensed phase. Both thermal and photochemical reactions are under consideration. New orbital-dependent density functionals are being developed to provide an efficient route to the potential energy surfaces for these studies. New methods are also being developed for representing the potentials and for combined quantum mechanical and molecular mechanical methods, with a special emphasis in the latter case on improving the electrostatics. New techniques for modeling vibrational anharmonicity and for Feynman path integral calculations are also under development./truhlar/Joseph T. Hupp: Most research projects revolve around a theme of studying materials for alternative energy applications and other environmental issues. Due to the interdisciplinary nature of our research, we have many joint students with other researchers both at Northwestern and at other institutions./hupp/research.htmlHenry S. White: My colleagues and I are engaged in both experimental and theoretical aspects of electrochemistry, with diverse connections to analytical, biological, physical, and materials chemistry. Much of our current research is focused on electrochemistry in microscale and nanoscale domains./faculty/white/white.htmlTaeghwan Hyeon: The main theme of our research is synthesis, assembly, and applications of uniformly sized nanoparticles.http://nanomat.snu.ac.kr/index.php?mid=InterestsPeidong Yang: The Yang research group is interested in the synthesis of new classes of materials and nanostructures, with an emphasis on developing new synthetic approaches and understanding the fundamental issues of structural assembly and growth that will enable the rational control of material composition, micro/nano-structure, property and functionality. We are interested in the fundamental problems of electron, photon, and phonon confinement as well as spin manipulation within 1D nanostructures./index.php/research/interests/William D. Jones:Our research group has an interest in examining the reactions of homogeneous transition metal complexes with organic substrates with an emphasis on bond activation processes that are of potential interest to the chemical industry. We also are doing theoretical DFT modeling of this chemistry on our CCLab cluster/~wdjgrp/wdj_home.html#research下面是一些网友对部分副主编(部分已经不是了)的评价,没有罗列网友的ID了,一并表示感谢。
完整)高等教育国家级教学成果奖申请书

完整)高等教育国家级教学成果奖申请书本文为高等教育国家级教学成果奖申请书附件,介绍了清华大学“学堂计划”拔尖创新人才培养模式的探索与实践。
以下是文章的修正:成果名称:激发学术志趣培养领跑人才:“学堂计划”拔尖创新人才培养模式探索与实践推荐序号:附件目录:1.教学成果报告(不超过5000字,报告名称、格式自定)2.教学成果应用及效果证明材料(仅限1份)附件1 教学成果报告成果名称:激发学术志趣培养领跑人才:“学堂计划”拔尖创新人才培养模式探索与实践成果完成人:袁驷/丘成桐/朱邦芬/张希/施一公/姚期智/郑泉水/张文雪/苏芃成果完成单位:清华大学完成时间:2018年4月教学成果报告为深入贯彻落实科学发展观和党中央关于提高高等教育质量的要求,清华大学于2009年推出了“清华学堂人才培养试验计划”(以下简称“学堂计划”)。
2010年,清华大学被批准开展国家教育体制改革试点项目“基础学科拔尖学生培养试验计划”(以下简称“拔尖计划”)。
在中组部和教育部的指导和支持下,清华大学认真研究总结拔尖创新人才培养的历史经验,以“学堂计划”为载体,分别建立数学班、物理班、化学班、生命科学班、计算机科学实验班和钱学森力学班。
以清华大学标志性建筑之一“清华学堂”作为专用教学场所,努力探索拔尖创新人才培养模式,并取得了丰硕成果。
一、实施“清华学堂人才培养计划”,领跑拔尖创新人才培养学校在已有人才培养模式实验班的办学经验基础上,在数学、物理学、化学、生命科学、计算机科学和力学等基础学科领域,每年动态选拔有志于攀登世界科学高峰的优秀本科生,配备一流的师资,提供一流的研究条件,创造一流的学术环境与氛围,开展教育教学改革和人才培养模式改革,创新管理制度与运行机制,促进拔尖创新人才脱颖而出。
1、创立了“领跑者”理念,引导学生追求卓越学堂计划以“领跑者”为理念,引导学生追求卓越。
在学堂计划中,学生们不仅接受传统的学科知识教育,还要参与到科学研究和创新项目中,培养创新精神和实践能力。
共无定形体系提高甲磺酸乐伐替尼的溶出度及消除其凝胶化研究

学报Journal of China Pharmaceutical University2021,52(1):44-5144共无定形体系提高甲磺酸乐伐替尼的溶出度及消除其凝胶化研究卢燕1,丛逢1,钱帅1,魏元锋1,张建军2,林以宁1,高缘1*(1中国药科大学中药学院,南京211198;2中国药科大学药学院,南京211198)摘要甲磺酸乐伐替尼(LF)是一种多靶点酪氨酸酶抑制剂,主要用于治疗多种肿瘤。
因其溶出过程中发生凝胶化而导致溶出度下降,生物利用度低。
本研究通过旋蒸法制得甲磺酸乐伐替尼-黄芩素(LF-BAI)共无定形物(物质的量比为1∶1),以提高LF溶出度的同时消除其凝胶化。
利用偏光显微观察、粉末X射线衍射法、差示扫描量热法、傅里叶变换红外光谱等手段进行表征,结果表明,共旋蒸产物为单相的共无定形物(T g=118℃)。
溶出试验发现LF-BAI共无定形可有效地消除LF 在溶出过程中的凝胶化,且与LF晶体、BAI晶体相比,LF和BAI的溶出速率分别提高了2.2倍和25.4倍。
稳定性试验表明,LF-BAI共无定形物在25℃/60%RH和40℃/75%RH条件下稳定至少90d,表现出良好的物理稳定性。
关键词甲磺酸乐伐替尼;黄芩素;共无定形;凝胶化;溶出度;稳定性中图分类号R913文献标志码A文章编号1000-5048(2021)01-0044-08doi:10.11665/j.issn.1000-5048.20210106引用本文卢燕,丛逢,钱帅,等.共无定形体系提高甲磺酸乐伐替尼的溶出度及消除其凝胶化研究[J].中国药科大学学报,2021,52(1):44–51.Cite this article as:LU Yan,CONG Feng,QIAN Shuai,et al.Enhanced dissolution and eliminated gelation of lenvatinib mesylate by coamor⁃phous system[J].J China Pharm Univ,2021,52(1):44–51.Enhanced dissolution and eliminated gelation of lenvatinib mesylate by coamorphous systemLU Yan1,CONG Feng1,QIAN Shuai1,WEI Yuanfeng1,ZHANG Jianjun2,LIN Yining1,GAO Yuan1*1School of Traditional Chinese Pharmacy,China Pharmaceutical University,Nanjing211198;2School of Pharmacy,China Pharmaceutical University,Nanjing211198,ChinaAbstract Lenvatinib mesylate(LF),a multi-target tyrosinase inhibitor mainly used in the treatment of a variety of cancers,has low oral bioavailability mainly due to its gelation during the dissolution process.In the current study,in order to enhance dissolution and eliminate gelation of LF,a supramolecular coamorphous system of LF-baicalein(BAI)(molar ratio,1∶1)was prepared by rotary evaporation and characterized by PLM,PXRD,DSC and FTIR.Results indicated the formation of coamorphous system with a single T g of118°C.Different from original LF crystal,no gelation phenomenon was observed during the dissolution of coamorphous LF-BAI.In addition,the dissolution rate of LF was increased by2.2-fold after coamorphization.Meanwhile,the dissolution rate of the co-former BAI was also enhanced by more than25.4-fold.Stability test showed that the prepared coamorphous system had a good physical stability for at least90days under25°C/60%RH and40°C/75%RH conditions.Key words lenvatinib mesylate;baicalein;coamorphous;gelation;dissolution;stabilityThis study was supported by the National Natural Science Foundation of China(No.81703712,No.81773675,No.81873012)and收稿日期2020-08-10*通信作者Tel:025-********E-mail:newgaoyuan@基金项目国家自然科学基金资助项目(No.81703712,No.81773675,No.81873012);中国药科大学“双一流”建设资助项目(No.CPU2018GY11,No.CPU2018GY27)第52卷第1期卢燕,等:共无定形体系提高甲磺酸乐伐替尼的溶出度及消除其凝胶化研究the Double First -Class Project of China Pharmaceutical University (No.CPU2018GY11,No.CPU2018GY27)目前,75%的候选药物存在水溶性差、生物利用度低的问题,严重影响其临床疗效[1],共无定形技术可有效地提高难溶性药物的溶解速率和生物利用度[2]。
多孔碳材料的研究进展

Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412(6843):169-
H
6
硬模板法
• 硬模板法流程:先合成多孔分子筛,以其为硬模板,将碳 前驱体灌入其孔道中,将形成的纳米有机物/硅复合材料 经过高温碳化和模板刻蚀技术, 最终获得多孔碳材料。其 孔结构和孔道尺寸主要取决于所使用的硬模板的结构,通 过选择不同结构的硬模板,来控制和合成反相复制模板的 多孔碳材料。
H
7
硬模板法
美国国立可再生能源实验室采用tpd程序控温脱附仪测量单壁纳米碳管swnt的载氢量从实验结果推测在常温下swnt能储存510wt的氢气并认为swnt接近氢燃料电池汽车的应用标准9wtchen等对金属掺杂对纳米碳管储氢容量的影响进行了研究他们称掺杂li及掺杂k的多壁碳纳米管在常压200400条件下的储氢量分别高达20及14
硬模板法
H
10
软模板法
• 软模板法利用表面活性剂作为模板剂,通过表面活性 剂和碳源之间的相互作用,经过自组装形成多孔结构。
赵东元课题组以 酚醛树脂为碳源, 在乙醇做溶剂条 件下,利用溶剂 挥发诱导自组装 将嵌段共聚物与 碳源自组装形成 具有介孔结构的 高分子聚合物, 而后经过脱除模 板和预碳化得到 有序介孔碳材料。
• 1999年,韩国科 学家Ryoo等人 以蔗糖为碳源, 以介孔二氧化硅 分子筛MCM-48 为模板,首次合 成出有序介孔碳 材料CMK-1。
Galen D. Stucky

Galen D. Stucky教授是美国加州大学圣芭芭拉分校化学与生物化学系、材料系教授,并担任新加坡生物工程与纳米技术研究院的科学顾问委员会的联合主席。
斯塔基博士1962年在美国爱荷华州立大学收到了他的博士学位。
在麻省理工学院的博士后研究后,他曾在伊利诺伊州,桑迪亚国家实验室和杜邦中央研究和发展部的大学之前,在1985年加入UCSB的教师职位。
博士斯塔基一直活跃在美国化学学会,无机化学学报“副主编和无机分部主席。
1994年当选美国科学促进会成员,2005年当选美国艺术与科学院院士。
近年的奖项包括2000年的洪堡研究奖、2002年的美国化学会材料化学奖、2003年的IBM学院奖、2004年的国际介孔材料学会奖、2008年美国国防部的战争伤亡救助先进技术应用奖。
近年亦被聘为北京大学客座教授、复旦大学荣誉教授。
Stucky教授长期活跃于美国化学界,曾任美国化学会无机化学部主任、《无机化学》,现为《Nano Letters》、《Small》等多个杂志的评委会成员。
2011年3月4日,Galen D. Stucky 赢得Nano Today Award.他的研究已纳入商业应用光学材料,澄清创造的3 - D图案的孔结构的材料新合成的范例和单系统的合成和加工的层次结构和图案的复合材料和多孔材料。
他进行了在体内的生物矿化的研究,并在体外合成材料应用这些知识。
在他目前的研究,其总体目标是重点了解可能用于热电,催化和生物过程的控制,多尺度界面和功能特性的复合材料的合成单系统。
他的总体研究目标是强调理解接口和核化学与新材料的设计,合成和表征。
分子筛,介孔,电光和生物材料正在合成和研究。
特别感兴趣的是双相纳米复合材料使用的无机表面活性剂或生物分子的分子构建模块合作大会的成核和晶体生长。
一些具体目标包括O2/N2的分离和多孔材料的环境应用,使用列入化学控制的非线性光学性质,分子和多孔结晶主机的半导体阵列的自组装形成超分子晶格,生物成因和无机合成使用测序多肽底物的材料。
医药行业专业英语词汇(非常有用)

FDA 和EDQM 术语: CLINICAL TRIAL :临床试验ANIMAL TRIAL :动物试验ACCELERATED APPROVAL :加速批准STANDARD DRUG :标准药物INVESTIGATOR :研究人员;调研人员PREPARING AND SUBMITTING :起草和申报SUBMISSION :申报;递交BENIFIT (S):受益RISK (S):受害DRUG PRODUCT :药物产品DRUG SUBSTANCE :原料药ESTABLISHED NAME :确定的名称GENERIC NAME :非专利名称PROPRIETARY NAME :专有名称;INN (INTERNATIONAL NONPROPRIETARY NAME ADVERSE EFFECT :副作用ADVERSE REACTION :不良反应PROTOCOL :方案ARCHIVAL COPY :存档用副本REVIEW COPY :审查用副本OFFICIAL COMPENDIUM :法定药典(主要指USP、):国际非专有名称NF ).USP(THE UNITED STATES PHARMACOPEIA ):美国药典NF (NATIONAL FORMULARY ):(美国)国家处方集OFFICIAL = PHARMACOPEIAL= COMPENDIAL :药典的;法定的;官方的AGENCY :审理部门(指FDA )IDENTITY :真伪;鉴别;特性STRENGTH :规格;规格含量(每一剂量单位所含有效成分的量)LABELED AMOUNT :标示量REGULATORY SPECIFICATION :质量管理规格标准(NDA 提供)REGULATORY METHODOLOGY :质量管理方法REGULATORY METHODS VALIDATION :管理用分析方法的验证COS/CEP 欧洲药典符合性认证ICH (International Conference on Harmonization of Technical Requirementsfor Registration of Pharmaceuticals for Human Use)人用药物注册技术要求国际协调会议ICH 文件分为质量、安全性、有效性和综合学科 4 类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
unsymmetrically dodecakis(trifluoroethoxy)-substituted metallophthalocyanines by a palladium-catalyzed crosscoupling reaction”, J. Heterocycl. Chem. 37, 1193–1202 (2000). Sagesaka T., Juen H., and Kaibara M.: “Anemia as a risk factor of hemorrhagic tendency during surgery”, J. Obstet. Gynaecol. Res. 26, 103–109 (2000). Kimura-Suda H., Sassa T., Wada T., and Sasabe H.: “Simultaneous determination of average direction of molecular orientation and effective second order nonlinear optical constant (|deff |) by phase measurements of second harmonic generation”, J. Phys. Chem. B 105, 1763–1769 (2001). Koizumi J., Kawashima Y., Kita R., Dobashi T., Hosokawa H., and Nakata M.: “Coexistence curves of polystyrene in cyclohexane near the critical double point in composition-pressure space”, J. Phys. Soc. Jpn. 69, 2543–2548 (2000). Duan X.-M., Wada T., Okada S., Oikawa H., Matsuda H., Sasabe H., and Nakanishi H.: “Linear and nonlinear otical properties of novel ionic chromophores”, Mat. Res. Soc. Symp. Proc., 598, 1–6 (2000). Kimura-Suda H., Wada T., Wei L., Nakahara H., and Sasabe H.: “Absolute molecular orientation of noncentrosymmetric self-assembled tolan Langmuir-Blodgett films”, Mol. Cryst. Liq. Cryst. 349, 135–140 (2000). Nakamura F., Mitsui K., Murase T., Kobayashi K., Hara M., Knoll W., and Sasabe H.: “Immobilization of DNA on self-assembled monolayer”, Mol. Cryst. Liq. Cryst. 349, 219–222 (2000). Gunji A., Kimura-Suda H., Sassa T., Wada T., and Sasabe H.: “Second-order nonlinear optical properties of amorphous calix[4]arenes containing carbazole derivatives”, Nonlinear Opt. 24, 41–46 (2000). Isoshima T., Noh T., Koma A., Wada T., and Sasabe H.: “Anisotropy of transient absorption change in planary oriented metallophthalocyanines”, Nonlinear Opt. 24, 117–122 (2000). Okubo T., Kitagawa S., Masaoka S., Furukawa S., Kondo M., Noh T., Isoshima T., Wada T., and Sasabe H.: “Third-order nonlinear optical properties of a copper (I) trinuclear complex with D3h symmetrical radical ligand”, Nonlinear Opt. 24, 129–132 (2000). Fujihara T., Tokuue M., Sassa T., Ozawa K., Umegaki S., Yokoyama M., Wada T., and Sasabe H.: “Formation of an anti-guide structure in a photorefractive polymer by a pump-light beam”, Nonlinear Opt. 25, 201–206 (2000). Maruyama S., Suzuki H., Tao X. T., Wada T., Sasabe H., Miyata S., and Kamata T.: “The photoluminescent and electroluminescent properties of cyclic carbazole oligomers”, Phys. Chem. Chem. Phys. 2, 3565– 3569 (2000). Suzuki M., Kita R., Dobashi T., and Nakata M.: “Shape of three-phase coexistence curve near the critical end points
3
4 4
1 4
3
IX
39
1 4
2
3
Publications Kimura-Suda H., Zhang Y.-D., Sassa T., Wada T., and Sasabe H.: “Polar alignment in spin-coated carbazole main- and side-chain polymer films”, Adv. Mater. 12, 1196–1199 (2000). Takahashi K., Gunji A., Guillaumont D., Pichierri F., and Nakamura S.: “Through-space exciton coupling and multimodal Na+ /K+ sensing properties of calix[4]arenecrowns with the thienylene analogue of para -terphenoquinone as chromophore”, Angew. Chem. Int. Ed. Engl. 39, 2925–2928 (2000). Houbrechts S, Kubo Y., Tozawa T., Tokita S., Wada T., and Sasabe H.: “Second-order nonlinear optical properties of functionalized ionophores: Cation-steered modulation of the first hyperpolarizability”, Angew. Chem. Int. Ed. Engl. 39, 3859–3862 (2000). Tao X. T., Miyata S., Sasabe H., Zhang G. J., Wada T., and Jiang M. H.: “Efficient organic red electroluminescent device with narrow emission peak”, Appl. Phys. Lett. 86, 279–281 (2001). Iwata M., Izawa M., Sasaki N., Nagumo Y., Sasabe H., and Hayashizaki Y.: “T7 RNA polymerase activation and improvement of the transcriptional sequencing by polyamines”, Bioorg. Med. Chem. 8, 2185–2194 (2000).
Supramolecular Science Laboratory
WADA, Tatsuo
1. 1
2
1
3
8 3 2. 12 680 nm 3 32 ns
3
χ(3) 2
1
χ(3)
2 × 10−32 [esu cm3 ]
RNA Polymerase / A来自3.3 3 3 1 1
1 1
320 K 4 ns 60 cm−1 4.5 ˚ A 20–40◦ 600 nm 50500 1.03
Kaibara M., Takahashi A., Kurotobi K., and Suzuki Y.: “Proliferation of endothelial cells on the plasma-treated segmented-polyurethane surface: Attempt of construction of a small caliber hybrid vascular graft and antithrombogenicity”, Colloids Surf. B 19, 209–217 (2000). Iwata H., Kaibara M., Suzuki Y., and Nakajima H.: “Antithrombogenicity of cultured endothelial cell-detached surface”, Colloids Surf. B 19, 219–226 (2000). Kurotobi K., Kaibara M., Suzuki Y., Iwaki M., Nakajima H., and Kaneko S.: “Ion implantation into collagencoated surfaces for the development of small diameter artificial grafts”, Colloids Surf. B 19, 227–235 (2000). Xu G., Hibino Y., Suzuki Y., Suzuki Y., Kurotobi K., Osada M., Iwaki M., Kaibara M., Tanihata M., and Imanishi Y.: “Oxygen ion implantation at 20 to 2000 keV into polysulfone for improvement of endothelial cell adhesion”, Colloids Surf. B 19, 237–247 (2000). Kaibara M. and Iwata H.: “Coagulation triggered by erythrocyte membrane and its possible significance in thrombus formation”, Ischemic Blood Flow in the Brain, Tokyo, 1999-12, edited by Y. Fukuuchi, M. Tomita, and A. Koto, Springer-Verlag, Tokyo, pp. 401–406 (2000). Tian M.-Q., Wada T., and Sasabe H.: “Syntheses of new