1.1.1锐角三角函数(1)

合集下载

1.1.1锐角三角函数的定义

1.1.1锐角三角函数的定义

锐角三角函数的定义(2015•余姚市模拟)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题;网格型.【分析】找到∠ABC所在的直角三角形,利用勾股定理求得斜边长,进而求得∠ABC的邻边与斜边之比即可.【解答】解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.故选B.【点评】难点是构造相应的直角三角形利用勾股定理求得∠ABC所在的直角三角形的斜边长,关键是理解余弦等于邻边比斜边.(2015•蓬溪县校级模拟)在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍【考点】锐角三角函数的定义.【专题】常规题型;压轴题.【分析】根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答.【解答】解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.【点评】本题考查了锐角三角形函数的定义,理清锐角的三角函数值与角度有关,与三角形中所对应的边的长度无关是解题的关键.(2013•遵义模拟)如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=()A.2B.3C.4D.5【考点】锐角三角函数的定义;三角形的外接圆与外心.【专题】压轴题.【分析】由DE=2,OE=3可知AO=OD=OE+ED=5,可得AE=8,连接BD、CD,可证∠B=∠ADC,∠C=∠ADB,∠DBA=∠DCA=90°,将tanC,tanB在直角三角形中用线段的比表示,再利用相似转化为已知线段的比.【解答】解:连接BD、CD,由圆周角定理可知∠B=∠ADC,∠C=∠ADB,∴△ABE∽△CDE,△ACE∽△BDE,∴=,=,由AD为直径可知∠DBA=∠DCA=90°,∵DE=2,OE=3,∴AO=OD=OE+ED=5,AE=8,tanC•tanB=tan∠ADB•tan∠ADC======4.故选C.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,或者利用同角(或余角)的三角函数关系式求三角函数值.(2011•黔东南州)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为()A.B.C.D.【考点】锐角三角函数的定义;直角三角形斜边上的中线;勾股定理.【专题】常规题型;压轴题.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD 的值.【解答】解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A===,∴tan∠ACD的值.故选D.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.(2011•昆明)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,则sin∠CAD=()A.B.C.D.【考点】锐角三角函数的定义;线段垂直平分线的性质;勾股定理.【专题】计算题;压轴题.【分析】设AD=x,则CD=x﹣3,在直角△ACD中,运用勾股定理可求出AD、CD的值,即可解答出;【解答】解:设AD=x,则CD=x﹣3,在直角△ACD中,(x﹣3)2+=x2,解得,x=4,∴CD=4﹣3=1,∴sin∠CAD==;故选A.【点评】本题考查了线段垂直平分线的性质定理及勾股定理的运用,求一个角的正弦值,可将其转化到直角三角形中解答.(2011•南充)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,+S△CDE≥S△ACE;③BM⊥DM;点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC④BM=DM.正确结论的个数是()A.1个B.2个C.3个D.4个【考点】锐角三角函数的定义;等腰三角形的判定与性质;等腰直角三角形;梯形中位线定理.【专题】压轴题.【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,==;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴==①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2,=S梯形ABDE﹣S△ABC﹣S△CDE=ab,∴S△ACES△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),+S△CDE≥S△ACE;故本选项正确;∴S△ABC④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.(2011•南宁)如图,在△ABC中,∠ACB=90°,∠A=15°,AB=8,则AC•BC的值为()A.14B.16C.4D.16【考点】锐角三角函数的定义.【专题】计算题;压轴题.【分析】解法一:利用二倍角公式sin2α=2sinαcosα、锐角三角函数的定义解答.解法二:作△ABC的中线CD,过C作CE⊥AB于E,求出AD=CD=BD=2,求出CE、DE、BE,根据勾股定理求出BC、AC,代入求出即可.【解答】解:解法一:∵sin30°=2sin15°cos15°=,∠A=15°,∴2××=;又∵AB=8,∴AC•BC=16.解法二:作△ABC的中线CD,过C作CE⊥AB于E,∵∠ACB=90°,∴AD=DC=DB=AB=4,∴∠A=∠ACD=15°,∴∠CDB=∠A+∠ACD=30°,∴CE=CD=2,=AC•BC=AB•CE,即AC•BC=×8×2,∴S△ABC∴AC•BC=16故选:D.【点评】本题考查了锐角三角函数的定义.解答该题的关键是熟记二倍角公式.(2011•兰州模拟)根据图中的信息,经过估算,下列数值与正方形网格中∠ɑ的正切值最接近的是()A.0.6246B.0.8121C.1.2252D.2.1809【考点】锐角三角函数的定义.【专题】计算题;压轴题;网格型.【分析】正切函数就是直角三角形中,角所对的直角边与邻边的比值,根据定义即可确定正切值的范围,即可确定.【解答】解:设正方形网格的边长是1,则AC=4,4<AB<5∵tanα=∵AC=4,4<AB<5∴1<tanα<1.25∴最接近的是1.2252.故选C.【点评】本题主要考查了正切函数的定义,根据定义确定正切函数的范围是解题的关键.(2011•历城区一模)在正方形网格中,△ABC的位置如图所示,则tan∠A的值为()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题;网格型.【分析】连接CD,即可证明△ACD是直角三角形,利用正切函数的定义即可求解.【解答】解:连接CD,则CD2=2,AC2=4+16=20,AD2=9+9=18∴AC2=CD2+AD2,AD==3,CD=∴∠ADC=90°∴tan∠A===.故选C.【点评】本题主要考查了正切函数的定义,正确证明△ACD是直角三角形是解决本题的关键.(2010•常德)在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是()A.B.2C.D.【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据正弦的定义sinA=解答.【解答】解:根据题意,AB==BC,sinA===.故选C.【点评】本题主要考查角的正弦的定义,需要熟练掌握.(2010•西藏)在Rt△ABC中,∠C=90°,AC=,BC=,则cosB的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】压轴题.【分析】首先利用勾股定理计算出AB的长,再根据余弦的定义可得答案.【解答】解:∵∠C=90°,AC=,BC=,∴AB==,∴cosB===,故选:D.【点评】此题主要考查了三角函数,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(2009•漳州)三角形在方格纸中的位置如图所示,则tanα的值是()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题;网格型.【分析】根据三角函数的定义就可以解决.【解答】解:在直角三角形中,正切值等于对边比上邻边,∴tanα=.故选A.【点评】本题考查了锐角三角函数的定义.(2008•威海)在△ABC中,∠C=90°,tanA=,则sinB=()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据三角函数定义,已知tanA=,就是已知BC与AC的比值,设BC=x,则AC=3x.根据勾股定理就可以求出AB,再根据三角函数定义就可以求出三角函数值.【解答】解:在△ABC中,∠C=90°,∵tanA=,∴设BC=x,则AC=3x.故AB=x.sinB===.故选D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.(2008•湘潭)已知△ABC中,AC=4,BC=3,AB=5,则sinA=()A.B.C.D.【考点】锐角三角函数的定义;勾股定理的逆定理.【专题】压轴题.【分析】先根据直角三角形的三边长判断出三角形的形状,再根据锐角三角函数的定义求解即可.【解答】解:∵△ABC中,AC=4,BC=3,AB=5,即42+32=52,∴△ABC是直角三角形,∠C=90°.sinA==.故选A.【点评】本题考查了直角三角形的判定定理及锐角三角函数的定义,属较简单题目.(2007•昌平区二模)如图,四边形ABCD,A1B1BA,…,A5B5B4A4都是边长为1的小正方形.已知∠ACB=a,∠A1CB1=a1,…,∠A5CB5=a5.则tana•tana1+tana1•tana2+…+tana4•tana5的值为()A.B.C.1D.【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据锐角三角函数的定义,分别在Rt△ACB,Rt△A1CB1,…,Rt△A5CB5中求tana,tana1,tana2,…,tana5的值,代值计算.【解答】解:根据锐角三角函数的定义,得tana==1,tana1==,tana2==…,tana5==,则tana•tana1+tana1•tana2+…+tana4•tana5=1×+×+×+×+×=1﹣+﹣+﹣+﹣+﹣=1﹣=.故选A.【点评】本题考查了锐角三角函数的定义.关键是找出每个锐角相应直角三角形,根据正切的定义求值.(2006•南通)如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA等于()A.B.C.2D.【考点】锐角三角函数的定义;垂径定理.【专题】压轴题.【分析】作OC⊥AB,构造直角三角形,运用三角函数的定义求解.【解答】解:作OC⊥AB于C点.根据垂径定理,AC=BC=4.在Rt△OCP中,有CP=4+2=6,OC==3.故tan∠OPA==.故选D.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.(2006•温州)如图,在△ABC中,∠C=90°,BC=5,AC=12,则cosA等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据勾股定理求出AC的长,再根据锐角三角函数的概念求出∠A的余弦值即可.【解答】解:∵在△ABC中,∠C=90°,BC=5,AC=12,∴AC==13,cosA==.故选D.【点评】本题考查的是锐角三角函数的概念与勾股定理,比较简单.(2005•绍兴)如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8,则sin ∠ABD的值是()A.B.C.D.【考点】锐角三角函数的定义;垂径定理;圆周角定理.【专题】压轴题.【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=10,即可求sin∠ABD的值.【解答】解:∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=10,∴sin∠ABD=sin∠ABC==.故选D.【点评】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.(2005•三明)根据图中信息,经过估算,下列数值与tanα的值最接近的是()A.0.3640B.0.8970C.0.4590D.2.1785【考点】锐角三角函数的定义;估算无理数的大小.【专题】压轴题.【分析】α的正切值等于这个角的对边与邻边之比.【解答】解:tanα=3÷7≈0.43,∴0.4<tanα<0.5.故选C.【点评】注意熟悉锐角三角函数的定义,结合图形分析tanα的取值范围.(2005•泰安)直角三角形纸片的两直角边AC与BC之比为3:4.(1)将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;(2)将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.则tan∠DEA的值为()A.B.C.D.【考点】锐角三角函数的定义;翻折变换(折叠问题).【专题】压轴题.【分析】直角三角形纸片的两直角边AC与BC之比为3:4,就是已知tan∠ABC=,根据轴对称的性质,可得∠DEA=∠A,就可以求出tan∠DEA的值.【解答】解:根据题意:直角三角形纸片的两直角边AC与BC之比为3:4,即tan∠ABC==;根据轴对称的性质,∠CBD=a,则由折叠可知∠CBD=∠EBD=∠EDB=a,∠ABC=2a,由外角定理可知∠AED=2a=∠ABC,∴tan∠DEA=tan∠ABC=.故选A.【点评】已知折叠问题就是已知图形的全等,并且三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.(2001•河南)如图,锐角ABC中,以BC为直径的半圆O分别交AB、AC于D、E两点,:S四边形BCED=1:2,则cos∠BAC的值是()且S△ADEA.B.C.D.【考点】锐角三角函数的定义;圆周角定理;相似三角形的判定与性质.【专题】压轴题.【分析】要求∠BAC的余弦值就要构建直角三角形找出相应的边的比例关系,那么可连接CD,通过AD和AC的比例关系来求∠BAC的余弦值.AD,AC的比例关系可通过△ADE ∽△ACB三来求解,这样就不难求得其余弦值了.【解答】解:连接CD.∵∠ADE=∠ACB,∠DAE=∠CAB,∴△ADE∽△ACB.:S四边形BCED=1:2,∵S△ADE:S△ACB=1:3,∴S△ADE∴AD:AC=:3,∴cos∠BAC=:3.故选D.【点评】本题主要考查了相似三角形的判定以及圆周角定理,根据三角形相似,用面积比求出相关的线段比是解题的关键.(2001•温州)在Rt△ABC中,∠C=90°,BC=4,AC=3,则tanA的值是()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题.【分析】直接利用锐角三角函数的定义tanA=.【解答】解:.故选A.【点评】此题很简单,关键是记住定义.(2000•嘉兴)在Rt△ABC中,CD是斜边AB上的高线,已知∠ACD的正弦值是,则的值是()A.B.C.D.【考点】锐角三角函数的定义.【专题】压轴题.【分析】利用直角三角形的性质及三角函数的定义可得sin∠B=sin∠ACD,即可求出的值.【解答】解:在Rt△ABC中,CD是斜边AB上的高线,因而∠B=∠ACD,∴sin∠B=sin∠ACD==.故选D.【点评】利用等角转换是此题的关键.(1998•台州)如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若cot∠BCD=3,则tanA=()A.B.1C.D.【考点】锐角三角函数的定义;三角形中位线定理.【专题】压轴题.【分析】若想利用cot∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ABC 的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AB=BD,∴E是CD中点,∴AC=2BE,∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵cot∠BCD=3,设BE=x,则BC=3x,AC=2x,∴tanA===,故选A.【点评】此题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.(1997•海南)对于以下的运算结果:①a3+a2=a5;②a3÷a3=a0(a≠0);③﹣m2﹣m2=﹣2m2;④sinα+sinβ=sin(α+β).正确的是()A.①、②B.①、③C.②、④D.②、③【考点】锐角三角函数的定义;合并同类项;同底数幂的除法.【专题】压轴题.【分析】根据合并同类项的法则、同底数幂的除法法则以及锐角三角函数的定义逐项分析即可.【解答】解:①a3与a2不是同类项不能合并,故该选项错误;②a3÷a3=a0=1计算是正确的,故该选项正确;③﹣m2﹣m2=(﹣1﹣1)m2=﹣2m2计算是正确的,故该选项正确;④sinα+sinβ=≠sin(α+β),计算是错误的,故该选项错误;所以计算正确的是②③,故选D.【点评】本题考查了合并同类项的法则、同底数幂的除法法则以及锐角三角函数的定义,解题的关键是熟练掌握各种运算法则.(2013•宝应县校级一模)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cosA=.【考点】锐角三角函数的定义.【专题】压轴题.【分析】作出图形,根据锐角的余弦等于邻边比斜边,列式计算即可得解.【解答】解:如图,∵∠C=90°,AB=10,AC=8,∴cosA===.故答案为:.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.(2010•凉山州)如图,∠1的正切值等于.【考点】锐角三角函数的定义;圆周角定理.【专题】压轴题.【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.【解答】解:根据圆周角的性质可得:∠1=∠2.∵tan∠2=,∴∠1的正切值等于.故答案为:.【点评】本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.(2012•浠水县校级模拟)已知△ABC中,AB=AC,CH是AB边上的高,且CH=AB,则tanB=或3.【考点】锐角三角函数的定义;等腰三角形的性质;勾股定理.【专题】计算题;压轴题.【分析】作高AD,根据等腰三角形的性质得到BC=2BD,设AB=5x,则CH=AB=3x,根据三角形面积公式有AD•BC=CH•AB,即2BD•AD=15x2,根据勾股定理得到BD2+AD2=AB2=25x2,然后进行等式变形有(BD+AD)2﹣2BD•AD=25x2,即(BD+AD)2﹣15x2=25x2,(BD﹣AD)2+2BD•AD=25x2,即(BD﹣AD)2+15x2=25x2,易得BD+AD=2x,BD﹣AD=x或AD﹣BD=x,可求出BD=x,AD=x或AD=x,BD=x,然后在Rt△ABD中根据正切的定义得到tanB=,再把DB与AD的值代入计算即可.【解答】解:如图,作高AD,∵AB=AC,∴BC=2BD,设AB=5x,则CH=AB=3x,∵AD•BC=CH•AB,∴2BD•AD=15x2,∵BD2+AD2=AB2=25x2,∴(BD+AD)2﹣2BD•AD=25x2,即(BD+AD)2﹣15x2=25x2,∴BD+AD=2x,∴(BD﹣AD)2+2BD•AD=25x2,即(BD﹣AD)2+15x2=25x2,∴BD﹣AD=x或AD﹣BD=x,∴BD=x,AD=x或AD=x,BD=x,在Rt△ABD中,tanB=,∴tanB==或tanB==3.故答案为:或3.【点评】本题考查了正切的定义:在直角三角形中,一锐角的正切等于这个角的对边与邻边的比值.也考查了等腰三角形的性质、勾股定理以及代数式的变形能力.(2007•安顺)如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据勾股定理求出BD的长,即BD′的长,根据三角函数的定义就可以求解.【解答】解:BD是边长为2的正方形的对角线,由勾股定理得,BD=BD′=2.∴tan∠BAD′===.故答案为:.【点评】本题考查了锐角三角函数的定义,注意本题中BD′=BD.(1999•杭州)在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA=.【考点】锐角三角函数的定义.【专题】压轴题.【分析】先由勾股定理求出AB,再利用锐角三角函数的定义求解.【解答】解:在Rt△ABC中,∠C=90°,∵AC=3,BC=4,∴AB===5.∴sinA==.【点评】本题考查勾股定理及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.(1997•武汉)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA=.【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA,可代入数计算出答案.【解答】解:∵∠C=90°,AB=5,BC=3,∴sinA==,故答案为:.【点评】此题主要考查了锐角三角函数定义,关键是掌握正弦定义.(2012•铜仁地区)如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.【考点】锐角三角函数的定义;勾股定理.【专题】压轴题;新定义.【分析】(1)根据直角三角形的性质用AC表示出AB及AC的值,再根据锐角三角函数的定义进行解答即可;(2)由于tanA=,所以可设BC=3,AC=4,则AB=5,再根据锐角三角函数的定义进行解答即可.【解答】解:(1)∵Rt△ABC中,α=30°,∴BC=AB,∴AC===AB,∴ctan30°==.故答案为:;(2)∵tanA=,∴设BC=3,AC=4,∴ctanA==.【点评】本题考查的是锐角三角函数的定义及直角三角形的性质,熟知锐角三角函数的定义是解答此题的关键.(2012•昌平区模拟)如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A 的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是垂直;(2)试用含m和α的代数式表示线段CM的长:CM=m•tan;α的取值范围是0°<α<90°.【考点】锐角三角函数的定义;正方形的性质;旋转的性质.【专题】综合题;压轴题.【分析】(1)连接CD,OM.根据旋转的性质得出MC=MD,OC=OD,再证明△COM≌△DOM,得出∠COM=∠DOM,然后根据等腰三角形三线合一的性质得出CD⊥OM;(2)首先用含α的代数式表示∠COM,然后在Rt△COM中,根据正切函数的定义即可得出CM的长度;由OD与OM不能重合,且只能在OC右边,得出α的取值范围.【解答】解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC•tan∠COM=m•tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.【点评】解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,有助于提高解题速度和准确率.(2009•南充)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)求tan∠BOA的值;(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,﹣2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.【考点】锐角三角函数的定义;作图-平移变换;作图-旋转变换.【专题】综合题;压轴题.【分析】(1)直接利用三角函数求解即可;(2)根据旋转的性质求出旋转后对应点的坐标;(3)根据平移的规律求出平移后的对应点的坐标,顺次连接即可.【解答】解:(1)∵点B(4,2),BA⊥x轴于A,∴OA=4,BA=2,∴tan∠BOA===.(3分)(2)如图,由旋转可知:CD=BA=2,OD=OA=4,∴点C的坐标是(﹣2,4).(5分)(3)△O′A′B′如图所示,O′(﹣2,﹣4),A′(2,﹣4).(8分)【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.(2008•深圳)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.【考点】锐角三角函数的定义;等边三角形的性质;圆周角定理;切线的性质;相似三角形的判定与性质.【专题】综合题;压轴题.【分析】(1)利用斜边上的中线等于斜边的一半,可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线;(2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解.【解答】(1)证明:连接BO,方法一:∵AB=AD∴∠D=∠ABD∵AB=AO∴∠ABO=∠AOB又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;方法二:∵AB=AO,BO=AO∴AB=AO=BO∴△ABO为等边三角形∴∠BAO=∠ABO=60°∵AB=AD∴∠D=∠ABD又∠D+∠ABD=∠BAO=60°∴∠ABD=30°∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO∴BD是⊙O的切线;方法三:∵AB=AD=AO∴点O、B、D在以OD为直径的⊙A上∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;(2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF∵AC是⊙O的直径∴∠ABC=90°在Rt△BFA中,cos∠BFA=∴=8又∵S△BEF=18.∴S△ACF【点评】本题综合考查了圆的切线的性质、圆的性质、相似三角形的判定及性质等内容,是一个综合较强的题目,难度较大.(2008•肇庆)如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D 三点,CB的延长线交⊙O于点E.(1)求证:AE=CE;(2)EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;(3)在(2)的条件下,若(n>0),求sin∠CAB.【考点】锐角三角函数的定义;圆周角定理;切线的性质;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)连接DE,根据∠ABC=90°可知:AE为⊙O的直径,可得∠ADE=90°,根据CD⊥AC,AD=CD,可证AE=CE;(2)根据△ADE∽△AEF,可将AE即⊙O的直径求出;(3)根据Rt△ADE∽Rt△EDF,=n,可将DE的长表示出来,在Rt△CDE中,根据勾股定理可将CE的长表示出来,从而可将sin∠CAB的值求出.【解答】(1)证明:连接DE,∵∠ABC=90°∴∠ABE=90°∴AE是⊙O直径∴∠ADE=90°∴DE⊥AC又∵D是AC的中点∴DE是AC的垂直平分线∴AE=CE;(2)解:在△ADE和△EFA中,∵∠ADE=∠AEF=90°,∠DAE=∠FAE∴△ADE∽△EFA∴即∴AE=2cm;(3)解:∵AE是⊙O直径,EF是⊙O的切线,∴∠ADE=∠AEF=90°∴Rt△ADE∽Rt△EDF∴∵,AD=CD∴CF=nCD∴DF=(1+n)CD∴DE=CD在Rt△CDE中,CE2=CD2+DE2=CD2+(CD)2=(n+2)CD2∴CE=CD∵∠CAB=∠DEC∴sin∠CAB=sin∠DEC===.【点评】本题主要考查圆周角定理,切线的性质及相似三角形的性质和应用.。

第一章--三角函数(北师大新版)

第一章--三角函数(北师大新版)

第一章 直角三角形的边角关系1.1 锐角三角函数1、锐角三角函数的定义 在Rt △ABC 中,∠C=90°.(1)正弦:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sinA .即sinA=斜边边的对A ∠=ca.(2)余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cosA .即cosA=斜边邻边的A ∠=c b.(3)正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tanA .即tanA=边对边的邻A ∠的A ∠=ba.(4)三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.锐角三角函数的定义1.如图,在菱形ABCD 中,DE ⊥AB ,cos A =,BE=2,则tan ∠DBE 的值( ) A 、 B 、2 C 、D 、第1题 第2题 第3题2.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A .BD BCB .BC ABC .ADAC D .CD AC3.三角形在正方形网格纸中的位置如图所示,则cos α的值是 .4.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是 .第4题 第5题 第6题 第7题 5.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB=_______________. 6.如图,△ABC 的各个顶点都在正方形的格点上,则sin A 的值为 . 7.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为 .8.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于23,则sin ∠CAB= .9.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα= .2.2 30°、45°、60°角的三角函数值1、同角三角函数的关系(1)平方关系:sin 2A+cos 2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=AAcos sin 或sinA=tanA•cosA .2、互余两角的三角函数的关系 在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=cos (90°-∠A ); ②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin (90°-∠A ); 也可以理解成若∠A+∠B=90°,那么sinA=cosB 或sinB=cosA . 3、特殊角的三角函数值特殊角的三角函数值1.把一块直尺与一块三角板如图放置,若sin ∠1=22,则∠2的度数为 .2.若2cos (α+15°)=1,则α= 度. 3.在△ABC 中,若,∠A ,∠B 都是锐角,则∠C的度数是 .2.4 解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形. (2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°; ②三边之间的关系:a 2+b 2=c 2; ③边角之间的关系:sin A=c a ,cos A=c b ,tan A=ba . 基础训练1.如图,在△ABC 中,cosB=22,sinC=53,AC=10,则△ABC 的面积为 .第1题 第2题 第3题 2.如图,在 Rt △ABO 中,斜边 AB=1,若 OC ∥BA ,∠AOC=36°,则下面四个结论: ①点B 到AO 的距离为sin54°; ②点B 到AO 的距离为tan36°;③点A 到OC 的距离为sin36°•sin54°; ④点A 到OC 的距离为cos36°•sin54°. 其中正确的是 (填序号).3.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为 .4.如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于 .第4题 第5题 第6题5.如图,已知Rt △ABC 中,斜边BC 上的高AD=3,cos B=53,则AC 的长为 .6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AD 于E ,若AB=6,AD=8,sin ∠OEA= .7.如图,△ABC 中,∠A=30°,tan B =23,AC=23,则AB 的长为 .8.如图,已知AC=4,求AB 和BC 的长.9.如图,已知在△ABC 中,∠ABC=30°,BC=8,sin ∠A=55,BD 是AC 边上的中线.求: (1)△ABC 的面积; (2)∠ABD 的正切值.拓展提升1.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,且BE=2AE ,已知AD=33,tan ∠BCE=33,那么CE 等于 .第1题 第2题 第3题2.如图,已知点A (53,0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,∠α=75°,则b= . 3.在Rt △ACB 中,∠C=90°,点D 是AC 的中点,cos ∠CBD=415,则sin ∠ABD= . 4.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为 。

浙教版数学九年级下册1.1《锐角三角函数》教学设计1

浙教版数学九年级下册1.1《锐角三角函数》教学设计1

浙教版数学九年级下册1.1《锐角三角函数》教学设计1一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章的第一节内容。

本节内容主要介绍锐角三角函数的定义及应用。

通过本节的学习,学生能够理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及简单的性质,并能运用锐角三角函数解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。

但是,对于锐角三角函数这一部分内容,由于涉及到三角函数的定义和性质,对学生来说可能存在一定的难度。

因此,在教学过程中,需要注重对学生基础知识的学习和巩固,并通过实例让学生感受锐角三角函数在实际问题中的应用。

三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及简单的性质;能够运用锐角三角函数解决一些实际问题。

2.过程与方法:通过观察、实验、探究等方法,引导学生主动参与学习,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.重点:锐角三角函数的概念及应用。

2.难点:正弦、余弦、正切函数的定义及简单的性质。

五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,激发学生的学习欲望。

2.启发式教学法:引导学生主动思考,发现知识,培养学生的创新能力。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。

六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。

2.教学素材:准备一些与锐角三角函数相关的实例,用于讲解和练习。

3.学具:为学生准备一些三角板、直尺等学具,用于实验和操作。

七. 教学过程1.导入(5分钟)利用课件展示一些与锐角三角函数相关的实例,如跳伞运动员下降的高度与时间的关系,引导学生思考如何用数学知识来描述这种关系。

2.呈现(10分钟)介绍锐角三角函数的定义及性质,通过课件和实物演示,让学生直观地感受锐角三角函数的概念。

1.1锐角三角函数(第1课时)课件

1.1锐角三角函数(第1课时)课件
你能设法验证这个结论吗?
比值大的梯子陡.
图③
图④
知识点 1 正切的定义
B
B B2 B1
A
C2 C1 C
C
如图,B1,B2是梯子AB上的点,B1C1⊥AC,垂足为点C1,
B2C2⊥AC,垂足为点C2.小明想通过测量B1C1及AC1,算出它们
的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2
及AC2,算出它们的比,也能说明梯子的倾斜程度.
应用新知,典例剖析
例1.下图表示甲、乙两个自动扶梯,哪一个自动扶梯比较
陡?
A
E
4m 甲
┐ 8m α
C 甲梯
B
13 m 乙
F
β
乙梯
5m

D
解:甲梯中 tan 4 1 .
82
乙梯中 tan 5 5 .
132 52 12
∵ tanα> tanβ ∴甲梯更陡
知识点 3 坡度和坡角
如图,正切也经常用来描述山坡的坡度.例如, 有一山坡在水平方向上每前进100m就升高60m,那 么山坡的坡度i(即tanα)就是:
(3).如图 (2) tan A BC ( AB
(4).如图 (2) tan B 10 ( 7
). A
).
7┍m
C A 10m C
(1)
(2)
). (6).如图 (2)
). tan A 0.7,
( ).
(5).如图 (2) tanA = 0.7 ( ). tan A 0.7或 tan A 0.7
生活中的梯子
梯子是我们日常生活中常见的物体.
情境导入
你会比较两个梯子哪个更陡吗?你有哪些办法?
知识讲授

锐角三角函数(公式、定理、结论图表) --中考数学知识必备

锐角三角函数(公式、定理、结论图表) --中考数学知识必备

锐角三角函数(公式、定理、结论图表)--中考数学知识必备考点一、锐角三角函数的概念如图所示,在Rt△ABC 中,∠C=90°,∠A 所对的边BC 记为a,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB记为c,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即cos A bA c∠==的邻边斜边;BCa c锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为..【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于()A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为()米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为16m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB =tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC 中,∠C=90°,(1)三边之间的关系:222a b c +=;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c ==,1tan tan a A b B==.(4)如图,若直角三角形ABC 中,CD⊥AB 于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a 2=pc;由△CAD∽△BAC,得b 2=qc;由△ACD∽△CBD,得h 2=pq;由△ACD∽△ABC 或由△ABC 面积,得ab=ch.(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD=AD=BD=12AB;②点D 是Rt△ABC 的外心,外接圆半径R=12AB.(6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c ab r a b c +-==++.直角三角形的面积:①如图所示,111sin 222ABC S ab ch ac B === △.(h 为斜边上的高)②如图所示,1()2ABCS r a b c=++△.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。

浙教版数学九年级下册1.1《锐角三角函数》教案2

浙教版数学九年级下册1.1《锐角三角函数》教案2

浙教版数学九年级下册1.1《锐角三角函数》教案2一. 教材分析《锐角三角函数》是浙教版数学九年级下册的教学内容,本节课主要介绍了锐角三角函数的定义及应用。

通过学习,学生能够理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其在实际问题中的应用。

教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。

二. 学情分析九年级的学生已经具备了一定的代数和几何基础,对函数的概念有一定的了解。

但是,对于锐角三角函数的定义及其应用,学生可能较为陌生。

因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到锐角三角函数的学习。

三. 教学目标1.理解锐角三角函数的定义及概念。

2.掌握正弦、余弦、正切函数的定义及其在实际问题中的应用。

3.培养学生的逻辑思维能力和解题能力。

四. 教学重难点1.重点:锐角三角函数的定义及应用。

2.难点:正弦、余弦、正切函数的定义及其在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生从已有的知识出发,探索锐角三角函数的定义及其应用。

3.互动式教学法:鼓励学生积极参与课堂讨论,提高学生的表达能力和合作能力。

4.练习法:通过大量的练习题,巩固所学知识,提高学生的解题能力。

六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及应用。

2.练习题:准备相关的练习题,用于课堂练习和课后作业。

3.教学工具:准备三角板、直尺等教学工具,方便学生直观地理解锐角三角函数。

七. 教学过程1.导入(5分钟)通过一个实际问题引入锐角三角函数的概念,例如:在直角三角形中,如何求解一个锐角的正弦、余弦、正切值?2.呈现(15分钟)讲解锐角三角函数的定义,引导学生从已有的知识出发,理解正弦、余弦、正切函数的定义。

通过示例,展示这三个函数在直角三角形中的几何意义。

3.操练(20分钟)让学生分组讨论,运用锐角三角函数解决实际问题。

浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。

本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。

但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。

三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。

四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。

五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。

六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。

从而引出锐角三角函数的概念。

2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。

通过示例,让学生掌握如何运用锐角三角函数解决实际问题。

3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。

教师巡回指导,为学生提供帮助。

4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。

教师及时批改,给予反馈。

5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。

北师大版数学九年级下册1.1.1《锐角三角函数》说课稿

北师大版数学九年级下册1.1.1《锐角三角函数》说课稿

北师大版数学九年级下册1.1.1《锐角三角函数》说课稿一. 教材分析北师大版数学九年级下册1.1.1《锐角三角函数》是本册教材的起始章节,主要介绍了锐角三角函数的概念、定义及其应用。

通过本节课的学习,学生能够理解锐角三角函数的定义,掌握特殊角的三角函数值,并能运用三角函数解决实际问题。

本节课的内容主要包括以下几个部分:1.锐角三角函数的定义:正弦、余弦、正切函数在锐角范围内的定义及图象。

2.特殊角的三角函数值:30°、45°、60°角的正弦、余弦、正切值。

3.三角函数的性质:单调性、周期性、奇偶性。

4.三角函数在实际问题中的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。

但是,对于锐角三角函数的定义及其应用,学生可能较为陌生。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出锐角三角函数的概念,并通过大量的例子让学生加深对特殊角三角函数值的理解。

三. 说教学目标1.知识与技能:理解锐角三角函数的定义,掌握特殊角的三角函数值,能运用三角函数解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,让学生体会数学与生活的联系,培养学生的动手操作能力和创新能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的重要性。

四. 说教学重难点1.教学重点:锐角三角函数的定义,特殊角的三角函数值。

2.教学难点:三角函数的性质,三角函数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。

2.教学手段:多媒体课件、实物模型、黑板、粉笔等。

六. 说教学过程1.导入:通过生活中的实例,如测量物体的高度、角度的计算等,引出锐角三角函数的概念。

2.新课讲解:讲解锐角三角函数的定义,特殊角的三角函数值,并通过示例让学生理解三角函数的性质。

3.课堂练习:让学生运用三角函数解决实际问题,如测量国旗的高度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档