采样频率的确定

合集下载

信号采样长度、时间间隔和频率的关系

信号采样长度、时间间隔和频率的关系

采样频率、采样点数、分辨率、谱线数(line)(2011-02-23 20:38:35)转载标签:分类:matlab采样频率谱线分辨率采样定理数学计算400line杂谈1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。

根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M即:M=Fm/ΔF所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。

例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(F m/ΔF)=2.56·(400Hz/1Hz)=1024谱线数M=N/2.56=1024/2.56=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。

如何选择适合你的电脑音频采样频率

如何选择适合你的电脑音频采样频率

如何选择适合你的电脑音频采样频率随着科技的发展,电脑已成为我们日常生活中必不可少的一部分。

我们使用电脑来听音乐、观看电影、进行在线会议等等。

在这些应用中,音频是必不可少的。

然而,选择适合你的电脑音频采样频率并不是一项简单的任务。

本文将介绍如何选择适合你的电脑音频采样频率的因素和方法。

一、什么是电脑音频采样频率电脑音频采样频率是指每秒钟对音频信号进行采样的次数。

它决定了音频的质量和存储空间的消耗。

通常用赫兹(Hz)表示,常见的采样频率有 44.1kHz、48kHz、96kHz 等。

二、选择适合你的电脑音频采样频率的因素1. 音频设备的支持能力首先,你需要了解自己使用的音频设备支持的最高采样频率。

不同的设备对于采样频率的支持有限制,如果你的设备不支持某个采样频率,那么选择该采样频率将无法发挥设备的最佳性能。

2. 音频内容的特点不同类型的音频内容对于采样频率的要求也不同。

例如,音乐和电影通常需要更高的采样频率来保证音质的表现;而简单的语音录音则可以选择较低的采样频率。

因此,在选择采样频率时,需要根据你的使用场景和需求来确定。

3. 存储空间的考虑较高的采样频率意味着更高的音频质量,但同时也会占用更多的存储空间。

如果你的电脑存储空间有限,或者你需要保存大量的音频文件,那么你可能需要在音质和存储空间之间做出权衡。

三、选择适合你的电脑音频采样频率的方法1. 根据音频设备的支持情况选择首先,查询你所使用的音频设备的技术规格或厂商的官方网站,了解设备支持的最高采样频率。

然后,在电脑的音频设置中选择与设备支持的最高采样频率相匹配的选项。

2. 根据音频内容的特点选择对于音乐和电影等需要高音质的内容,你可以选择较高的采样频率,如96kHz。

而对于简单的日常语音录音,你可以选择较低的采样频率,如 44.1kHz。

根据你的使用场景和需求,选择适合的采样频率来平衡音质和存储空间的需求。

3. 进行实际测试最后,你可以通过实际测试来确定最适合你的采样频率。

采样定理详解:3个主要条件只需满足其中任意2个

采样定理详解:3个主要条件只需满足其中任意2个

采样定理详解:3个主要条件只需满⾜其中任意2个采样定理采样定理解决的问题是确定合理的采样间隔△t以及合理的采样长度T,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。

衡量采样速度⾼低的指标称为采样频率fs。

⼀般来说,采样频率fs越⾼,采样点越密,所获得的数字信号越逼近原信号。

为了兼顾计算机存储量和计算⼯作量,⼀般保证信号不丢失或歪曲原信号信息就可以满⾜实际需要了。

这个基本要求就是所谓的采样定理,是由Shannon提出的,也称为Shannon采样定理。

Shannon采样定理规定了带限信号不丢失信息的最低采样频率为式中fm为原信号中最⾼频率成分的频率。

采集的数据量⼤⼩N为因此,当采样长度⼀定时,采样频率越⾼,采集的数据量就越⼤。

使⽤采样频率时有两个问题需要注意。

正确估计原信号中最⾼频率成分的频率,对于采⽤电涡流传感器测振的系统来说,⼀般确定为最⾼分析频率为12.5X,采样模式为同步整周期采集,若选择频谱分辨率为400线,需采集1024点数据,若每周期采集32点,采样长度为32周期。

同样的数据量可以通过改变每周期采样点数提⾼基频分辨率,这对于识别次同步振动信号是必要的,但降低了最⾼分析频率,如何确定视具体情况⽽定。

采样定理解析采样定理实际上涉及了3个主要条件,当确定其中2个条件后,第3个条件⾃动形成。

这3个条件是进⾏正确数据采集的基础,必须理解深刻。

条件1:采样频率控制最⾼分析频率采样频率(采样速率)越⾼,获得的信号频率响应越⾼,换⾔之,当需要⾼频信号时,就需要提⾼采样频率,采样频率应符合采样定理基本要求。

这个条件看起来似乎很简单,但对于⼀个未知信号,其中所含最⾼频率信号的频率究竟有多⾼,实际上我们是⽆法知道的。

解决这个问题需要2个步骤,⼀是指定最⾼测量频率,⼆是采⽤低通滤波器把⾼于设定最⾼测量频率的成分全部去掉(这个低通滤波器就是抗混滤波器)。

现实的抗混滤波器与理论上的滤波器存在差异,因此信号中仍会存在⼀定混叠成分,⼀般在计算频谱后将⾼频成分去掉,⼀般频谱线数取时域数据点的1/2.56,或取频域幅值数据点的1/1.28,即128线频谱取100线,256线频谱取200线,512线频谱取400线等等。

采样频率说明

采样频率说明

采样频率、采样点数、分辨率、谱线数(line)1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。

根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M 即:M=Fm/ΔF 所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。

例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024谱线数M=N/2.56=1024/2.56=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然.对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混叠的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。

其主要目的是避免信号混淆保证高频信号不被歪曲成低频信号。

采样点采样时间和采样频率确定.potx

采样点采样时间和采样频率确定.potx
谢谢!
国家职业教育水环境监测与治理专业教学资源库 采样点、采样时间和采样频率确定
小结
1.了解《城镇污水处理厂污染物排放标准》 (GB18918-2002)中一级标准(A标准)。 2.熟悉污水采样点位的布设原则。 3.掌握城镇污水处理厂采样时间和采样频率的确定。
国家职业教育水环境监测与治理专业教学资源库 采样点、采样时间和采样频率确定
该污水处理厂进水水量稳定,水质变化不大,根据上述 规定,采用等时间比例采样,采集时间为:8:00、10:00、 12:00、14:00、16:00、18:00、20:00、22:00、24: 00。
国家职业教育水环境监测与治理专业教学资源库 采样点、采样时间和采样频率确定
4 . 注意事项
确定采样点时应注意以下几点: ① 采样点的水流状况要比较稳定,不能在死角或水流湍急 处取样; ②采样点位一经确定,不得随意改动,如因生产工艺或其他 原因需变更时,由当地环境保护行政主管部门和环境监测站 重新确认。 ③ 采样点位应设置明显标志并建立采样点管理档案。
国家职业教育水环境监测与治理专业教学资源库 采样点、采样时间和采样频率确定
2.污水采样点的选定

泥饼外运
浓缩 脱水间
泥 池
剩余污泥 污 泥 泵
回流污泥 房

污水

粗 格


提升 泵房

细 格● 栅
● 钟式 ● ● 厌氧 ● ● orbal ● 沉砂池 选择池 氧化沟
沉 淀 池

● 排放
● 紫外线 ● ● D型 ●
(1)监测指标的选取 根据进水水质特点和污水处理厂的运行情况,
确定该水样采集的监测项目为:COD、BOD5、SS、 NH3-N 、总氮、总磷、PH和DO。

信号采样长度、时间间隔和频率的关系

信号采样长度、时间间隔和频率的关系

采样频率、采样点数、分辨率、谱线数(line)(2011-02-23 20:38:35)转载标签:分类:matlab采样频率谱线分辨率采样定理数学计算400line杂谈1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。

根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M即:M=Fm/ΔF所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。

例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(F m/ΔF)=2.56·(400Hz/1Hz)=1024谱线数M=N/2.56=1024/2.56=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。

信号采样长度、时间间隔和频率的关系

信号采样长度、时间间隔和频率的关系

采样频率、采样点数、分辨率、谱线数(line)(2011-02-23 20:38:35)转载标签:分类:matlab采样频率谱线分辨率采样定理数学计算400line杂谈1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。

根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M即:M=Fm/ΔF所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。

例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024谱线数M=N/2.56=1024/2.56=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。

采样频率说明

采样频率说明

采样频率、采样点数、分辨率、谱线数(line)1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。

根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:N= 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M 即:M=Fm/ΔF 所以:N=ΔF★采样点数的多少与要求多大的频率分辨率有关。

例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=·Fm= ·400Hz=1024Hz;采样点数N=·(Fm/ΔF)=·(400Hz/1Hz)=1024谱线数M=N/=1024/=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然.对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混叠的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用倍主要跟计算机二进制的表示方式有关。

其主要目的是避免信号混淆保证高频信号不被歪曲成低频信号。

采样长度T的选择首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;对周期信号,理论上采集一个周期信号就可以了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逐次比较式ADC 采样频率的选取及应用
作者:吕 迅,鲁聪达时间:2006-12-22 来源:
摘要: 在设计数据采集系统时,一项重要的任务是选择模数转换器(ADC) 的采样频率L 根据采样理论,采样频率至少应为输入信号带宽的两倍,实际往往采用更高的采样频率来保证数据采集系统的精度L 但当逐次比较式ADC 的采样频率过高时,会使其内部采样保持的开关电容充电不充分,从而导致ADC 转换误差过大L选择一个合适的采样频率是保证数据采集系统可靠工作的关键L通过建立ADC 及前向通道的等效模型及推导,在保证ADC 的转换精度下,推出ADC 的采样时间与信号放大电路输出阻抗的匹配关系,得到ADC 最合适的采样频率。

关键词:逐次比较式;模数转换器;开关电容;采样时间;转换精度
引 言
数据采集系统的前向通道一般是由三部分组成的: 传感器,信号放大电路和模数转换器(ADC) 。

逐次比较式的模数转换器是试验机控制系统的数据采集模块及其它工业数据采集系统常采用的模数转换器L在设计这类数据采集系统时,一项重要的任务是选择模数转换器(ADC) 的采样频率。

根据采样理论,信号的采样频率至少应为输入信号带宽的两倍,实际往往采用更高的采样频率来保证数据采集系统的精度。

但当逐次比较式ADC 的采样频率过高时,会导致ADC 转换误差过大。

这是因为这类ADC 的采样保持部分是采用开关电容阵列的结构。

这种结构是靠信号放大电路的输出电压对其内部的开关电容阵列进行充
电,即ADC 的采样阶段。

然后对电容阵列的电压值进行保持及转换得到对应的数字量L 而对开关电容阵列进行充电需要一定时间,如果ADC 的采样时间过短,会导致ADC 内部的开关电容阵列并未完全充电,即此时ADC 采得电压值低于实际电压值。

从而导致后面转换结果与实际误差过大而无效。

因此采样时间必须能保证开关电容阵列的充分充电,才能保证采样值的精度。

而开关电容阵列的充电时间取决于信号放大电路的输出电阻和ADC 的转换位数。

本文推导出ADC 的采样时间与信号放大电路输出阻抗的匹配关系,在保证ADC的转换精度下,得到不同转换位数ADC 的最佳采样频率。

模拟输入电路的分析
测控系统的传感器和信号放大电路经常采用差动式放大器和运算放大器变换电路等组成,根据戴维南原理(Théven in’s theo rem ) ,可将其简化成一个放大后的等效电压信号源。

而逐次比较式ADC 的开关电容阵列结构,在其采样期间,等效于一个等效电容通过一个等效内部电阻与信号源相连L因此整个前向通道可等效并简化为图1。

图1 的等效电路对本文所分析T i 公司的TLC54X,TLC154X 和TLC254X 系列的逐次比1 较式ADC 都是有效的。

由于对图1 中ADC 的等效电容C i 的充电是呈指数变化,见图2根据理论分析,充电时间越长,其上的电压U c 只是无限接近于等效信号源的电压U s为保持一定采样频率,在以下的分析中,假定当等效电容C i 上的电压值达到了1/16 L SB 的误差范围之内,即算其进行了完全充电L因为在此采样误差下,再把其它的内部误差,如DNL 和NL 一起统计进来,可把总共的转换误差控制在± 1/2 L SB 之内。

在1/16L SB 误差范围L其计算公式如下:
式中:U c 为等效电容上的采样电压;U s 为等效信号源的电压; R t 为R s + R i; R s 为
等效信号源的输出电阻; R i 为ADC 的等效内部电阻; T C 为等效电容的充电时间。

等效电容在1?16 L SB 误差范围内的的电压为
其中N 为ADC 转换精度的位数
将式(2) 代入式(3) ,得
其中时间常数T C = R t × C i因此一个8 位ADC 中开关电容的充电时间为8。

32 倍的时间常数。

表1将显示各种位数的ADC 的充电时间。

由上述计算过程可知,ADC 输入采样时间(T s)必须大于或等于其等效开关电容充电的时间常数,方可保证ADC 采样值不超过1/16 的L SB 的误差。

在试验机测控系统中采样时间的计算及比较
为了验证上述等效模型的有效性,本文选用试验机测控系统等速加载来试验,见图3。

系统中的ADC 为TLC2543,TLC2543 是12 位精度SP I 接口的串行ADCL由
TLC2543 数据手册可知,其前8个I/O clock 为采样时间。

在第12 个I/O clock 的下降沿开始AD 转换。

因此其采样时间为
其中f I/O 为TLC2543 的I/O clock 频率。

由表1 知12 位的TLC2543 的充电时间及公式(5)。

在Ci = 100 (pF) 及R i = 1 (kΩ) 时,另测得信号放大电路的输出R s = 2 1 (kΩ)
为保证TLC2543 的采样误差在1/16 L SB 之内,单片机提供给TLC2543 的f I/O 不
应高于2。

325MHz。

当单片机提供给TLC2543 的f I/O 分别为4MHz 和2MHz 时,
其等速加载的控制结果见图4 和图5。

由图4 可见,由于其f I/O 大于2。

325 MHz,TLC2543 的内部等效电容充电不完全,因此采样误差较大,从而控制品质较差。

图5 中f I/O 小于2。

325MHz,TLC2543 的内部等效电容充电完全,保证了其采样误差在1/16 L SB 之内,因此其控制品质较好。

总 结
通过简化测控系统前向通道的等效模型,说明了如何控制逐次比较式ADC 的采样频率与等效信号源的输出阻抗匹配,从而保证ADC 的采样误差在1/16L SB 之内L。

并通过实验对比,验证了其有效性。

标签:逐次比较式;模数转换器;开关电容;采样时间;转换
精度。

相关文档
最新文档