3.1.2幂的乘方(二)

合集下载

幂的运算—幂的乘方教案设计

幂的运算—幂的乘方教案设计

幂的运算—幂的乘方教案设计幂的运算—幂的乘方教案设计「篇一」幂的运算的小结与思考教案课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。

教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。

你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2。

②(-x3)=-(-x)3。

③(x-y)2=(y-x)2。

④(x-y)3=(y-x)3。

⑤x-a-b=x-(a+b)。

⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25。

所以103m+2n=103m102n=6425=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1。

y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<1324>=2,则<210>=______.解 210=(24)222=1624。

<210>=<64>=4例5 1993+9319的个位数字是A.2 B.4 C.6 D.8解1993+9319的个位数字等于993+319的`个位数字.∵ 993=(92)469=81469.319=(34)433=81427.993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。

初中数学知识点精讲精析 幂的乘方与积的乘方 (2)

初中数学知识点精讲精析 幂的乘方与积的乘方 (2)

2 幂的乘方与积的乘方学习目标1. 理解幂的乘方性质并能应用它进行有关计算。

2. 通过推导性质培养学生的抽象思维能力。

知识详解1. 幂的乘方(1)法则:幂的乘方,底数不变,指数相乘。

(2)符号表示:(a m )n =a mn (m ,n 都是正整数)。

(3)拓展:①法则可推广为[(a m )n ]p =a mnp (m ,n ,p 都是正整数)②法则可逆用:a mn =(a m )n =(a n )m (m ,n 都是正整数)2. 积的乘方(1)法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(2)符号表示:(ab ) n =a n b n (n 为正整数)。

(3)拓展:①三个或三个以上的数的乘积,也适用这一法则,如:(abc )n =a n b n c n ,a ,b ,c 可以是任意数,也可以是幂的形式。

②法则可逆用:a n b n =(ab )n (n 为正整数)。

【典型例题】例1:计算()232y x 的结果是【答案】264y x【解析】()226342y y x x = 例2:计算()32a 的结果是 【答案】38a 【解析】()3382a a =例3:计算()23n m 的结果是 【答案】62m n【解析】()2623n m m n = 【误区警示】 易错点1:积的乘方 1. 如果()3915n m b a b a b =∙∙,那么( )A . m=9,n=4B . m=9,n=﹣4C . m=3,n=4D . m=4,n=3【答案】D【解析】()3333333n m n m n mb a b a b b a b +=∙=∙∙∙∴3n=9,3m+3=15,解得:n=3,m=4. 故选D . 易错点2:幂的乘方的性质的逆运算 2. 已知10m =2,10n =3,则3210m n +=【答案】72【解析】3210m n += ()232322389721010101032m n m n n +===∙=⨯= 【综合提升】针对训练1. 设a=343,b=512,c=254,按照从大到小的顺序排列为2. 已知2x+5y=3,求324y x ∙的值. 3. 已知m a =2,n a =5,求2m n a +的值.1.【答案】a >b >c【解析】∵b=512,c=254=502∴b >c ,又∵a=343=179,b=512=178∴a >b , ∴a >b >c .2.【答案】∵2x+5y=3,2525383242222y x x y x y +∙=∙=== 【解析】根据同底数幂相乘和幂的乘方的逆运算计算. 3.【答案】∵m a =2,n a =5∴()222m n m n nm a a a a a +=∙=∙=4×5=20. 【解析】运用同底数幂的乘法的逆运算和幂的乘方进行计算即可.【中考链接】(2014年随州)计算()32xy -,结果正确的是( )A .42y x B .63y x - C .63y x D .53y x -【答案】B【解析】原式=63y x -课外拓展整式乘法中的开放型问题结论开放与探索:给出问题的条件,根据条件探索相应的结论,并且符合条件的结论往往呈现多样性,或者相应的结论的“存在性”需要进行推断,甚至探求条件在变化中的结论,这些问题都是结论开放性问题.它要求充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查我们的发散性思维和所学基本知识的应用能力。

七年级下册数学第二课幂的乘方与积的乘方

七年级下册数学第二课幂的乘方与积的乘方

一、概述乘方是数学中常见的概念,它在代数运算中起着重要作用。

在本文中,我们将讨论乘方的概念及其相关性质。

首先我们将介绍乘方的定义,然后我们将讨论幂的乘方以及积的乘方的运算规律。

二、乘方的定义乘方是指将一个数称为“底数”,另一个数称为“指数”,并将底数连乘指数次得到的结果。

其数学表示为a^n,其中a为底数,n为指数,n表示连乘的次数。

2^3=2*2*2=8。

三、幂的乘方幂的乘方指的是将同一底数的幂连乘起来。

其数学表示为(a^m)^n,其中a为底数,m和n为指数,表示连乘的次数。

幂的乘方的运算规律为(a^m)^n=a^(m*n)。

(3^2)^3=3^(2*3)=3^6=729。

四、积的乘方积的乘方指的是将多个不同底数的积连乘起来。

其数学表示为(a*b)^n,其中a和b为不同底数,n为指数,表示连乘的次数。

积的乘方的运算规律为(a*b)^n=a^n*b^n。

(2*3)^4=2^4*3^4=16*81=1296。

五、乘方的性质1. 乘方的分配律:对于任意底数a和b,以及任意指数m和n,都有(a*b)^n=a^n*b^n。

2. 乘方的乘法法则:对于任意底数a,b和指数n,有(a^n)*(b^n)=(a*b)^n。

3. 乘方的幂法则:对于任意底数a和指数m,n和k,有(a^m)^n=a^(m*n),(a^m)^n=a^(m/n)。

4. 乘方的0次幂:对于任意非零数a,a^0=1。

5. 乘方的负指数:对于任意非零数a和负整数n,a^(-n)=1/(a^n)。

六、习题1. 计算以下乘方:a) 2^5b) (3^2)^4c) (4*5)^32. 按照乘方的性质,计算以下乘方:a) 2^3 * 2^4b) (3*4)^53. 证明乘方的乘法法则。

七、结论乘方是代数运算中常见的概念,它具有一系列的运算规律和性质。

通过学习乘方的概念及其运算规律,我们可以更加灵活地进行数学运算,并解决实际问题中的计算需求。

八、参考资料1. 《数学七年级下册》,人民教育出版社。

7年级第5讲 幂的运算(二)

7年级第5讲 幂的运算(二)

《整式的乘除》是整式加减的延续和发展,也是后续学习因式分解、分式运算的基础.整式的乘法运算包含单项式乘法、单项式与多项式乘法和多项式乘法,它们最后都转化为单项式乘法.单项式的乘法又以幂的运算为基础.“整式的乘法”的内容和逻辑线索是:同底数幂的乘法——幂的乘方——积的乘方——单项式乘单项式——单项式乘多项式——多项式乘多项式——乘法公式(特例).由此可见,同底数幂的乘法、幂的乘方、积的乘方是整式乘法的逻辑起点,是该章的起始课.作为章节起始课,承载着单元知识以及学习方法、路径的引领作用.1、幂的运算概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.含义:n a中,a为底数,n为指数,即表示a的个数,n a表示有n个a连续相乘.特别注意负数及分数的乘方,应把底数加上括号.2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:()33---=-⎡⎤⎣⎦;()33-+-=⎡⎤⎣⎦.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号.幂的运算(二)知识结构知识精讲内容分析(3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.3、特别地:当.n .为奇数时,()nn a a -=-;而当n 为偶数时,()nn a a -=. 负数的奇次幂是负数,负数的偶次幂是正数正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”.(1)同底数幂相乘.同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m n a a a +⋅=(,m n 都是正整数).(2)幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘.用式子表示为:()nm mn a a =(,m n 都是正整数). (3)积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用 式子表示为:()nn n ab a b =(n 是正整数).(4)同底数幂相除. 同底数的幂相除,底数不变,指数相减.用式子表示为:m n m n a a a -÷=(0a ≠,m ,n 都是正整数)(5)规定()010a a =≠;1p p a a-=(0a ≠,p 是正整数).一、选择题1. 化简()()23x x -⋅--⎡⎤⎣⎦,结果是() A .6x - B .6xC .5xD .5x -【难度】★ 【答案】 【解析】例题解析2. 下列各式计算过程正确的是( )A .33336x x x x +==+B .3336·2x x x x ==C .350358··x x x x x ==++D .()32235x x x x +⋅-=-=-【难度】★ 【答案】 【解析】3. 下列计算:①()2525x x =;②()257x x =;③()5210x x =;④()752·x y xy =;⑤()1052·x y xy =;⑥.()555x y xy =;其中错误的有( ) A .2个B .3个C .4个D .5个【难度】★ 【答案】 【解析】4. 下列计算中,运算错误的式子有( )(1)33354a a a =-;(2)2m m m x x x =+;(3)62·3n m n m =+;(4)12·m m a a a =++;A .0个B .1个C .2个D .3个【难度】★ 【答案】 【解析】5. 计算()()1009922-+-所得的结果是()A .-2B .2C .992-D .992【难度】★★ 【答案】 【解析】6. 计算()()()22b a a b b a ---的结果是()A .()5a b - B .()5a b --C .()6a b - D .()6a b --【难度】★★ 【答案】 【解析】7. 当n 是正整数时,下列等式成立的有( )(1)()22m m a a =(2)()22m m a a =(3)()22m m a a =- (4)()22mm a a =-A .4个B .3个C .2个D .1个【难度】★★ 【答案】 【解析】8. 计算:()3211n n x x x -+⋅⋅的结果为() A .33n x + B .63n x + C .12n xD .66n x +【难度】★★ 【答案】 【解析】9. 如果2339.48 1.5610=⨯,则20.3948=( )A .1.56B .0.156C .0.0156D .0.00156【难度】★★ 【答案】 【解析】二、填空题(1)()()()()()235x x x x x -⋅-⋅-+-⋅-=__________;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦=__________;【难度】★ 【答案】 【解析】10. 计算:()()2003200422______-+-=.【难度】★ 【答案】 【解析】11. 计算:()()20052004232-+⨯-=_______________.【难度】★ 【答案】 【解析】12. 比较大小:(1)()()422_____4--;(2)()()355_____3--. 【难度】★ 【答案】 【解析】13. 计算:()32122n m n m ⎛⎫-+⋅- ⎪⎝⎭=_______________.【难度】★★ 【答案】 【解析】14. 长为32.210⨯米,宽是41.510⨯厘米,高是2410⨯米的长方体的体积为____________. 【难度】★★ 【答案】 【解析】15. 若25m =,26n =,则212m n ++=_______________. 【难度】★★ 【答案】 【解析】16. 已知2m a =,3n a =,则32m n a +=__________. 【难度】★★ 【答案】 【解析】17. 若53022x y +-=,则432x y ⋅=_______________. 【难度】★★ 【答案】 【解析】18. 设503a =,404b =,305c =,比较a ,b ,c 的大小,用<号连接:________________. 【难度】★★ 【答案】 【解析】19. 若111999a =,222111b =,则a 、b 的大小关系,用<号连接:_________________. 【难度】★★ 【答案】 【解析】20. 已知:227371998a b c ⋅⋅=,其中a 、b 、c 是自然数,则()2016a b c --=_________________.【难度】★★ 【答案】 【解析】21. 你能比较两个数20092008和20082009的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n n +的大小(n 是 自然数),然后,我们分析2n =,2n =,3n =,…中发现规律,经归纳,猜想得 出结论. (1)通过计算,比较下列各组中两个数的大小(在空格中填写“>”、“=”、“<”号)①21____12;②32____23;③43____34;④54____45;⑤65____56…(2)从第(1)题的结果经过归纳,可以猜想出1n n +和()1nn +的大小关系是_______. (3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20092008 ____20082009. 【难度】★★★ 【答案】 【解析】三、简答题22. 计算:(1)()()()()()1333335⨯-⨯-⨯-⨯-⨯-;(2)()()()()()2345a a a a a -⋅-⋅-⋅-⋅-; (3)()()()()n a ba b a b a b a b +++++个;(4)()()66666-⨯⨯-⨯⨯-.【难度】★ 【答案】 【解析】23. 计算:(1)()()32422393m n m n +-;(2)()()32242433a b ab a ⋅-⋅;(3)()()()()32232238a b a a b -+⋅-⋅-;(4)()()()33223733345a a a a a a -⋅+-⋅-⋅.【难度】★ 【答案】 【解析】24. 计算:()()()3421332229m n n m n m ⎡⎤----⎣⎦ 【难度】★ 【答案】 【解析】25. ()()43242142x y x y ⎡⎤⎡⎤-+-+⎢⎥⎣⎦⎣⎦ 【难度】★ 【答案】 【解析】26. 当n 是正整数时,求()()212222n n+-+⋅-.的值.【难度】★ 【答案】 【解析】27. 比较大小:20.4a =-,214b ⎛⎫=- ⎪⎝⎭,()24c =-,214d ⎛⎫=- ⎪⎝⎭.【难度】★ 【答案】 【解析】28. 已知()432a =,()342b =,()423c =,()234d =,()324e =,则a 、b 、c 、d 、e 的大小关系. 【难度】★★ 【答案】 【解析】29. 计算:(1)1011000.254⨯;(2)()()200220030.1258-⨯-.【难度】★★ 【答案】 【解析】30. 计算:()()25331133223a b b a a b b a ⎛⎫⎛⎫-⋅-⋅-⋅- ⎪ ⎪⎝⎭⎝⎭.【难度】★★ 【答案】 【解析】31. 已知:5n a =,3n b =,求()2nab -. 【难度】★★ 【答案】 【解析】32. 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:(1)()4m a ;(2)()3m n a +. 【难度】★★【答案】【解析】33. 若15m x =,3n x =,求()42m n x +-的值. 【难度】★★【答案】【解析】34. 已知4m a =,3n a =,22p a =,求324m n p a ++的值.【难度】★★【答案】【解析】35. 已知5x a =,25x y a +=,求x y a a +的值.【难度】★★【答案】【解析】36. 若2340x y +-=,求927x y ⋅的值.【难度】★★【答案】【解析】37. 已知:13205x y +-=,12305x y --=,求832x y ⋅. 【难度】★★【答案】【解析】38. 已知22n a =,求()()223223n n a a -的值. 【难度】★★【答案】【解析】39. 已知:232122192x x ++-=,求x .【难度】★★【答案】【解析】40. 解方程:313333648x x ++-=-.【难度】★★【答案】【解析】41. 已知742521052m n ⋅⋅=⋅,求,m n 的值.【难度】★★【答案】【解析】42. 如果()2323k a b c+比()24582k a a a a bc ⎡⎤⋅⋅⋅-⋅⎢⎥⎣⎦的次数大1,那么k 的值是多少? 【难度】★★【答案】【解析】43. 比较552,443,335,226这4个数的大小关系.【难度】★★【答案】【解析】44. 比较1615与1333的大小关系.【难度】★★★【答案】【解析】45. 比较5553、4444、3335的大小.【难度】★★★【答案】【解析】46. 已知3181a =,4127b =,619c =,比较a ,b ,c 的大小.【难度】★★★【答案】【解析】47. 若n 为不等式2003006n >的解,求n 的最小正整数值.【难度】★★★【答案】【解析】48. 已知:123n a ++++=,求代数式()()()()()122321n n n n nx y x y x y x y xy ---的值. 【难度】★★★【答案】【解析】49. 已知:22737471998a b c d ⋅⋅⋅=,其中a 、b 、c 、d 为自然数,求a b c d --+的值.【难度】★★★【答案】【解析】50. 已知2001200367M =+,2003200167N =+,比较M 、N 的大小关系.【难度】★★★【答案】【解析】。

1.2幂的乘方(教案)

1.2幂的乘方(教案)
-难点2:对比am × an和(am)n两种情况,解释指数变化的不同,通过多次练习,让学生熟练掌握指数的变化规律。
-难点3:在解决实际问题时,指导学生如何将问题转化为幂的乘方形式,如计算一个正方体体积时,如何将边长的幂指数与体积的幂指数联系起来。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《幂的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过相同底数的幂相乘的情况?”(如计算2的3次方和2的2次方相乘)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索幂的乘方的奥秘。
a. am × an = am+n
b. (am)n = amn
本节课旨在帮助学生熟练掌握幂的乘方概念和运算规则,提高数学运算能力,为后续学习打下坚实基础。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过幂的乘方概念和运算规则的探究,使学生能够运用逻辑思维进行数学推理,提高解决问题的能力。
五、教学反思
在今天的课堂中,我带领学生们学习了幂的乘方这一章节。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课的部分,我通过提出与生活相关的问题来激发学生的兴趣,这起到了一定的效果。然而,我注意到有些学生对这个问题还不够敏感,可能是因为问题与他们的生活实际联系不够紧密。在今后的教学中,我需要更加关注学生的生活经验,提出更具针对性和趣味性的问题。
1.2幂的乘方(教案)
一、教学内容
本节教学内容选自数学八年级上册《幂的乘方》。主要包括以下两部分内容:
1.幂的乘方概念:引导学生理解同底数幂相乘的规律,掌握幂的乘方运算方法。

3.1 同底数幂的乘法(2) 浙教版七年级数学下册课件(共22张PPT)

3.1 同底数幂的乘法(2)  浙教版七年级数学下册课件(共22张PPT)

思考:(am)n 与(an)m 相等吗? 为什么?
因为(am)n =amn =(an)m
所以 (am)n =(an)m

忆一忆有理数混
计算:
(1) (y3)5·y4;
合运算的顺序
(2) a4(-a)2(-a2)5+a16.
解: (1) (x3)5·x4 =x15·x4= x19;
(2) a4(-a)2(-a2)5+a16
= -a4·a2·a10+a16
= -a16+a16 = 0.
先乘方,再乘除
先乘方,再乘除,
最后算加减
底数的符号要统一
例 已知8m=5,8n=7,求下列各式的值.
(1)83m;(2)82n;(3)83m+2n.
解:(1)83m=(8m)3=53=125;
(2)82n=(8n)2=72=49;
(3)83m+2n=83m×82n=125×49=6125.
=a(5)+( 5)+(5)+(5)
=a(5)×(4 ) .
amn
猜想:(am)n=_____.
证一证:
=
( )

∙ ∙. . .∙
n个am
mm
a
a
n个m
mn
m
幂的乘方法则
(am)n= amn
(m,n都是正整数)
相乘
不变
即幂的乘方,底数______,指数____.
解:a=244=(24 )11=1611,
b=333=(33 ) =2711,
c=422=(42 )11=1611,
∵27.计算:
(1)(92)8;
(2)(am)2;
(3)[(-x)3]5
解:(1)(92)3=96.

人教版数学八年级上册14.1.2《幂的乘方》教案2

人教版数学八年级上册14.1.2《幂的乘方》教案2

人教版数学八年级上册14.1.2《幂的乘方》教案2一. 教材分析《幂的乘方》是人教版数学八年级上册第14章第1节的一部分,本节内容是在学生已经掌握了有理数的乘方、幂的定义等知识的基础上进行授课的。

本节课主要让学生学习幂的乘方,即同底数幂相乘,以及积的乘方,即幂与幂相乘。

这两个概念在数学中是非常重要的,它们不仅在初中数学中占有重要的地位,而且在中考和高中数学学习中也是经常出现的。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对幂的概念有了一定的了解。

但是,对于幂的乘方和积的乘方这两个概念,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对于幂的运算规则和性质还不够熟悉,这也是需要在教学中加以引导和巩固的。

三. 教学目标1.让学生理解幂的乘方的概念,掌握幂的乘方的运算规则。

2.让学生理解积的乘方的概念,掌握积的乘方的运算规则。

3.培养学生的运算能力,提高学生的数学思维能力。

四. 教学重难点1.幂的乘方的概念和运算规则。

2.积的乘方的概念和运算规则。

3.幂的运算规则和性质的运用。

五. 教学方法采用问题驱动法、实例教学法、分组讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而理解和掌握幂的乘方和积的乘方的概念和运算规则。

六. 教学准备1.PPT课件2.教学案例和练习题3.黑板和粉笔七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念,为新课的学习做好铺垫。

2.呈现(15分钟)利用PPT课件,呈现幂的乘方和积的乘方的定义和运算规则,让学生初步感知这两个概念。

3.操练(15分钟)让学生分组讨论,通过实例来理解和掌握幂的乘方和积的乘方的运算规则,同时引导学生总结幂的运算规则和性质。

4.巩固(10分钟)进行一些幂的运算练习,让学生在实践中进一步巩固幂的乘方和积的乘方的概念和运算规则。

5.拓展(10分钟)引导学生思考幂的乘方和积的乘方在实际问题中的应用,让学生感受数学与生活的联系。

幂的乘方与积的乘方

幂的乘方与积的乘方

幂的乘方与积的乘方学建议一、知识结构二、重点、难点分析本节教学的重点是幂的乘方与积的乘方法则的明白得与把握,难点是法则的灵活运用.1.幂的乘方幂的乘方,底数不变,指数相乘,即( 差不多上正整数)幂的乘方的推导是依照乘方的意义和同底数幂的乘法性质.幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的运算结果写成.幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.2.积和乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即( 为正整数).三个或三个以上的积的乘方,也具有这一性质.例如:3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的要紧依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是明白得.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.三、教法建议1.幂的乘方导出的依照是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如关于从指数连加得到指数相乘,要依照学生情形多作一些说明.以为例,再一次说明能够写成.这一点是导出幂的乘方性质的关键,务必使学生真正明白得.在此基础上再导出性质.2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.(2)记清幂的运算与指数运算的关系:(同底)幂相乘指数相加(乘变加,降一级运算);幂乘方指数相乘(乘方变乘法,降一级运算).了解到有关幂的两个重要性质都有使原运算仅降一级运算的规律,可使自己更好把握有关性质.3.在教学的各个环节中,注意启发学生,不仅把握法则,还要明确什么缘故.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决那个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发觉问题,说明显现问题的缘故;要注意防止两个错误:(1)(-2xy)4=-24x4y4.(2)(x+y)3=x3+y3.幂的乘方与积的乘方(一)一、教学目标1.明白得幂的乘方性质并能应用它进行有关运算.2.通过推导性质培养学生的抽象思维能力.3.通过运用性质,培养学生综合运用知识的能力.4.培养学生严谨的学习态度以及勇于创新的精神.5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:引导发觉法、尝试指导法.2.学生学法:关键是准确明白得幂的乘方公式的意义,只有准确地判别出其适用的条件,才能够较容易地应用公式解题.三、重点难点及解决方法(-)重点准确把握幂的乘方法则及其应用.(二)难点同底数幂的乘法和幂的乘方的综合应用.(三)解决方法在解题的过程中,运用对比的方法让学生感受、明白得公式的联系与区别.四、课时安排一课时.五、教具学具预备投影仪、胶片.六、师生互动活动设计1.复习同底数幂乘法法则并进行、的运算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的明白得.2.教师举例进行示范,师生共练以熟悉幂的乘方性质.3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的明白得.七、教学步骤(-)明确目标本节课重点是把握幂的乘方运算性质并能进行较灵活的应用(二)整体感知幂的乘方法则的应用关键是判定准其适用的条件和形式.(三)教学过程1.复习引入(1)叙述同底数幂乘法法则并用字母表示.(2)运算:①②2.探究新知,讲授新课(1)引入新课:运算和和提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.运算过程按课本,并注明每步运算的依照.观看题目和结论:估量幂的乘方的一样结论:(2)幂的乘方法则语言叙述:幂的乘方,底数不变,指数相乘.字母表示:.( ,差不多上正整数)推导过程按课本,让学生说出每一步变形的依照.(3)范例讲解例1 运算:解:①例2 运算:解:①原式②原式练习:①P97 1,2②错例辨析:下列各式的运算中,正确的是( )A. B.C. D.(四)总结、扩展同底数幂的乘法与幂的乘方性质比较:幂运算种类指数运算种类同底幂乘法乘法加法幂的乘方乘方乘法八、布置作业P101 A组1~3; B组1.参考答案“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2幂的乘方
一.回顾旧知
同底数幂的乘法法则:
试一试:
=∙m m a a =∙∙333a a a
二.新授
1.如图,这个正方体的棱长是 a 2cm,那么它的体积是 cm 3.
你知道(a 2)3是多少个a 相乘吗?
2.根据乘方的意义和同底数幂的乘法法则填空:
().()42
110=
35
(2).()a =
?)(=n m a
3.幂的乘方法则:幂的乘方,底数,指数。

4.做一做:
)45((10)10= )34((3)3= )
35(()x x =
) )(()(m n a =(,m n 为正整数)
5.幂的乘方与同底数幂的乘法有什么区别和联系?
例1.计算下列各式,结果用幂的形式表示:
() ()73110() ()48
2a
(3)[(-x )6]3(4)(-28 )3
例2.计算下列各式,结果用幂的形式表示:
3() ()()4251x x ⋅2() ()()5553
22y y y ⋅-⋅
三.随堂练习
1、下面的计算对吗?错的请改正。

3() (4)5814=2() 510
2a a a ⋅=
5() [()]315333-=-() (5)248
455⨯=
8() (2)()32452-=-4() 48
6b b b +=
2、计算下列各式,结果用幂的形式表示:
四.拓展练习
1、若a m = 2, 则a 3m =_____.
2、若m x = 2, m y = 3 ,则m x+y =____, m 3x+2y =______.
3、填一填:
⑴ 85=2()
⑵a 12=(a 3)( ) =(a 2)( ) = a 3·a ( )
4、我们知道,(a n )m =(a m )n ,你能根据这个结论计算()2
32⎥⎦⎤⎢⎣⎡的值吗?
5、在255,344,433,522,这四个幂的数值中,最大的一个是_______
五.课堂小结:
1、收获与反思:
2、作业:。

相关文档
最新文档