构件四种基本变形-受力特点
工程力学复习资料

刚体:在力的作用下形状、大小保持不变的物体。
(理想的力学模型)变形固体:当分析强度、刚度和稳定性问题时,由于这些问题都与变形密切相关,因而即使是极其微小的变形也必须加以考虑的物体。
(理想的力学模型)弹性:变形固体加载时将产生变形,卸载后,具有恢复原形的性质。
弹性变形:卸载后消失的那一部分变形。
塑性变形:当外载超过某极限值时,卸载后消除一部分弹性变形外,还将存在一部分未消失的变形。
失效:工程结构和构件受力作用而丧失正常功能的现象。
构件衡量的标准主要有:具有足够的强度 、足够的刚度、足够的稳定性。
工程力学主要应用三种研究方法:理论分析、试验分析和计算机分析。
杆件在外力作用下的变形有四种基本变形:轴向拉伸或压缩、剪切、扭转、弯曲。
【公理一】二力平衡公理:刚体在两个力作用下保持平衡的必要和充分条件是:此两力大小相等、方向相反、作用在一条直线上。
(二力平衡只适用于刚体,不适用于变形体)【公理二】加减平衡力系公理:在作用于刚体的力系中,加上或去掉一个平衡力系,并不改变力系对刚体的作用效果。
有上述两个公理可以得出一个推论:作用在刚体上的里可沿其作用线移动到刚体内任一点,而不改变该力对刚体的作用效果。
这个推论称为力的可传性。
(力的可传性只适用于刚体而不适用于变形体) 【公理三】平行四边形公理【公理四】作用与反作用公理:两个物体间的作用力与反作用力总是同时存在,大小相等,方向相反,沿同一直线分别作用在两个物体上。
力矩:FdF Mo±=)( 使物体产生逆时针转动的力矩为正;反之为负。
力偶矩:力偶对物体的转动效应,取决于力偶中力和力偶臂的大小以及力偶的转向。
M (F,F ′)=±F ·d 或M=±F ·d 通常规定力偶逆时针旋转时,力偶矩为正,反之为负。
力偶的三要素:力偶矩的大小、力偶的转向、力偶作用面的方位。
力的平移定理:作用于物体上的力F ,可以平移到刚体的任一点O ,但必须同时附加一个力偶,其力偶矩等于原力F 对新作用点O 的;力矩。
第四单元 构件基本变形的分析

由平衡方程
FX 0
FN F 0 FN F
左右
截面法求内力的步骤
1、截:在欲求处假想用截面将构件截成两段。 2、取:取其中任意一段为研究对象。 3、代:用作用于截面上的内力,代替切去部
分对留下部分的作用力。 4、平:对研究对象列平衡方程,由外力确定
图4-10
解:(1)计算外力(设约束反力FR)如图 ΣFx = 0 - FR - F1 +F2 = 0
FR = - F1 + F2 = - 50 + 140 = 90KN (FR方向是正确的)
FR
X
(2)计算各截面上的轴力并画出轴力图
1-1截面上的轴力
FN1= - F 1
= - 50KN FR
(杆受压)
第四单元 构件基本变形的分析
学习目标
通过本单元的学习,了解有关构件基 本变形的概念及形式,明确求解构件在各 种基本变形状态下的内力和应力,掌握强 度条件和刚度条件的公式,并能应用其解 决简单的工程问题。
综合知识模块一 基本变形分析的基础
能力知识点1
变形分析的基本概念
一、变形固体及其基本假设
任何物体受载荷(外力)作用后其内部质 点都将产生相对运动,从而导致物体的形状和 尺寸发生变化,称为变形。
构件的承载能力分为:
强度、刚度、稳定性。
一、强度
构件抵抗破坏的能力。 构件在外力作用下不破坏必须具有足够 的强度,例如房屋大梁、机器中的传动轴不 能断裂,压力容器不能爆破等。
强度要求是对构 件的最基本要求。
二、刚度
构件抵抗变形的能力。 在某些情况下,构件虽有足够的强度,但若 受力后变形过大,即刚度不够,也会影响正常工 作。例如机床主轴变形过大,将影响加工精度; 吊车梁变形过大,吊车行驶时会产生较大振动, 使行驶不平稳,有时还会产生“爬坡”现象,需要 更大的驱动力。因此对这类构件要保证有足够的 刚度。
模块2---构件的基本变形分析

为了使取左段或取右段求得的同一截面上 的轴力相一致,规定:FN的方向离开截面为 正(受拉),指向截面为负(受压),如图2-6所示。
2.2.2轴力与轴力图 3. 轴力图 用平行于杆轴线的 x 坐标表示横截面位置,用垂 直于 x的坐标 FN 表示横截面轴力的大小,按选定的 比例,把轴力表示在x-FN坐标系中,描出的轴力随 截面位置变化的曲线,称为轴力图。如图 2-7 所示。
学习情境2 拉伸和压缩
2.2.1拉伸与压缩的概念
工程实际中,有很多发生轴向拉伸和压缩变
形的杆件,如联接钢板的螺栓(见图2-2(a)), 在钢板反力作用下,沿其轴向发生伸长(见 图2-2(b)),称为轴向拉伸;托架的撑杆CD (见图2-3 (a))在外力的作用下,沿其轴向 发生缩短(见图2-3(b)),称为轴向压缩。产 生轴向拉伸(或压缩)变形的杆, 简称为拉 (压)杆。
2.2.3 轴向横截面上的应力与变形计算 1.应力 内力在截面上的集度称为应力 (垂直于杆横截面的 应力称为正应力,平行于横截面的称为切应力 ) 。 应力是判断杆件是否破坏的依据。单位是帕斯卡, 简称帕,记作Pa,即l平方米的面积上作用1牛顿的 力为1帕。
根据杆件变形的平面假设和材料均匀连 续性假设可推断:轴力在横截面上的分布是 均匀的,且方向垂直于横截面。即横截面上 各点处的应力大小相等,方向沿杆轴线,垂 直于横截面, 故为正应力。
模块2 构件的基本变形
【技能目标】
对构件进行拉伸与压缩变形分析与计算; 分析构件剪切与挤压变形,校核其剪切强度
及挤压强度、设计截面等; 分析圆轴类构件的扭转,校核强度条件、设 计截面等; 对梁的剪力和弯矩进行计算,校核强度条件, 并采取措施提高梁的强度。
模块2 构件的基本变形
机械零件与典型机构13构件受力与变形-精选文档

机床主轴,在工作过程中虽然没有破坏,但如果
主轴的变形过大,则将影响机床的加工精度而使 零件报废,破坏齿轮的正常啮合,引起轴承的不 均匀磨损,造成机器无法正常工作。
3.足够的稳定性 受压的细长杆和薄壁构件,当载荷增加时,可能出现突然 失去初始平衡形态的现象,称为丧失稳定。 克夫达河桥失稳 莫兹尔桥失稳
力系平面任意力系的平衡方程
∑Fx = 0 ∑Fy = 0 ∑M(F) = 0
二、对机械零件的要求 失效:机械零件丧失工作能力或达不到要求的性能时
称为失效。
1.足够的强度 强度:零件抵抗破坏的能力,称为强度。 机械零部件一般都必须具有足够的强度。
2.足够的刚度 刚度:零件抵抗变形的能力,称为刚度。
成的平行四边形的对角线来表示。
力的合成与分解
2.力矩 力矩的概念: 在力学上用 F 与 d 的乘积及其转向来度量
力 F 使物体绕O点转动的效应,称为力 F
对O点之矩,简称力矩,以符号(F)表示, 即: (F)= ± Fd 点称为力矩中心,简称矩心; 点到力 F 作
用线的垂直距离 d 称为力臂。
力矩的正负:
名称 图示 描述
外力作用线垂 直于杆轴,或外 力偶作用在杆 轴平面内。
名称
图示
描述
各横线仍为直 线,横线之间相 对转动,仍与纵 线正交;纵线变 为弧线,受压侧 弧线变短, 受拉一侧弧线变 长。
外
力
变形现象
内
力
应力分布
正应力沿截面高 度按直线规律变 化,中性轴上为 零。
强度条件
max
M W max
(2)扭转 机械装置中的轴类零件大都承受扭转的作用。 扭转变形的特点:构件受到大小相等、方向相反、作用 面垂直于轴线的力偶;
汽车机械基础试题库及答案

《汽车机械基础》试题库模块一汽车机械基础简介项目一机械及其相关概念的识别复习要点:1、机器、机构、构件、零件的基本概念;2、区分构件和零件;3、汽车的结构。
一、填空题(每空1分)1、构件是机器的_______ 元体;零件是机器的 ________ 元体,分为_________ 件和 _________ 件2、一部完整的机器,就其功能而言,可分为__________ 、_______ 、 _______ 和。
3、运动构件分为______ 和_______ 。
4、汽车的基本结构都由_________ 、 ______ 、_______ 、______ 四大部分组成。
答案:1、运动、制造、专用、通用2、动力部分、传动部分、执行部分、控制部分3、主动件、从动件4、发动机、底盘、车身、电器部分二、判断题(每题1分)1、所有构件一定都是由两个以上零件组成的。
()2、汽车的发动机是驱动整个汽车完成预定功能的动力源。
()3、构件就是零件。
()答案:1、32、“ 3 3三、选择题(每题2分)1、在如图所示的齿轮一凸轮轴系中,键2称为()A、零件B、机构C、构件D、部件2、我们把各部分之间具有确定的相对运动构件的组合称为()A、机器B、机构C、机械D、机床3、汽车的转向系属于一下哪部分()A、发动机B、车身C、底盘D、电器设备答案:1、A、2、B3、C项目二平面机构的自由度计算复习要点:1、能够判断平面机构是否具有确定运动。
一、填空题(每空1分)1、运动副是使两构件________ 同时又具有________ 勺一种联接。
平面运动副可分为_______ 和_______ 。
2、平面运动副的最大约束数为。
3、机构具有确定相对运动的条件是机构的自由度数目主动件数目。
4、房门的开关运动, 是副在接触处所允许的相对转动。
5、抽屉的拉岀或推进运动,是副在接触处所允许的相对移动。
6、火车车轮在铁轨上的滚动,属于畐9。
答案:1、直接接触、相对运动、低副、高副2、23、等于4、转动5、移动6、齿轮二、判断题侮题1分)1、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。
工程力学第一章 简介

F1
F2
在进行构件受力分析时,能正确判断其是否为二力构
件,可使问题顺利解决。这点很重要!
C
F1
A
F1
B
D
F2
F2
公理2:力的平行四边形法则
作用在物体上同一点的两个力可以合成为一个力,
合力的作用点仍作用在这一点,合力的大小和方 向由这两个力为邻边所构成的平行四边形的对角 线确定。 矢量表示法:FR=F1+F2
1)确定研究对象; 2)确定研究对象上所受的力(受力分析)。 分离体:解除约束后的自由物体。 研究对象往往为非自由体,为了清楚地表示物 体的受力情况,需要把所研究的物体从与它周围 相联系的物体中分离出来,单独画出该物体的轮 廓简图,使之成为分离体。
受力分析的一般步骤
⑴根据题目恰当地确定研究对象,研究对象可以是 一个物体或一个物系; ⑵取分离体; ⑶在分离体上,画出物体所受的主动力,并标出各 主动力的名称; ⑷根据约束的类型确定约束反力的位置与方向,画 在分离体上,并标出各约束反力的名称。
二、平衡
平衡——物体相对于惯性参考系处于静止或作匀速直 线运动状态。 平衡是相对的,是运动的特例,平衡的规律远比一 般规律简单。工程上有很多平衡问题。 相对于地球不动的参考系称为惯性参考系。 平衡力系 一个物体受某力系作用处于平衡,则此力系称为平 衡力系。 力系使物体平衡而需要满足的条件称为力系平衡条 件。
教学重点
静力学的四个基本概念; 三个静力学基本公理和平行四边形法则;
工程中常见的约束反力的特点及受力图;
对物体进行受力分析的方法和步骤以及画受力图。
难点
静力学基本公理的应用和推论; 常见约束的区分与约束反力的画法;
《机械设计基础》课程问题及解答
《机械设计基础》问题及解答一、机器与机构(一)名词解释1.机械:机器、机械设备和机械工具的统称。
2.机器:是执行机械运动,变换机械运动方式或传递能量的装置。
3.机构:由若干零件组成,可在机械中转变并传递特定的机械运动。
4.构件:由若干零件组成,能独立完成某种运动的单元5.零件:构成机械的最小单元,也是制造的最小单元。
6.标准件:是按国家标准(或部标准等) 大批量制造的常用零件。
(二)简答题:1.机器与机构的主要区别是什么?答:机构不能作为传递能量的装置。
2.构件与零件的主要区别是什么?答:构件运动的最小单元,而零件是制造的最小单元。
3. 何谓标准件?它最重要的特点是什么?试列举出五种标准件。
答:是按国家标准(或部标准等) 大批量制造的常用零件。
最重要的特点是:具有通用性。
例如:螺栓、螺母、键、销、链条等。
4.标准化的重要意义是什么?答:标准化的重要意义可使零件、部件的种类减少,简化生产管理过程,降低成本,保证产品的质量,缩短生产周期。
二、静力学与材料力学(一)名词解释1.强度极限:材料σ-ε曲线最高点对应的应力,也是试件断裂前的最大应力。
2.弹性变形:随着外力被撤消后而完全消失的变形。
3..塑性变形:外力被撤消后不能消失而残留下来的变形。
4..延伸率:δ=(l1-l)/l×100%,l为原标距长度,l1为断裂后标距长度。
5.断面收缩率:Ψ=(A-A1)/ A×100%,A为试件原面积,A1为试件断口处面积。
6.工作应力:杆件在载荷作用下的实际应力。
7.许用应力:各种材料本身所能安全承受的最大应力。
8.安全系数:材料的极限应力与许用应力之比。
9.正应力:沿杆的轴线方向,即轴向应力。
10.剪应力:剪切面上单位面积的内力,方向沿着剪切面。
11.挤压应力:挤压力在局部接触面上引起的压应力。
12.力矩:力与力臂的乘积称为力对点之矩,简称力矩。
13.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶14.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。
第2章构件的基本变形
题。
2.3.2 扭矩与扭矩图
1.外力偶矩的计算公式:
2.扭矩与扭矩图 圆轴在外力偶矩作用下发生扭转变形时,其截面上产生的内 力称为扭矩,求扭矩的方法仍用截面法。 在多个外力偶作用下,圆轴各截面上的扭矩一般不同,为了 形象地表示扭矩沿轴线的变化情况,需绘制扭矩图:以与轴 线平行的Ox轴表示横截面的位置,以垂直于Ox轴的OT轴表 示横截面上的扭矩大小,建立直角坐标系,在坐标系中绘制 扭矩的图线,称为扭矩图。可仿照轴力图的方法绘制扭矩图。 扭矩为正画在x轴的上方,扭矩为负画在x轴的下方
2.4 平面弯曲梁
2.4.1 平面弯曲的概念与实例 1.平面弯曲的概念与实例 作用于如桥式吊车的横梁等一些杆件的外力通常为垂直于杆轴的横向 力,或通过杆轴线平面内的外力偶,从而使杆的轴线弯曲成曲线,这 种变形称为弯曲变形。习惯上把以弯曲为主要变形的杆件称为梁。 2.梁的计算简图及其分类 工程实际中支座和载荷是各种各样的,为了便于分析,须对梁的支座 和载荷进行简化。 根据支承情况可将梁分为三种形式: (1)简支梁 (2)外伸梁 (3)悬臂梁 作用在梁上的载荷,按其作用长度与杆件尺寸的相对关系可简化为三 种类型: (1)集中力 (2)集中力偶 (3)分布载荷
2.1.3拉(压)杆横截面上的正应力
1.应力的概念:求出了杆的内力并不能判断杆件某一点受力的强弱程度。为此 引入内力的分布集度—应力的概念。一般情况下,内力在截面上的分布并非均 匀,为了更精确地描述内力的分布情况,令面积ΔA趋近于零,由此所得平均应 力的极限值,即为K点的应力,用p表示。
应力p是矢量,通常将其分解为与截面垂直的分量和与截面相切的分量。称为正 应力,称为切应力,如图2-4(b)所示。在国际单位制中,应力的单位是牛顿/ 米2(N/m2),称为帕斯卡,简称帕(Pa),1Pa=1N/m2。工程上常用兆帕 (MPa)或吉帕(GPa)。 2.拉(压)杆横截面上的正应力,拉压杆的内力在横截面上分布是均匀的,即横 截面上各点的应力大小相等,其方向与横截面上的轴力FN一致,故为正应力。 横截面正应力计算公式为
四种基本变形纲要图表
圆轴扭转 杆件两端分别受到两个在垂直轴线 平面内的等值、反向力偶作用 任意两截面发生相对转动 特点 扭矩(T) 截面法 扭矩的矢量方向与截面的外法线方向一致时, 扭矩为正,反之为负 剪力 弯矩 受力 特点 变形
直梁弯曲 外力作用线都垂直于杆的轴线,且 位于纵向对称面内 在载荷作用面内,轴线由直线变为 曲线 弯矩(M)、剪力(FQ) 截面法 左上右下,剪力为正 左顺右逆,弯矩为正
概念 变形
名称 内 力 求法 符号 规定 横截
反之为负 剪应 面上 的正
应 力 及
F N A
力公 式
FQ / A
一般 公式
T IP
一般 公式
M y IZ
应力 公式
应力 斜截 面上
变 的正 形 应力 的 表 达 式 变形 公式 绝对 变形 轴向 相对 变形
cos2 sin 2
内容
变形 受力
拉伸与压缩 受力 作用于直杆上的外力作用线与杆轴线重合 特点 特点 变形 杆只受轴线方向的伸长或缩短 特点 特点 轴力(FN) 截面法 轴力的矢量方向与截面的外法线方向一致时,轴力为正,
剪切、挤压实用计算 作用在构件两个侧面的外力等值、反向、作用 线不重合,但相距很近 作用力中间的截面沿力的方向发生相对错动 特点 剪力(FQ) 截面法 —— 受力 特点 变形
计算 挤压 实用 计算
max M max / Wz [ ]
截面不对称于中性轴
max [ ] max [ ]
刚度条件
——
——
max
T 180 [ ]( / m) GI P
ymax [ y]
max [ ]
第四章零件受力变形讲解
N
M 9550 D
D
n
637N m
-
作扭矩图 Tnmax=955N·m
圆轴扭转时横截面上的应力
1.圆轴扭转时的变形特征:
Me
Me
1)各圆周线的形状大小及圆周线之间的距离均无变 化;各圆周线绕轴线转动了不同的角度。 2)所有纵向线仍近似地为直线,只是同时倾斜了同
一角度 。
4.4.2 圆轴扭转时的应力
G
dj
dx
G Mn
GI p
Mn Ip
I p
2dA
A
IP是一个只决定于横截面的形状和大小的几何量,称 为横截面对形心的极惯性矩。
• 横截面上某点的切应力
T
的方向与扭矩方向相同,
并垂直于该点与圆心的
τ
连线
• 切应力的大小与其和圆
τ
心的距离成正比
注意:如果横截面是空心圆,空心部分没有应力 存在。
三.挤压的概念
构件发生剪切变形时,往往会受到挤压作用,这种 接触面之间相互压紧作用称为挤压。
构件受到挤压变形时,相互挤压的接触面称为挤压 面(A j y )。作用于挤压面上的力称为挤压力(F j y ),挤压 力与挤压面相互垂直。如果挤压力太大,就会使铆钉压 扁或使钢板的局部起皱 。
FFຫໍສະໝຸດ 四、挤压的实用计算单位是帕斯卡,简称帕,记作Pa,即l平方米 的面积上作用1牛顿的力为1帕,1N/m2=1Pa。
1MPa=106Pa
拉(压)杆的应力
假设轴力在横截面上的分布是均匀的,且方向
垂直于横截面。所以,横截面的正应力σ计算公式
为:
mn
F
F
σ= FN MPa A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横截面:发生了沿外力作用方向的相对位移。
轴力
FN
剪切变形
受剪构件
铆钉、螺杆
杆件受一对大小相等、方向相反、作用线平行及相距很近的横向力作用
1、宏观变形:在两个力作用中间被剪断。
2、微观变形:介于两横向之间的各横截面沿外力作用方向发生相对错动。剪力FS扭转源自形受扭构件轴、雨篷梁
四种构件基本变形汇总
基本变形类型
构件名称
典型构件
受力特点
(受力后构件保持平衡)
变形特点
(符合平面假设)
产生内力
轴向拉伸、压缩变形
轴向拉伸、压缩构件
轴压柱
杆件两端沿轴线方向作用一对大小相等、方向相反的轴向力作用
1、宏观变形:
受拉时,杆件伸长、截面变小;
受压时,杆件缩短、截面变大。
2、微观变形:(符合平面假设)
2、微观变形:
纵向纤维:构件由下部至上部,纵向纤维从伸长或压缩逐渐过渡到压缩或伸长,且上、下边缘的变化最大;截面中部有一既不伸长也不压缩的中性层。
横截面:各横截面发生了不同程度的位移和绕截面中性轴的微小转动。
剪力、弯矩
FS、M
杆件两端垂直杆轴线平面内受到一对大小相等、方向相反的力偶作用
1、宏观变形:构件表面的纵向水平线倾斜了一个角度。
2、微观变形:各横截面绕杆轴线发生了沿力偶作用方向的相对转动。
扭矩
T
弯曲变形
(平面弯曲)
受弯构件
梁、板
杆件受到通过杆轴线平面内的力偶作用、或受到垂直于杆轴线的横向力(集中力、均布荷载)作用
1、宏观变形:构件出现了上凹下凸或下凹上凸,轴线由直线变成曲线。