14.空间向量应用(总复习)

合集下载

空间向量的运算及应用

空间向量的运算及应用

=-a+b+12c.17Fra bibliotek板块一
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
(3)∵M 是 AA1 的中点, ∴M→P=M→A+A→P=12A→1A+A→P =-12a+a+c+12b=12a+12b+c. 又N→C1=N→C+C→C1=12B→C+A→A1=12A→D+A→A1=12c+a, ∴M→P+N→C1=12a+12b+c+a+12c =32a+12b+32c.
解析 ∵a∥b,∴b=ka,即(6,2μ-1,2λ)=k(λ+1,0,2),
6=kλ+1,
∴ 2μ-1=0, 2λ=2k.
λ=2, 解 得 μ=21
λ=-3, 或 μ=12.
故选
A.
11
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
3.[课本改编]已知 a=(-2,1,3),b=(-1,2,1),若 a⊥
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
解 A→C1=A→B+B→C+C→C1=A→B+A→D+A→A1=a+b+c.
A→G=A→A1+A→1G
=A→A1+13(A→1D+A→1B)
=A→A1+13(A→D-A→A1)+13(A→B-A→A1)
=13A→A1+13A→D+13A→B
(a-λb),则实数 λ 的值为( )
A.-2
B.-134
14 C. 5
D.2
解析 由题意知 a·(a-λb)=0,即 a2-λa·b=0,又 a2
=14,a·b=7,∴14-7λ=0,∴λ=2.故选 D.
12
板块一

空间向量及其运算复习

空间向量及其运算复习

要点梳理
知识回顾 理清教材
②两向量的数量积 已知空间两个非零向量 a,b,则 |a||b|cos〈a,b〉 叫做 向量 a,b 的数量积,记作 a·b ,即 a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①结合律:(λa)·b= λ(a·b) ; ②交换律:a·b= b·a ; ③分配律:a·(b+c)= a·b+a·c .
a21+a22+a23· b12+b22+b23
.
设 A(a1,b1,c1),B(a2,b2,c2),
则 dAB=|A→B|= a2-a12+b2-b12+c2-c12 .
跟踪训练 3 已知空间中三点 A(-2,0,2),B(-1,1,2),C(-3,0,4), 设 a=A→B,b=A→C.
(1)求向量 a 与向量 b 的夹角的余弦值;
且 ka+b 与 ka-2b 互相垂直,
∴(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=0,
∴k=2 或 k=-52,
∴当 ka+b 与 ka-2b
互相垂直时,实数
k
的值为
2
或-52.
方法二 由(1)知|a|= 2,|b|= 5,a·b=-1,
∴(ka+b)·(ka-2b)=k2a2-ka·b-2b2=2k2+k-10=0,
要点梳理
知识回顾 理清教材
4.空间向量的坐标表示及应用
(1)数量积的坐标运算
设 a=(a1,a2,a3),b=(b1,b2,b3), 则 a·b= a1b1+a2b2+a3b3 .
(2)共线与垂直的坐标表示
设 a=(a1,a2,a3),b=(b1,b2,b3),
则 a∥b⇔ a=λb⇔ a1=λb1 , a2=λb2 ,a3=λb3 (λ∈R) ,

高考数学二轮三轮总复习专题课件 专题4第14讲 空间向量与立体几何 理 北师大

高考数学二轮三轮总复习专题课件 专题4第14讲 空间向量与立体几何 理 北师大

第14讲 │ 主干知识整合
2.夹角计算公式 (1)线线角:直线与直线所成的角为 θ,如两直线的方向向量 分别为 a,b,则 cosθ=|cos〈a,b〉|; (2)线面角:直线与平面所成的角为 θ,如直线的方向向量为 a,平面的法向量为 n,则 sinθ=|cos〈a,n〉|; (3)面面角:两相交平面所成的角为 θ,两平面的法向量分别 为 n1 和 n2,则 cosθ=|cos〈n1,n2〉|,其特殊情况是两个半平面 所成的角即二面角,也可以用这个公式解决,但要判定二面角的 平面角是锐角还是钝角的情况以决定 cosθ=|cos〈n1,n2〉|还是 cosθ=-|cos〈n1,n2〉|.
于是 cos〈A→C,A→1B1〉=|AA→→CC|·|AA→→11BB11|=3×42
= 2
32.
所以异面直线 AC 与 A1B1 所成角的余弦值为 32.
第14讲 │ 要点热点探究
(2)易知A→A1=(0,2 2,0),A→1C1=(- 2,- 2, 5). 设平面 AA1C1 的法向量 m=(x,y,z),
第14讲 │ 要点热点探究
► 探究点二 利用空间向量求空间角和距离 例 2 [2011·天津卷] 如图 14-3 所示,在三棱柱 ABC-A1B1C1 中,
H 是正方形 AA1B1B 的中心,AA1=2 2,C1H⊥平面 AA1B1B,且 C1H = 5.
(1)求异面直线 AC 与 A1B1 所成角的余弦值; (2)求二面角 A-A1C1-B1 的正弦值; (3)设 N 为棱 B1C1 的中点,点 M 在平面 AA1B1B 内,且 MN⊥平 面 A1B1C1,求线段 BM 的长.
图 14-1
第14讲 │ 要点热点探究
【分析】 建立空间直角坐标系后,使用向量的共线定理证明 E→F∥A→B即可证明第一问,第二问根据向量的垂直关系证明线线 垂直,进而证明线面垂直,得出面面垂直,第三问使用平面法向 量的方法求解.

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =. 模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l 的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式.6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立. 三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义Aaaα图 8-154O已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---.这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标. (3)两个向量的夹角及两点间的距离公式. ①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++;cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b ⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型1 空间向量及其运算 思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN = .解析 1122OM OA a ==,()()1122ON OB OC b c =+=+,()()111222MN ON OM b c a b c a =-=+-=+-.变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z === .B 111,,336x y z ===.C 111,,363x y z === .D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式 3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++ .C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.解析 因为//m n 且0m ≠,所以n m λ=,即()()182324x a b yc a b c λ+++=--.又因为,,a b c 不共面,所以138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得138x y =-⎧⎨=⎩.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据2222111a a x y z ==++;求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A 2a .B 21.2B a 21.4C a 23.4D a 解析 依题意,点,EF 分别是,BC AD 的中点,如图8-160所示,AE ⋅AF ()1122AB AC AD =+⋅()14AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a =︒+︒=. 故选C . 变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .分析 求CD 的长度转化为求空间向量CD 的模.解析 因为CD CA AB BD =++,故()22CD CA AB BD =++ 222222CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅1110211cos1352CA BD =++++⨯⨯⨯︒+⋅,设点C 在β内的射影为H ,则HA AB ⊥,,135HA BD =︒.故()CA BD CH HA BD CH BD HA BD ⋅=+⋅=⋅+⋅10cos1351cos 45cos1352HA BD =+︒=⨯︒︒=-.故222CD =,则22CD =-变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到β3Q 到α的距离为3,P Q 两点之间距离的最小值为( )..2.2B .23C .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( )..6A .42B .23C .211D例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解析 由题设可知,以1,,DA DC DD 为单位正交基底,建立如图8-165所示的空间直角坐标系D xyz -,则有()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D . 由()11,1,1D B =-,()11,,D P D B λλλλ==-,()()()111,0,1,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---. 显然APC ∠不是平角,所以APC ∠为钝角,cos cos ,0PA PC APC PA PC PA PC⋅∠==<,等价于0PA PC ⋅<,即()()()()()21110λλλλλ--+--+-<,得113λ<<.因此,λ的取值范围是1,13⎛⎫⎪⎝⎭.评析 利用向量知识将APC ∠为钝角转化为cos ,0PA PC <求解是本题的关键.变式 1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ).1.24A 1.18B 1.9C 1.12D 例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).解析 取AD 的中点O ,以OA 为x 轴,垂直于OA 的OE 为y 轴,OP 为z 轴,建立空间直角坐标系如图8-167所示.设(),,0M x y ,正方形的边长为a ,30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭,,,02a C a ⎛⎫- ⎪⎝⎭, 则()222a MC x y a ⎛⎫=++- ⎪⎝⎭,22234MP x y a =++,MP MC =,得()22222324a a x y a x y ⎛⎫++-=++ ⎪⎝⎭,即202a x y -+=.所以点M 在正方形ABCD 内的轨迹为一条线段,且过D 点和AB 的中点.故选A .评注 本题利用空间线面位置关系求解也很快.由题意知空间内与两定点距离相等的点均在线段中垂面内,即M 在线段PC 的中垂面内.又M 为底面ABCD 内一动点,则M 的轨迹为两平面的交线落在底面内的部分,排除C 、D .又BP BC >,故排除B .故选A .变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..33A - .323B - .63C - .3D题型2 空间向量在立体几何中的应用 思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=.例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.解析 以D 为坐标原点建立空间直角坐标系-D xyz ,如图8-169所示.不妨设DA a =,DC b =,1DD c =,则0,0,2c M ⎛⎫ ⎪⎝⎭,(),,0B a b ,,,224a b c E ⎛⎫ ⎪⎝⎭,()1,0,A a c ,2,,033a b N ⎛⎫⎪⎝⎭,则13,,224a b c A E ⎛⎫=-- ⎪⎝⎭,122,,33a b A N c ⎛⎫=-- ⎪⎝⎭,因为1143A N A E =,故1A ,E ,N 三点共线.变式 1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.解析 由平面ABEF ⊥平面ABCD ,又AF AB ⊥,平面ABEF 平面ABCD AB =,得AF ⊥平面ABCD ,以A 为坐标原点,建立空间直角坐标系A xyz -,如图8-172所示.设AB a =,BC b =,BE c =,则(),0,0B a ,(),,0C a b ,()0,2,0D b ,(),0,E a c ,()0,0,2F c .()0,,CE b c =-,()0,2,2DF b c =-,因为2DF CE =,所以//DF CE ,则,CE DF 确定一个平面,即,,,C D E F 四点共面.变式1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .解析 以点D 为坐标原点,建立空间直角坐标系D xyz -,如图8-175所示.设正方体的棱长为a ,则()1,0,A a a ,(),0,0A a ,()0,,0C a ,(),,0B a a ,()10,0,D a .设(),,z MN x y =,由MN 是异面直线1A D 与AC 的公垂线段,得1MN A D ⊥,MN AC ⊥,又()1,0,A D a a =--,(),,0AC a a =-,故100MN A D MN AC ⎧⋅=⎪⎨⋅=⎪⎩,00ax az ax ay --=⎧⎨-+=⎩, 令1x =,则1z =-,1y =,所以()1,1,1MN =-,()1,,BD a a a aMN =--=-,即1//BD MN .因此1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .解析 因为11D E DE DD =-,11DD AA =,E 是DC 的中点,12DE DC AB ==,所以111D E AB AA A B =-=.又因为1D E ⊄平面1A BD ,11//D E A B ,所以1//D E 平面1A BD .评注 利用空间向量证明线面平行,已知直线的方向向量为a ,只要在平面内找到一条直线的方向向量为b ,问题转化为证明a b λ=即可.变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .解析 解法一:以1D 为坐标原点,11D A 为x 轴,11D C 为y 轴,1D D 为z 轴,建立空间直角坐标系1D xyz -,如图8-179所示.设正方体的棱长为a ,则()1,0,0A a ,()0,0,D a ,()10,,0C a ,()0,,C a a ,()1,,0B a a ,0,,2a M a ⎛⎫ ⎪⎝⎭,0,,02a P ⎛⎫ ⎪⎝⎭,,,02a N a ⎛⎫⎪⎝⎭,()1,0,A D a a =-,11,0,222aa MN A D ⎛⎫=-=- ⎪⎝⎭,所以1//MN A D ,即1//MN A D ,(),,0BD a a =--,1,,0222a a PN BD ⎛⎫==- ⎪⎝⎭,所以//PN BD ,即//PN BD .因为MNPN N =,1A DBD D =,所以平面//MNP 平面1A BD .解法二:设平面MNP 的法向量为()1111,,n x y z =,由1MN n ⊥,1PN n ⊥,得1111022022a a x z a a x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令11z =,得111111x y z =⎧⎪=-⎨⎪=⎩, 所以()11,1,1n =-.设平面1A BD 的法向量为()2222,,n x y z =,由12A D n ⊥,2BD n ⊥,得222200ax az ax ay -+=⎧⎨--=⎩,令21z =,得222111x y z =⎧⎪=-⎨⎪=⎩, 所以()21,1,1n =-.因为12//n n ,所以平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点. 求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.分析 平面ABC ⊥平面BCDE ,在平面ABC 内作AO BC ⊥AO ⇒⊥平面BCDE ,以点O 为坐标原点建立空间直角坐标系.解析 作AO BC ⊥,垂足为O ,则AO ⊥平面BCDE ,且O 为BC 的中点,以O 为坐标原点,OC 为x 轴,建立如图8-182所示的直角坐标系O xyz -.设()0,0,A a ,由已知条件知()1,0,0C ,()1,2,0D ,()1,2,0E -,()2,2,0CE =-,()1,2,AD a =-.因为0CE AD=⋅,所以CE AD ⊥。

高三数学教案:空间向量及其应用复习学案

高三数学教案:空间向量及其应用复习学案

高三数学教案:空间向量及其应用复习学案【】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高三数学教案:空间向量及其应用复习学案,供大家参考!本文题目:高三数学教案:空间向量及其应用复习学案2019年普通高考数学科一轮复习精品学案第36讲空间向量及其应用一.课标要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。

(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

二.命题走向本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。

本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。

预测2019年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。

三.要点精讲1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。

如位移、速度、力等。

相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

空间向量总复习

空间向量总复习

空间向量总复习一证平行解题思路利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行面面平行①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题例1如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E,F,G分别是线段P A,PD,CD的中点.求证:PB∥平面EFG.引申探究若本例中条件不变,证明平面EFG∥平面PBC.变式训练1-1如图,在三棱锥P ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC 的中点,M是线段AD的中点,P A=AC=4,AB=2.求证:MN∥平面BDE.二证垂直解题思路利用空间向量证明垂直的方法例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.例3如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB.求证:平面BCE⊥平面CDE.变式训练3-1如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB =PC=2CD,侧面PBC⊥底面ABCD.证明:(1)P A⊥BD;(2)平面P AD⊥平面P AB.三利用空间向量解决探索性问题解题思路对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.例4如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面P AD内求一点G,使GF⊥平面PCB,并证明你的结论.跟变式训练4-1如图所示,四棱锥P—ABCD的底面是边长为1的正方形,P A⊥CD,P A=1,PD=2,E 为PD上一点,PE=2ED.(1)求证:P A⊥平面ABCD;(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,请说明理由.课堂练习:1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和为________.2.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .3.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)证明:AC⊥BC1;(2)证明:AC1∥平面CDB1.4.如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C和侧面AA1B1B都是正方形且互相垂直,M为AA1的中点,N为BC1的中点.求证:(1)MN∥平面A1B1C1;(2)平面MBC1⊥平面BB1C1C.5.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=2a 3,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.MN在平面BB1C1C内6.如图,圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周).若AM⊥MP,则点P形成的轨迹长度为________.7.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.四异面直线所成角解题思路用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.例5如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.变式训练5-1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( )A.110B.35C.710D.45五 直线与平面所成角解题思路 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |. 例6 如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.变式训练6-1如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.六求二面角解题思路利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.例7如图,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形,∠CAF=60°.(1)求证:BF⊥AE;(2)求二面角B-EF-D的平面角的正切值.变式训练7-1如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值.课堂练习1.如图,在正方形ABCD中,EF∥AB,若沿EF将正方形折成一个二面角后,AE∶ED∶AD=1∶1∶2,则AF与CE所成角的余弦值为________.2.已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF 与平面ABC所成的锐二面角的正切值为________.3.如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ; (2)求直线AC 与平面A 1BB 1所成角的正弦值.=90°,CD=2AB=2,AD=3,P A=5,PD=22,点E在棱AD上且AE=1,点F为棱PD的中点.(1)证明:平面BEF⊥平面PEC;(2)求二面角A-BF-C的余弦值.=4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.6.如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.7.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( ) A.1 B.2C.13D.268.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.参考答案例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0), D (0,2,0),P (0,0,2),E (0,0,1), F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究若本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC , 同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .变式训练1-1 如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.求证:MN ∥平面BDE .证明 如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.由题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .例2证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc=4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC , 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB ,OO 1,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的一个法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,即⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .例3证明 设AD =DE =2AB =2a ,以A 为原点,分别以AC ,AB 所在直线为x 轴,z 轴,以过点A 垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a ,0,0),B (0,0,a ),D (a ,3a ,0), E (a ,3a ,2a ).所以BE →=(a ,3a ,a ),BC →=(2a ,0,-a ),CD →=(-a ,3a ,0),ED →=(0,0,-2a ). 设平面BCE 的法向量为n 1=(x 1,y 1,z 1), 由n 1·BE →=0,n 1·BC →=0可得⎩⎨⎧ ax 1+3ay 1+az 1=0,2ax 1-az 1=0, 即⎩⎨⎧x 1+3y 1+z 1=0,2x 1-z 1=0.令z 1=2,可得n 1=(1,-3,2). 设平面CDE 的法向量为n 2=(x 2,y 2,z 2), 由n 2·CD →=0,n 2·ED →=0可得⎩⎨⎧ -ax 2+3ay 2=0,-2az 2=0,即⎩⎨⎧-x 2+3y 2=0,z 2=0.令y 2=1,可得n 2=(3,1,0).因为n 1·n 2=1×3+1×(-3)+2×0=0. 所以n 1⊥n 2,所以平面BCE ⊥平面CDE .变式训练3-1证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, 平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3), ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB . 例4(1)证明 如图,以D 为原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a ,0,0),B (a ,a ,0), C (0,a ,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a ,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x ,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2,若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0, 由FG →·CB →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(a ,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 为AD 的中点.变式训练4-1(1)证明 ∵P A =AD =1,PD =2, ∴P A 2+AD 2=PD 2,即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D ,AD ,CD ⊂平面ABCD , ∴P A ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13. 设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0. 又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ) =(-λ,1-λ,λ),∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.课堂练习:1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和为________.答案 1解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),FB →=(1,1,y ),∵B 1E ⊥平面ABF , ∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0,即x +y =1.2.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长度,DA ,DP ,DC 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz .由题意得Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ∩DC =D ,DQ ,DC ⊂平面DCQ , ∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC , ∴平面PQC ⊥平面DCQ .3.如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)证明:AC ⊥BC 1; (2)证明:AC 1∥平面CDB 1.证明 因为直三棱柱ABC -A 1B 1C 1的底面边长分别为AC =3,BC =4,AB =5,所以△ABC 为直角三角形,AC ⊥BC .所以AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,直线CA ,CB ,CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则C (0,0,0), A (3,0,0),B (0,4,0),C 1(0,0,4),A 1(3,0,4),B 1(0,4,4),D ⎝⎛⎭⎫32,2,0. (1)因为AC →=(-3,0,0),BC 1→=(0,-4,4), 所以AC →·BC 1→=0,所以AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,则E (0,2,2),DE →=⎝⎛⎭⎫-32,0,2,AC 1→=(-3,0,4), 所以DE →=12AC 1→,DE ∥AC 1.因为DE ⊂平面CDB 1,AC 1⊄平面CDB 1, 所以AC 1∥平面CDB 1.4.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意,知AA 1,AB ,AC 两两垂直,以A 为坐标原点,分别以AA 1,AB ,AC 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0), C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1). (1)由题意知AA 1⊥A 1B 1,AA 1⊥A 1C 1,又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AA 1⊥平面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1), 所以MN →·AA 1→=0,即MN →⊥AA 1→. 又MN ⊄平面A 1B 1C 1, 故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1). 同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1). 因为n 1·n 2=2×0+1×1+(-1)×1=0, 所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C .5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A.相交 B .平行C.垂直 D .MN 在平面BB 1C 1C 内 答案 B解析 以点C 1为坐标原点,分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a3,a , MN →=⎝⎛⎭⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1—→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1—→=0,所以MN →⊥C 1D 1—→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .6.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 以O 点为坐标原点,OB ,OS 所在直线分别为y 轴、z 轴,建立空间直角坐标系,如图所示,则A (0,-1,0),B (0,1,0), S ()0,0,3,M ⎝⎛⎭⎫0,0,32, 设P (x ,y,0),∴AM →=⎝⎛⎭⎫0,1,32,MP →=⎝⎛⎭⎫x ,y ,-32,由AM →·MP →=y -34=0,得y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21-⎝⎛⎭⎫342=72.7.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由. (1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系.设AB =a .则A (0,0,0),D (0,1,0), D 1(0,1,1),E ⎝⎛⎭⎫a2,1,0, B 1(a ,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1. 则B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0,所以B 1E →⊥AD 1→, 所以B 1E ⊥AD 1.(2)解 存在满足要求的点P , 假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0), 再设平面B 1AE 的一个法向量为n =(x ,y ,z ). AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. 因为n ⊥平面B 1AE ,所以n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0,取x =1,则y =-a2,z =-a ,则平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,即a 2-az 0=0,解得z 0=12.所以棱AA 1上存在点P ,满足DP ∥平面B 1AE ,此时AP =12.例5(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°, 可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0), E (1,0,2),F ⎝⎛⎭⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 变式训练5-1 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝⎛⎭⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.例6(1)证明 由已知可得BF ⊥PF ,BF ⊥EF , PF ∩EF =F ,PF ,EF ⊂平面PEF , 所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD.(2)解 如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz . 由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0, DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32.又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 变式训练6-1(1)证明 因为P A =PC =AC =4, O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0), A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面P AC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面P AM 的一个法向量为n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去)或a =43.所以n =⎝⎛⎭⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 例7(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC =2,∴AC 2+BC 2=AB 2,即BC ⊥AC ,又∵平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD =AC ,BC ⊂平面ABCD , ∴BC ⊥平面ACEF ,而AE ⊂平面ACEF ,∴AE ⊥BC , 连接CF ,∵四边形ACEF 为菱形,∴AE ⊥FC , 又∵BC ∩CF =C ,BC ,CF ⊂平面BCF , ∴AE ⊥平面BCF ,∵BF ⊂平面BCF ,∴BF ⊥AE . (2)解 取EF 的中点M ,连接MC ,∵四边形ACEF 是菱形,且∠CAF =60°, ∴由平面几何易知MC ⊥AC ,又∵平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD =AC ,CM ⊂平面ACEF , ∴MC ⊥平面ABCD .以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0),∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130, 故二面角B -EF -D 的平面角的正切值为97.变式训练7-1(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD , 故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为CD 的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1), AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0), 设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2),DA →是平面MCD 的一个法向量,因此 cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.课堂练习1.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos 〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.2.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________. 答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得 A (1,0,0),E ⎝⎛⎭⎫1,1,13, F ⎝⎛⎭⎫0,1,23,AE →=⎝⎛⎭⎫0,1,13, AF →=⎝⎛⎭⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 3.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0), B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →,可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.4.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,P A =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值.(1)证明 在Rt △ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°, 所以∠BEC =90°,即BE ⊥EC . 在△P AD 中,cos ∠P AD =P A 2+AD 2-PD 22P A ·AD =5+9-82×3×5=55,在△P AE 中,PE 2=P A 2+AE 2-2P A ·AE ·cos ∠P AE =5+1-2×5×1×55=4, 所以PE 2+AE 2=P A 2,即PE ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎫22,-22,0,D (-2,2,0),F ⎝⎛⎭⎫-22,22,1,AB →=⎝⎛⎭⎫22,22,0,BF →=⎝⎛⎭⎫-322,22,1,BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1),则⎩⎨⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2), 则⎩⎨⎧n ·BC→=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.5.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CEBE =λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3).设BC =m ,则C (m ,4,0), ∵SF BF =CEBE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F ⎝⎛⎭⎫0,4λ1+λ,31+λ.同理可得E ⎝⎛⎭⎫m1+λ,4,0,∴FE →=⎝ ⎛⎭⎪⎫m1+λ,41+λ,-31+λ. ∵F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0,则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.6.如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA 1=AC =1,M ,Q 分别是CC 1,AC 的中点, ∴Rt △AA 1Q ≌Rt △CAM , ∴∠MAC =∠QA 1A ,∴∠MAC +∠AQA 1=∠QA 1A +∠AQA 1=90°, ∴AM ⊥A 1Q .∵N ,Q 分别是BC ,AC 的中点,∴NQ ∥AB . 又AB ⊥AC ,∴NQ ⊥AC .在直三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC , ∴NQ ⊥AA 1.又AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1, ∴NQ ⊥平面ACC 1A 1, ∴NQ ⊥AM .由NQ ∥AB 和AB ∥A 1B 1可得NQ ∥A 1B 1, ∴N ,Q ,A 1,P 四点共面, ∴A 1Q ⊂平面PNQ .∵NQ ∩A 1Q =Q ,NQ ,A 1Q ⊂平面PNQ , ∴AM ⊥平面PNQ ,∴无论λ取何值,总有AM ⊥平面PNQ .(2)解 如图,以A 为坐标原点,AB ,AC ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,12,0, Q ⎝⎛⎭⎫0,12,0, NM →=⎝⎛⎭⎫-12,12,12,A 1B 1→=(1,0,0). 由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0), 可得点P (λ,0,1), ∴PN →=⎝⎛⎭⎫12-λ,12,-1.设n =(x ,y ,z )是平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎨⎧-12x +12y +12z =0,⎝⎛⎭⎫12-λx +12y -z =0,得⎩⎨⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量. 取平面ABC 的一个法向量为m =(0,0,1). 假设存在符合条件的点P , 则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12, 化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.7.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( ) A.1 B.2C.13D.26答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =2626×226=2. 8.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD=CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.(1)证明 设AD =CD =BC =1, ∵AB ∥CD ,∠BCD =120°, ∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, ∴AB 2=AC 2+BC 2,则BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF . ∵EF ∥AC , ∴EF ⊥平面BCF .(2)解 以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1), ∴AB →=(-3,1,0),BM →=(λ,-1,1). 设n =(x ,y ,z )为平面MAB 的法向量, 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BM →=0,得⎩⎨⎧-3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4.∵0≤λ≤3,∴当λ=0时,cos〈n,m〉取得最小值7 7,∴当点M与点F重合时,平面MAB与平面FCB所成的锐二面角最大,此时二面角的余弦值为7 7.。

空间向量综合复习 (2)

空间向量综合复习 (2)

个性化教学辅导教案学科: 数学 任课教师: 授课日期:2014 年 12月 日姓名 年级 高性别授课时间总课时 第 课教学课题 空间向量综合复习教学 目标 1.理解空间向量 的定义 2.会用空间向量的性质解题难点 重点 空间向量的综合应用签字教学组长签字: 教研主任签字:既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示; ②用字母a 、b 等表示;③用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量.向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a|(2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0.向量加法和数乘向量满足以下运算律 加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb 空间中具有大小和方向的量叫做向量空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量. 空间任意两个向量是共面的.空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:AB OA OB +==a +b ,OA OB AB -=(指向被减向量), =OP λa )(R ∈λ空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++ '21CC AD AB ++⑶.⑷)'(31AA AD AB ++1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

空间向量及应用优化总结(理)

空间向量及应用优化总结(理)

性也随之解决;若导致矛盾,则否定了存在性.
栏目 导引
第三章
空间向量与立体几何
例5
(2011· 高考浙江卷)
如图 , 在三棱锥 P-ABC 中 ,AB = AC,D 为 BC 的中
点 ,PO ⊥平面 ABC, 垂足 O 落在线段 AD 上 , 已知
BC=8,PO=4,AO=3,OD=2. (1)证明:AP⊥BC. (2)在线段AP上是否存在点M,使得二面角AMC-B为直二面角?若存在,求出AM的长;若
栏目 导引
第三章
空间向量与立体几何
专题四
利用空间向量解决存在性问题
存在性问题即在一定条件下论证会不会出现
某个结论 . 这类题型常以适合某种条件的结论
“存在”、“不存在”、“是否存在”等语 句表述.解答这类问题 ,一般要先对结论作出肯 定的假设,然后由此肯定的假设出发 ,结合已知 条件进行推理论证 ,若导致合理的结论 ,则存在
第三章
空间向量与立体几何
例3 已知正方形 ABCD 所在的平面和矩形
ACEF 所在平面互相垂直 ,AB= 2,AF= 1.试 在线段 AC 上确定一点 P,使得 PF 与 CD 所成 的角为 60° .
栏目 导引
第三章
空间向量与立体几何
【解】 如图所示建立空间直角坐标系 Cxyz, → 则 F( 2, 2,1),CD = ( 2,0,0). 设 P(t,t,0)(0≤ t≤ 2), → 则PF= ( 2- t, 2- t,1). ∵ PF 与 CD 所成的角是 60° , | 2·( 2- t) | ∴ cos60°= , 2 2 2· ( 2- t) +( 2- t) +1 2 3 2 解得 t= 或 t= (舍去 ). 2 2 ∴当 P 为 AC 中点时 ,满足题设条件 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

♣ ♣ ♣ ♣ ♣ ♣
垂直与平行的证明
直线与直线的平行 直线与直线的垂直 直线与平面的平行
♥ ♥
♥ ♥
共面向量的充要条件 与平面的法向量垂直
垂直于平面内不共线的两个向量 两个平面的法向量平行
直线与平面的垂直 平面与平面的平行 平面与平面的垂直
♥ 两个平面的法向量垂直
练习2
设直线l,m的方向向量分别为a , , b
1
A1
C1
D1
于是 BD CD CB a b B ∵CC1 BD c (a b) C c a c b | c || a | cos | c || b | cos 0
A D
∴C C1⊥BD
题型一:线线垂直 例2.已知正三棱柱 ABC ABC 的各棱长都为1,M 是底
面上 BC 边的中点,N 是侧棱 CC 上的点,且CN 1 CC , 4 求证:AB MN 。解1:向量解法 设 a , b , c AB AC AA
4、求P点到平面 的距离:
| PM n | PN |n|
,(N为垂足,M为斜足, n
为平面

的法向量)
5、求直线l与平面 所成的角:
| PM n | | sin | | PM | | n |
,(
PM l
ABC的一个法向量是______ .
2、在棱长为2的正方体ABCD-A1B1C1D1中,O是面 AC的中心,求面OA1D1的法向量.
z
解:以 A 为原点建立空间直角坐标系 O-xyz(如图),
设平面 OA1D1 的法向量的法向量为 n =(x,y,z),
OA1 =(-1,-1,2) OD1 =(-1,1,2) 由
题型一:线线垂直 M 例2 已知正三棱柱ABC ABC 的各棱长都为1, 是底
1
面上 BC 边的中点,N 是侧棱 CC 上的点,且CN CC, 4 求证:AB MN 。 解2:直角坐标法 。 取 BC的中点G, 由 已知条件和正三棱柱的性质,得 AM BC, Z A' 如图建立坐标系m-xyz。则 1 1 3 1 (0, ,1), B' C' M (0, 0, 0, ), N (0, , ), A( , 0, 0), B 2 4 2 2 G
n2
为二面角的两个面的法向量)
cos
S射影 S
(射影面积法)

9、求法向量:①找;②求:设 a, b 为平面 内的任意两个向量,
n ( x, y, z) 为α 的法向量 a n 0 可求得法向量 n 则由方程组 b n 0
OA ( x, y, z)
j
o
y
AB ( x2 x1, y2 y1, z2 z1 )
设A( x1, y1, z1 ), B( x2 , y2 , z2 ).
(2)向量的直角坐标运算 设a (a1 , a2 , a3 ), b (b1 , b2 , b3 ) a b (a1 b1 , a2 b2 , a3 b3 ) a b (a1 b1 , a2 b2 , a3 b3 ) a ( a1 , a2 , a3 )( R) a b a1b1 a2b2 a3b3 a || b a1 b1 , a2 b2 , a3 b3 a b a1b1 a2b2 a3b3 0
用空间向量解决立体 几何中的平行、垂直 和夹角、距离问题
一。知识再现
空间向量:
(1)空间直角坐标系
(2)向量的直角坐标运算
(3)夹角和距离公式
(1)空间直角坐标系
z
a
A(x,y,z)
i
x
k
若a a1i a2 j a3 k 则a (a1, a2 , a3 )
② a b 0,且a c 0 a l l l n a

c
b
a // n a b n
n

c
题型二:线面平行 例3.在正方体AC1中,E为DD1的中点,求证:DB1//面A1C1E
D1
z
F
B1
C1
证明:如图建立坐标系D xyz , 设AD 2.则 A1 (2, 0, 2), C1 (0, 2, 2), E (0, 0,1)
x2 x1 2 y2 y1 2 z2 z1 2
2、平行
a || b a1 b1 , a2 b2 , a3 b3 ( R)
a1 / b1 a2 / b2 a2 / b2
3、垂直
a b a1b1 a2b2 a3b3 0
,则由已知条件和正三棱柱的性质 ,得
A'
B'
C'
c
a
B M A
b
N
C
AB MN . 你能建立直角坐标系解答本题吗?
1 1 AB a c , AM (a b ), AN b c 2 1 4 1 1 MN AN AM a b c , 2 2 4 1 1 1 AB MN (a c ) ( a b c ) 2 2 4 1 2 1 2 1 1 1 | a | | c | a b a c b c 2 4 2 4 21 | a | b || c | 1, a c b c 0, a b , 2 1 1 1 AB MN 0 2 4 4
l // m a // b a b
♥ 垂直:向量垂直的充要条件
l m a b a b 0
m l
l
a b
a
b
m
题型一:线线垂直
依题意有 | a || b |,
例1.已知平行六面体ABCD-A1B1C1D1的底面 ABCD是菱形,∠C1CB=∠C1CD=∠BCD=θ, 求证: C C1⊥BD B 证明:设 CD a, CB b, CC1 c
根据下列条件判断l,m的位置关系:
(1)a (2, 1, 2), b (6, 3, 6) (2)a (1, 2, 2), b (2,3, 2) (3)a (0, 0,1), b (0, 0, 3)
♣ 直线与直线的平行与垂直
♥ 平行:共线向量的充要条件
2.平面的法向量
• 如果表示向量n的有向线段所在的直线垂直于 平面α,称这个向量垂直于平面α,记作n⊥α,这时 向量n叫做平面α的法向量.
n
α
在空间直角坐标系中,如何求平面法向 量的坐标呢?
如图,设 a ( x1, y1, z1 ), b ( x2 , y2 , z2 ) 是平面α 内的
A1
E
D A C
y
解得n (1,1, 2) x DB1 n 1 1 2 0, DB1 n, DB1 // 平面AC1E. 1
A1C1 (2, 2, 0), A1 E (2, 0, 1), DB1 (1,1,1). 设平面A1E C1的法向量n ( x, y, z ), 则 2 x 2 y 0 A1C1 n 0 即 2 x z 0 A1 E n 0
利用现有三条两两垂直的直线 注意已有的正、直条件 相关几何知识的综合运用
z
A1 B1 C1
z
D1
A
A
D
C
y
B y
D
x
B
长方体 z P
C 正三棱锥 A1 x z C1
B1 D C x A A x 正四棱锥 B y 正三棱柱 y B C
四、常用公式:
1、求线段的长度:
AB AB x 2 y 2 z 2
x1 x y1 y z1z 0 x2 x y2 y z2 z 0
• 第三步(解):把z看作常数,用z表示x、y. • 第四步(取):取z为任意一个正数(当然取得越特 殊越好),便得到平面法向量n的坐标.
练习1
1、已知 AB =(2,2,1), AC =(4,5,3),则平面
两个不共线的非零向量,由直线与平面垂直的判定定理 知 , 若 n a, n b , 则 n . 换 句 话 说 , 若 n a 0, n b 0 ,则 n . n
a b α
求平面的法向量的坐标的步骤
• 第一步(设):设出平面法向量的坐标为n=(x,y,z). • 第二步(列):根据n· = 0且n· = 0列出方程组 a b
二.两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向 量都称为直线的方向向量.如图,在空间直角 坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的 直线AB的方向向量是
AB (x2 x1, y2 y1, z2 z1 )
A x
z B
y
M n


的法向量)
6、求两异面直线AB与CD的夹角:
| AB CD | cos | AB | | CD |
7、求二面角的平面角 : | n1 n2 | cos ( n 1 | n1 | | n2 | 8、求二面角的平面角 :
A1
D1
则 O(1,1,0) 1(0,0,2) 1(0,2,2) ,A ,D
相关文档
最新文档