高二数学下学期期末考试试题 文1 (2)
浙江宁波市2024年高二下学期期末考试数学试题+答案 (1)

宁波市2023学年第二学期期末考试高二数学试题卷本试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、学校、准考证号填涂在答题卡上。
将条形码横贴在答题卡的“贴条形码区”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
所有答案必须写在答题卡上,写在试卷上无效。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,不要折叠、不要弄破。
选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U ={1,2,3,4,5},A ={1,2,4},B ={1,5},则∁U A ∩B =()A.⌀B.{1}C.{5}D.{1,5}2.已知复数z =1+2i ,则1z 的虚部为()A.25B.25iC.-25i D.-253.已知角α的终边过点-4,3 ,则sin α+cos αsin α=()A.-12B.-13C.14D.734.已知a ,b 为单位向量,则“a ⊥b ”是“a -2b =2a +b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.对于直线m ,n 和平面α,β,下列说法错误的是()A.若m ⎳α,n ⎳α,m ,n 共面,则m ⎳nB.若m ⊂α,n ⎳α,m ,n 共面,则m ⎳nC.若m ⊥β,且α⎳β,则m ⊥αD.若m ⊥α,且m ⎳β,则α⊥β6.若ln x -ln y >y 2-x 2,则()A.ex -y>1 B.e x -y<1 C.ln x -y >0 D.ln x -y <07.袋子中有n 个大小质地完全相同的球,其中4个为红球,其余均为黄球,从中不放回地依次随机摸出2个球,已知摸出的2个球都是红球的概率为16,则两次摸到的球颜色不相同的概率为()\A.518B.49C.59D.13188.颐和园的十七孔桥,初建于清乾隆年间;永定河上的卢沟桥,始建于宋代;四川达州的大风高拱桥,修建于清同治7年.这些桥梁屹立百年而不倒,观察它们的桥梁结构,有一个共同的特点,那就是拱形结构,这是悬链线在建筑领域的应用.悬链线出现在建筑领域,最早是由十七世纪英国杰出的科学家罗伯特.胡克提出的,他认为当悬链线自然下垂时,处于最稳定的状态,反之如果把悬链线反方向放置,它也是一种稳定的状态,后来由此演变出了悬链线拱门,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为cosh x =e x +e -x 2,相应的双曲正弦函数的表达式为sinh x =e x -e -x2.若关于x 的不等式4m cosh 2x -4sinh 2x -1>0对任意的x >0恒成立,则实数m 的取值范围为()A.2,+∞B.[2,+∞)C.14,+∞ D.14,+∞ 二、选择题:本题共3小题,每小题6分,共18分。
高二下数学测试1(解析版)(1)

武汉外国语学校高二下数学测试1一、单选题1.吹气球时,记气球的半径r 与体积V 之间的函数关系为()r V ,()r V '为()r V 的导函数.已知()r V 在03V ≤≤上的图像如图所示,若1203V V <≤≤,则下列结论正确的是( )A .()()()()10211021r r r r --<-- B .()()12r r ''≤ C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭ D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=点之间的斜率,()0r V '表示00(,())C V r V 处切线的斜率,由于()012,V V V ∈,所以可以平移直线AB 使之和曲线相切,切点就是点C ,所以该选项正确.故选:D2.在1和10之间插入n 个实数,使得这()2+n 个数构成递增的等比数列,将这()2+n 个数的乘积记作n T ,则1211lg lg lg T T T +++=( )A .132B .11C .44D .521232121n n c q q qq+++⋅⋅⋅+++⋅⋅=⋅⋅⋅⋅=1134513lg 2222T ++=+++⋅⋅⋅+=3.已知()f x 满足()()0f x f x +-=,且当0x <时,21()f x x x =+,则曲线()y f x =在点()1,(1)f 处的切线方程为( )A .10x y +-=B .320x y --=C .330x y --=D .20x y --=的切线方程为()031y x -=-,整理得330x y --=﹒故选:C .4.若直线:l y x b =+与曲线y b 的取值范围是( )A .(B .C .D .||b 5.在平行六面体1111ABCD A B C D -中,14AB AD AA ===,90BAD ∠=︒,1160BAA DAA ∠==︒,则异面直线1A C 与1BC 所成角的余弦值是( )A B .23C D .13【答案】C 【详解】如下图,构建基向量AB ,AD ,1AA .则11AC A A AB AD =++,111BC AD AD AA ==+,所以22222111111()222AC AC A A AB AD A A AB AD A A AB A A AD AD AB ==++=+++⋅⋅+⋅⋅+⋅⋅161616244cos120244cos120244cos90=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒14864()42=+⨯-=,222211111()2BC BC AD AA AD AA AD AA ==+=++⋅⋅1616244cos 6043=++⨯⨯⨯︒=,1111()()AC BC A A AB AD AD AA ⋅=++⋅+11111A A AD A A AA AB AD AB AA AD AD AD AA =⋅+⋅+⋅+⋅+⋅+⋅44cos12044044cos604444cos608=⨯⨯︒-⨯++⨯⨯︒+⨯+⨯⨯︒=,所以11111183cos ,6443A C BC A C BC A C BC ⋅<>===⨯⋅.故选:C. 6.已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是( )A .1B .42+2C.D .2由题可知::(1)C x -,所以点P 的轨迹方程上存在两点,A B ,使得)到直线l 的距离为7.已知抛物线2:2(0)C y px p =>的焦点为F ,直线l F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若||4AF =,则以下结论不正确的是( ) A .2p = B .F 为AD 的中点 C .||2||BD BF = D .||2BF =二、多选题9.下列函数中,既是奇函数又在区间(0,1)上单调递增的是()A.y=2x3+4x B.y=x+sin(-x)C.y=log2|x| D.y=2x-2-x答案ABD解析由奇函数的定义可知,A、B、D均为奇函数,C为偶函数,所以排除C;对于A,y′=6x2+4>0,所以y =2x 3+4x 在(0,1)上单调递增;对于B ,y ′=1-cos x ≥0,且y ′不恒为0,所以y =x +sin(-x )在(0,1)上单调递增;对于D ,y ′=2x ln 2+2-x ln 2>0,所以y =2x -2-x 在(0,1)上单调递增.故选ABD. 3.【多选题】已知ln x 1-x 1-y 1+2=0,x 2+2y 2-4-2ln 2=0,记M =(x 1-x 2)2+(y 1-y 2)2,则( ) A .M 的最小值为25B .当M 最小时,x 2=125C .M 的最小值为45D .当M 最小时,x 2=65答案 BC解析 本题考查两点间距离的最小值的相关问题,导数的应用.由ln x 1-x 1-y 1+2=0得y 1=ln x 1-x 1+2,(x 1-x 2)2+(y 1-y 2)2的最小值可转化为函数y =ln x -x +2图象上的点到直线x +2y -4-2ln 2=0上的点的距离的最小值的平方.由y =ln x -x +2得y ′=1x -1,与直线x +2y -4-2ln 2=0平行的直线的斜率为-12,则令1x -1=-12,解得x =2,∴切点坐标为(2,ln 2),∴点(2,ln 2)到直线x +2y -4-2ln 2=0的距离为|2+2ln 2-4-2ln 2|1+4=255,即函数y =ln x -x +2的图象上的点到直线x +2y -4-2ln 2=0上的点的距离的最小值为255,∴(x 1-x 2)2+(y 1-y 2)2的最小值为45.过点(2,ln 2)与直线x +2y -4-2ln 2=0垂直的直线为y -ln 2=2(x -2),即2x -y -4+ln 2=0.由⎩⎪⎨⎪⎧x +2y -4-2ln 2=0,2x -y -4+ln 2=0,解得x =125,即当M 最小时,x 2=125.故选BC.11.已知正三棱锥O ABC -的底面边长为2A ,B ,C 三点均在以O 为球心的球O的球面上,Q 是该球面上任意一点,下列结论正确的有( ▲ ) A .球O 的半径为43B .三棱锥O ABC -的内切球半径为36C .QA QB ⋅的取值范围是⎡⎢⎣⎦D .若QA ⊥平面ABC ,则异面直线AC 与QB【解析】设2,,G H O 分别为,,BC AB AQ 的中点,1O 为ABC ∆的中心,ABC S ∆=S =表,COB S ∆∴=OG =,43OB ∴==,故A 对;13V S r =表,121333r =⋅,r ∴=B 对;2221QA QB QH BH QH ⋅=-=-,4433QH ⎡∈-⎢⎣⎦,141499QA QB ⎡-+∴⋅∈⎢⎣⎦,故C错;2//,//QB O H AC HG,222222222133cos 226O H HG O G O HG O H HG ⎛+- +-∴∠===-⋅,cos θ∴=D 对. 12.已知F为双曲线22:1C x y -=的右焦点,P 在双曲线C 右支上,点2K ⎛⎫⎪ ⎪⎝⎭. 设PKF α∠=,PFK β∠=, KPF γ∠=,下列判断正确的是( ▲)A .α最大值为3πB.sin sin 2βα≤ C .tan αβ=D .存在点P 满足2γα= 【解析】过P向2x =作垂线,垂足为1P ,过P 向x 轴作垂线,垂足为2P,设直线:2PK x ty =+不妨设0t >,221x ty xy ⎧=⎪⎨⎪-=⎩,消y ,()221102t y ∴-+-=,2420t ∴∆=-=, 2t ∴=,1tan k t α∴===cos 3α∴=,cos 3α∴≥,故A错;sin 2βα≤⇔PK ≤(易得1PF PP =1PK ⇔=1PP PK ⇔≥cos 3α⇔≥,故B 对;tanαβ=⇔222PPPF KP =⇔=12⇔=(显然成立),故C 对;1sinsin sin sin 2KFPF αγγα=⇔=12sin cos 2ααα⇔=⋅cos 22P x α⇔=-⎭14cos P x α⇔=(已知cos 1α≤≤)1,44P x ⎡⇔∈⎢⎣⎦(显然成立),(也可用极限思想考虑)故D 对. 三、填空题13.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=2x -ln x ,则f ′(1)=________. 答案 2e -114.已知直线y ax b =+与曲线ln 2y a x =+相切,则223a b +的最小值为____________.15.在等比数列{}n a 中,5312a a -=,6424a a -=,记数列{}n a 的前n 项和、前n 项积分别为n S ,n T ,若()21n n S T λ+≤对任意正整数n 都成立,则实数λ的最小值为___________.122n -⋅⋅=时,()21nnS T +四、解答题17.求下列函数的导数: (1)y =sin 4x +cos 4x ;(2)y =x 3e cos x .解析 (1)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 22x=1-14(1-cos 4x )=34+14cos 4x ,∴y ′=-sin 4x .(2)y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x .18.已知函数()()1e xf x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形面积;(2)过点(),0A a 作曲线()1e xy x =-的切线,若切线有且仅有1条,求实数a 的值.【解析】(1)()()1e e e x x xf x x x =--=-',令1x =,()1e f '=-,()10f =,故曲线()y f x =在点()()1,1f 处19.已知等比数列n a 的前n 项和为n S ,且满足123112a a a -=,430S =,数列{}nb 满足:11b =,1231111123n n b b b b b n+++++=-,(*n N ∈) (1)求数列{}n a ,{}n b 的通项公式; (2)设数列{}n c 的通项()()131nn n n c a b =+-+,求数列{}n c 的前n 项和n T .【解析】(1)123112a a a -=,2111112a a q a q∴-=,220q q ∴--=, 2q ∴=或1q =-, 当1q =-时,40S =不符合,舍去, 当2q =时,()()4411411121530112a q a S a q--====--,12a ∴=,1222n nn a -∴=⋅=,,1231111123n n b b b b b n+++++=- ① 12311111231n n b b b b b n -∴++++=--, ② 2,*n n N ≥∈,∴①-②11n n n b b b n +=-,11n n b b n n+∴=+ 2,*n n N ≥∈,当1n =时,1211b b =-=,22b ∴=,21121b b ∴==,n b n ⎧⎫⎨⎬⎩⎭是常数列,1n b n ∴=,n b n ∴=. (2)()()()()1312131nnn n n n c a b n =+-+=+-+,∴当n 为偶数时,()()()()()()212471013323112n n T n n -⎡⎤=+-++-+++--++⎣⎦-1132232222n n n n ++=-++⋅=+- 当n 为奇数时,()()11339212231=2222n n n n n n T T c n n n +-=+=+--+-+--, 11392,22322,2n n n n n T n n ++⎧--⎪⎪∴=⎨⎪+-⎪⎩为奇数为偶数(或()1351321244n n n T n +⎛⎫=++⋅-- ⎪⎝⎭)21.已知函数f (x )=13x 3-12ax 2+(a -1)x +1,a 为实数. (1)当a ≤2时,讨论f (x )的单调性;(2)若f (x )在区间[1,5]上单调递减,求实数a 的取值范围.解析 (1)根据题意知f (x )定义域为R ,f ′(x )=x 2-ax +a -1=(x -1)[x -(a -1)], 当a =2时,f ′(x )=(x -1)2≥0,f (x )在R 上单调递增; 当a <2时,a -1<1,由f ′(x )>0得x >1或x <a -1, 由f ′(x )<0得a -1<x <1.∴f (x )在(-∞,a -1)与(1,+∞)上单调递增,在(a -1,1)上单调递减. 综上所述,当a =2时,f (x )在R 上单调递增;当a <2时,f (x )在(-∞,a -1)与(1,+∞)上单调递增,在(a -1,1)上单调递减. (2)由已知得f ′(x )=x 2-ax +a -1≤0在区间[1,5]上恒成立, ∴a (x -1)≥x 2-1在区间[1,5]上恒成立. 当x =1时,a ∈R ;当1<x ≤5时,a ≥x +1.而函数y =x +1在(1,5]上单调递增,当x =5时,y max =6, 则a ≥6. 综上,a ≥6.22. 已知抛物线C :()220x py p =>,F 为抛物线C 的焦点,()0,1M x 是抛物线C 上点,且2MF =;(1)求抛物线C 的方程;(2)过平面上一动点(),2P m m -作抛物线C 的两条切线P A ,PB (其中A ,B 为切点),求11AF BF+的最大值.【小问1详解】依题意得:=122p MF +=,∴2p =,∴24p =,所求抛物线2C 的方程为24x y =; 【小问2详解】抛物线2C 的方程为24x y =,即24x y =∴'2xy =,设()11,A x y ,()22,B x y ,(),2P m m -则切线P A ,PB 的斜率分别为12x ,22x .所以切线P A :()1112x y y x x -=-,∴211122x x y x y =-+,又2114x y =,11220y x x y ∴-+=,同理可得切线PB 的方程为22220y x x y -+=,因为切线P A ,PB 均过点(),2P m m -,所以112240y mx m -+-=,222240y mx m -+-=,所以()11,x y ,()22,x y 为方程2240y mx m -+-=的两组解.所以直线AB 的方程为2240y mx m -+-=. 联立方程222404y mx m x y -+-=⎧⎨=⎩,消去x 整理得()()2222420y m m y m --++-=,∴()()()222222442480m m m m m m ∆=-+--=-+≥,∴m R ∈.∴21224y y m m +=-+,()2122y y m =-由抛物线定义可知11AF y =+,21BF y =+,所以11AF BF AF BF AF BF++=,∵()()()121212111AF BF y y y y y y =++=+++2269m m =-+, ∴2223+112612+2692269m AF BF m m AF BF AF BF m m m m +-+===+-+-+,令32m t R +=∈,∴原式2111154545222621221222t t t t t +=+=++=-++-≤,即原式的最大值56+.。
2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】

2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
新课标高二数学文同步测试(9)(选修1-2第四章)

普通高中课程标准实验教科书——数学选修2—1(文科)[人教版]高中学生学科素质训练新课标高二数学同步测试(9)(1-2第四章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为()A.26 B.24 C.20 D.192.有一堆形状、大小相同的珠子,其中只有一粒重量比其它的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C.27 D.303.“对于大于2的整数,依次从2~n 检验是不是n的因数,即整除n的数。
若有这样的数,则n不是质数;若没有这样的数,则n是质数”,对上面流程说法正确的是()A.能验证B.不能验证C.有的数可以验证,有的不行D.必须依次从2~n-1检验4.“韩信点兵”问题:韩信是汉高祖手下大将,他英勇善战,谋略超群,为建立汉朝立下不朽功勋。
据说他在一次点兵的时候,为保住事秘密,不让敌人知道自己里的事实力,采用下述点兵方法:先令士兵1~3报数,结果最后一个士兵报2;又令士兵1~5报数,结果最后一个士兵报3;又令士兵1~7报数,结果最后一个士兵报4;这样韩信很快算出自己士兵的总数。
士兵至少有多少人()A.20 B.46 C.53 D.395.注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单如图,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,连线标位时间内传递的最大信息量为()A.26 B.24 C.20 D.196.“烧开水泡壶茶喝”是我国著名数学家华罗庚教授作为“统筹法”的引子,虽然是生活中的小事,但其中有不少的道理。
2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。
高二下学期期末考数学试卷

西山一中2017---2018学年上学期期末考试高二数学试卷(文科)(时间:120分钟 分值:150分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填写在答题卡的表格内。
)1、已知集合A ={x |x 2-2x =0},B ={0,1,2},则A ∩B =( ) A .{0} B .{0,1} C .{0,2} D .{0,1,2}2、已知圆锥的表面积为,且它的展开图是一个半圆,则圆锥的底面半径为 ( )cmA .B . 2C .D . 43、在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为 ( )A . 答案AB . 答案BC . 答案CD . 答案D4、.如果0a b ≤<,那么下列不等式中正确的是( ). A .1a b -≤- B . 2a a b ≥ C .2211b a ≤ D .11a b≤ 5、若是5x 2—7x —6=0的根,则()()απαπαπαπαππα+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--sin 2cos 2cos 2tan 23sin 23sin 2= ( )A .53 B . 35 C . 54 D . 456、如图所示,为测量一棵树的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点之间的距离为60 m ,则树的高度h 为 ( ) A .(15+3)m B .(30+15)m C .(30+30)m D .(15+30)m7、已知直线l 垂直于直线AB 和AC ,直线m 垂直于直线BC 和AC ,则直线l ,m 的位置关系是( ) A .平行 B.异面 C .相交 D .垂直8、如图是正方体的平面展开图,在这个正方体中: ○1 B M 与ED 是异面直线; ○2 CN 与BE 平行; ○3 CN 与BM 成60角; ○4DM 与BN 垂直。
高二文科数学期末复习卷(必修二+选修1-1前两章)

高二数学期末考试模拟测试卷一、选择题1.已知不重合的两直线1l 与2l 对应的斜率分别为1k 与2k ,则“21k k =”是“1l ∥2l ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不是充分也不是必要条件210,则实数m 的值是( ) A .16- B .4 C .16 D .813.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π D4.已知实数0,0,0><>c b a ,则直线0=-+c by ax 通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.若M N 、为两个定点且||6MN =,动点P 满足PM PN 0⋅=u u u r u u u r,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线6.“1x >”是“210x ->”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7表示双曲线,则实数k 的取值范围是( ) A .1k < B .13k << C .3k > D .1k <或3k >8.已知A(1,0),B(2,a),C(a ,1),若A ,B ,C 三点共线,则实数a 的值为( ) A .2 B .-2 C .D .9.已知21,F F 为双曲线222=-y x 的左,右焦点,点P 在该双曲线上,且212PF PF =,则21cos PF F ∠=( )A.41 B. 53 C. 43 D. 54 10.设曲线C 的方程为(x-2)2+(y+1)2=9,直线l 的方程为x-3y+2=0,则曲线C 上到直线l 的距离为71010的点的个数为( ) A.1 B.2 C.3 D.4 11.在正方体中,M 是棱的中点,点O 为底面ABCD 的中心,P 为棱A 1B 1上任一点,则异面直线OP 与AM 所成的角的大小为( ) A .B .C .D .12.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形PACB 的最小面积是2,则k 的值为( ). A .4 B .3 C .2 D.2 二、填空题 13.命题“4,2>++∈∀x x R x ”的否定是 .14.若原点在直线上的射影为(2,1)A -,则的方程为____________________. 15.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是 .16.已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆于A ,B 两点,且2F ∆AB 是等腰直角三角形,则椭圆的离心率是 .三、解答题17.命题p : 关于x 的不等式2240x ax ++>,对一切x R ∈恒成立; 命题q : 函数()(32)x f x a =-在R 上是增函数.若p 或q 为真, p 且q 为假,求实数a 的取值范围.18.(本小题满分12分)在平面直角坐标系中,有三个点的坐标分别是(4,0),(0,6),(1,2)A B C -. (1)证明:A ,B ,C 三点不共线;(2)求过A ,B 的中点且与直线20x y +-=平行的直线方程; (3)求过C 且与AB 所在的直线垂直的直线方程. 19.(本小题满分14分) 已知圆心C 在x 轴上的圆过点(2,2)A 和(4,0)B . (1)求圆C 的方程;(2)求过点(4,6)M 且与圆C 相切的直线方程;(3)已知线段PQ 的端点Q 的坐标为(3,5),端点P 在圆C 上运动,求线段PQ 的中点N 的轨迹. 20.(本小题满分14分)如图6,已知点C 是圆心为O 半径为1的半圆弧上从点A 数起的第一个三等分点,AB 是直径,1CD =,直线CD ⊥平面ABC .(1)证明:AC BD ⊥;(2)在DB 上是否存在一点M ,使得OM ∥平面DAC ,若存在,请确定点M 的位置,并证明之;若不存在,请说明理由; (3)求点C 到平面ABD 的距离. 21.(本小题满分14分)已知椭圆C 的两个焦点的坐标分别为E (1,0)-,F (1,0),并且经过点(22,23),M 、N 为椭圆C 上关于x 轴对称的不同两点. (1)求椭圆C 的标准方程;u u u u r u u u r(3)若12(,0),(,0)A x B x 为x 轴上两点,且122x x =,试判断直线,MA NB 的交点P 是否在椭圆C 上,并证明你的结论.22.如图,在三棱锥ABC S -中,⊥SA 底面ABC ,ο90=∠ABC ,且AB SA =, 点M 是SB 的中点,SC AN ⊥且交SC 于点N . (1)求证:⊥SC 平面AMN ;(2)当1AB BC ==时,求三棱锥SAN M -的体积.SCB AMN23.已知椭圆C :2222x y a b+=1(a>b>0),点A 、B 分别是椭圆C 的左顶点和上顶点,直线AB 与圆G :x 2+y 2=24c (c 是椭圆的半焦距)相离,P 是直线AB 上一动点,过点P 作圆G 的两切线,切点分别为M 、N.(1)若椭圆C 经过两点421,3⎛⎫ ⎪ ⎪⎝⎭、33,13⎛⎫⎪ ⎪⎝⎭,求椭圆C 的方程; (2)当c 为定值时,求证:直线MN 经过一定点E ,并求OP uuu r ·OE uuu r的值(O 是坐标原点);(3)若存在点P 使得△PMN 为正三角形,试求椭圆离心率的取值范围..参考答案1.A 【解析】试题分析:前提是两条不重合的直线,所以当12k k =时,有12//l l ,但当12//l l 时,却得不到12k k =,因为当两条直线平行但斜率不存在时,谈不上斜率的问题,如直线1x =与直线2x =平行,却得不出直线的斜率,故“12k k =”是“12//l l ”的充分不必要条件,选A.考点:1.充分必要条件;2.两直线平行的条件. 2.C 【解析】,可得229,(0)a b m m ==>,而210c =,所以由222c a b =+可得2952516m m +==⇒=,故选C.考点:双曲线的定义及其标准方程. 3.C 【解析】1的圆柱,所以C.考点:1.三视图;2.空间几何体的结构特征;3.空间几何体的侧面积. 4.C 【解析】试题分析:由0ax by c +-=得因为0,0,0a b c ><>,所以直线0ax by c +-=通过一、三、四象限,选C. 考点:确定直线位置的几何要素.5.A 【解析】试题分析:当P 与点M N 、•不重合时,由PM PN 0⋅=u u u r u u u r可知PM PN ⊥,即90MPN ∠=︒,而点M N 、•为定点,所以动点P 的轨迹是以MN 为直径的圆(除点M N 、•外),而当P 与点M N 、•重合时,显然满足PM PN 0⋅=u u u r u u u r,综上可知,动点P 的轨迹是圆,选A.考点:动点的轨迹问题. 6.A 【解析】试题分析:由210x ->可以解得1x <-或1x >,所以“1x >”是“210x ->”的充分不本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
上海市七宝 2021-2022学年高二下学期期末考试数学试卷

七宝中学2021学年第二学期高二年级期末考试数学试卷出卷人 卜照泽 审卷人 尹赵 本场考试时间120分钟,满分150分.一、填空题(本大题共12小题,满分54分,第16题每题4分,712题每题5分)1. 在5(1的展开式中,2x 的系数为 .(用数字作答)2. 将5个人排成一排,若甲和乙须排在在一起,则有 种不同的排法.(用数字作答)3. 某校有高一、高二、高三三个年级,其人数之比为2:2:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为 .4. 已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m ,n 的比值mn= .5. 抗击疫情期间,小志参与了社区志愿者工作.现在要对服务时长排名前20%的志愿者进行表彰.该社区的志愿者服务时长(单位:小时)如下:186.0 102.0 22.0 64.0 36.0 68.0 106.0 126.0 110.0 210.0 124.0 226.0 154.0 230.0 58.0 162.0 70.0 162.0 166.0 16.0 根据以上数据,该社区志愿者服务时长的第80百分位数是 .(精确到0.1) 6.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量X 表示所选3人中女生的人数,则()1P X ≤= .7. 某新能源汽车销售公司统计了某款汽车行驶里程x (单位:万千米)对应维修保养费用y (单位:万元)的四组数据,这四组数据如下表:若用最小二乘法求得回归直线方程为ˆ0.58yx b =+,则估计该款汽车行驶里程为6万千米时的维修保养费是 .8. 新冠肺炎疫情发生后,我国加紧研发新型冠状病毒疫苗,某医药研究所成立疫苗研发项目,组建甲、乙两个疫苗研发小组,且两个小组独立开展研发工作.已知甲小组研发成功的概率为23,乙小组研发成功的概率为12.在疫苗研发成功的情况下,是由甲小组研发成功的概率为 .9.小强对重力加速度做n 次实验,若以每次实验的平均值作为重力加速度的估值,已知估值的误差290,n N n ⎛⎫⎪⎝∆⎭~,为使误差n ∆在()0.5.0.5−内的概率不小于0.6827 ,小强至少需要做 次实验.(参考数据:若()2,X N μσ~,()0.6827P X μσμσ−≤≤+=) 10. 设随机变量X ,Y 满足:31Y X =−,()2,XB p ,若()519P X ≥=,则[]D Y = . 11. 设随机事件A 、B ,己知()0.4P A =,()0.3P B A =,()0.2P B A =,则()P B = . 12.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1p 、2p 、3p ,且3210p p p >>>.记该棋手连胜两盘且在第二盘与甲、乙、丙比赛的概率分别为p 甲、p 乙、p 丙,则p 甲、p 乙、p 丙的大小关系为 .二、选择题:(本大题共4小题,每题5分,满分20分)13. 在进行n 次重复试验中,事件A 发生的频率为mn,当n 很大时,事件A 发生的概率()P A 与mn的关系是 ( )A .()P A mn≈ B .()m P A n < C .()m P A n > D .()m P A n =14.若二项式1()2n x −展开式中所有项的系数之和为n a ,所有项的系数绝对值之和为n b ,二项式系数之和为n c ,则下列结论不成立的是 ( )A .n n n a b c <<B .103n n n n b a a b +≥C .对任意,1N n n ∈≥均有n n n a b c +≤D .存在,1N n n ∈≥使得n n n a b c +>15. 由于疫情各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为 ( )附:()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.A .130 16.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1n i i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==−∑.命题1:若1(1,2,,)i p i n n==,则()H X 随着n 的增大而增大;命题2:若2n m =,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +−==+=,则()()H X H Y ≤.则以下结论正确的是 ( ) A .命题1正确,命题2错误 B .命题1错误,命题2正确 C .两个命题都错误 D .两个命题都正确 三、解答题(本大题共5题,满分76分)17. (本题满分14分,第1小题6分,第2小题8分) 求满足下列方程组的正整数的解: (1)32228n n P P =;(2)112311n n n nn n n n C C C C +−−+++−=+.18.(本题满分14分,第1小题6分,第2小题8分) 已知()(31),,1N n f x x n n =−∈≥.(1)若()f x 的二项展开式中只有第7项的二项式系数最大,求展开式中2x 的系数; (2)若2023n =,且()2023220230122023(31)f x x a a x a x a x =−=++++,求012023a a a +++.19.(本题满分14分,第1小题7分,第2小题7分)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m 名学生进行体育测试.根据体育测试得到了这m 名学生的各项平均成绩(满分100分),按照以下区间分为7组:[)30,40,[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,并得到频率分布直方图(如).已知测试平均成绩在区间[)30,60内的有20人.(1)求m 的值及中位数n ;(2)若该校学生测试平均成绩小于n ,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?20. (本题满分16分,第1小题4分,第2小题6分,第3小题6分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.设每场比赛双方获胜的概率都为12.经抽签,甲、乙首先比赛,丙轮空.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.21. (本题满分18分,第1小题4分,第2小题6分,第3小题8分)2022年冬奥会刚刚结束,比赛涉及到的各项运动让人们津津乐道.高山滑雪(Alpine Skiing)是以滑雪板、雪鞋、固定器和滑雪杖为主要用具,从山上向山下,沿着旗门设定的赛道滑下的雪上竞速运动项目.冬季奥运会高山滑雪设男子项目、女子项目、混合项目.其中,男子项目设滑降、回转、大回转、超级大回转、全能5个小项,其中回转和大回转属技术项目.现有90名运动员参加该项目的比赛,组委会根据报名人数制定如下比赛规则:根据第一轮比赛的成绩,排名在前30位的运动员进入胜者组,直接进入第二轮比赛,排名在后60位的运动员进入败者组进行一场加赛,加赛排名在前10位的运动员从败者组复活,进入第二轮比赛.现已知每位参赛运动员水平相当.(1)求每位运动员进入胜者组的概率,及每位败者组运动员复活的概率;(2)从所有参赛的运动员中随机抽取5人,设这5人中进入胜者组的人数为X,求X的分布列和数学期望;(3)从败者组中选取10人,其中最有可能有多少人能复活?试用你所学过的数学和统计学理论进行分析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西宾阳县宾阳中学2015-2016学年高二数学下学期期末考试试题 文一、选择题:本大题共12小题,每小题5分,共60分。
1、设集合}2,1{=A ,则满足}3,2,1{=B A 的集合B 的个数是( )(A )1 (B )4 (C )3 (D )82、已知复数i z -=1,则复数122--z z z =( ) (A )i 2 (B )2 (C )i 2- (D )–23、右上图是150辆汽车通过某路段时速度的频率分布直方图,则速度在)70,50[的汽车大约有( )(A )120辆 (B )90辆 (C )80辆 (D )60辆4、已知点)4,3(),1,2(),2,1(),1,1(D C B A ---,则向量→AB 在→CD 方向上的投影为( )(A )2153 (B )223 (C )223- (D )2153- 5、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角是( )(A ) 60 (B ) 45 (C ) 30 (D ) 906、如图,按照程序框图执行,第3个输出的数是( )(A )3 (B )4 (C )5 (D )77、某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )(A )902cm (B )1292cm(C )1322cm (D )1382cm8、从5件正品,1件次品中随机取出2件,则取出的两件产品中恰好是1件正品1件次品的概率是( )(A )31 (B )21 (C )32 (D )1 9、下列函数中,最小值为4的是( )(A )3log 4log 3x x y += (B )x x e e y -+=4(C ))0(sin 4sin π<<+=x xx y (D )x x y 4+= 10、设2log 3=a ,12-=b ,6log c 5=,则( ) (A )b c a << (B )a c b << (C )c a b << (D )c b a <<11、设P 是椭圆14922=+y x 上一点,21,F F 是椭圆的两个焦点,则21cos PF F ∠的最小值为( ) (A )91- (B )–1 (C )91 (D )21 12、已知函数))((R x x f y ∈=满足:)()2(x f x f =+,且当]1,1[-∈x 时,2)(x x f =,那么方程|lg |)(x x f =的解的个数为( )(A )1个 (B )8个 (C )9个 (D )10个二、填空题:本大题共4小题,每题5分,共20分.13、在等差数列}{n a 中,24)(2)(31310753=++++a a a a a ,则此数列前13项之和=13S ;14、若y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,3003,0x y x y x ,则y x z -=2的最大值为 ;15、已知函数)0(2sin 2cos 2cos 2sin )(>+=φφφx x x f 的图像关于直线3π=x 对称,则φ 的最小值为 ;16、设F 为抛物线C :x y 32=的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为 .三、解答题:本大题共6小题,共70分.17、(满分10分)已知等差数列}{n a 中,n n a a >+1,160101=a a ,3783=+a a(1)求数列}{n a 的通项公式;(2)若从数列}{n a 中依次取出第2项,第4项,第8项,…,第n2项,按原来的顺序组成一个新数列}{n b ,求n n b b b S +++= 21.18、(满分12分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,且c a >,已知2=⋅→→BC BA ,31cos =B ,3=b ,求: (1)a 和c 的值; (2))cos(C B -的值.19、(满分12分)在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2====BD CD CB CA ,2==AD AB(1)求证:AO ⊥平面BCD ;(2)求三梭锥ACD E -的体积.20、(满分12分)在研究色盲与性别的关系调查中 ,调查了男性480人 ,其中有38人患色盲,调查的520名女性中有6人患色盲.(1)根据以上数据建立一个22⨯列联表;(2)若认为“性别与患色盲有关系”,则出错的概率会是多少?附1:随机变量:))()()(()(22d b c a d c b a bc ad n K ++++-= 附2:临界值参考表:21、(满分12分)已知函数c x x x x f +--=221)(23 (1)求函数)(x f 的单调区间;(2)若对]2,1[-∈x ,不等式 2)(c x f < 恒成立,求c 的范围.22、(满分12分)已知椭圆)0(12222>>=+b a by a x 的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23. (1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由.2016年春学期期末考试高二数学(文)试题参考答案一、BCBBA CDABC AD13、26; 14、9; 15、125π; 16、49。
17、(1)∵160101=a a ,37101=+a a ,∴101,a a 是方程0160372=+-x x 的两根,∵101a a <,∴51=a ,3210=a … … … …… …… …… …3分∴d n )1(532-+=,∴3=d ,∴23+=n a n … … …… …… 5分 (2)821==a b ,2232+⋅==n n n a b … …… ……… … …… … 8分∴6223221)21(231-+⋅=+--⨯=+n n S n n n …… … … … … …… 10分 18、(1)∵31cos =B ,3=b ,2cos ==⋅→→B ca BC BA ,且ac b c a B 2cos 222-+=, ∴6=ac ,5=+c a ,∵c a >,∴2,3==c a … … … … … …6分(2)∵31cos =B ,∴322sin =B ,∵2,3,3===c b a , … … … …8分 ∴972cos 222=-+=ab c b a C ,∴924sin =C … … …… …… 10分 ∴2723sin sin cos cos )cos(=+=-C B C B C B …… … … … ……12分 19、19、(1)∵依题AO⊥BD,CO⊥BD,由=+22OC AO222224)()(AC OB BC OB AB ==-+-得:AO⊥CO∵AO⊥BD,AO⊥CO,O CO BD = ,∴AO⊥平面BCD ;…… …… …… …… … 6分(2)1=AO ,∵E 是BC 的中点,∴631)23221(312121212=⨯⨯⨯⨯⨯===--BCD A ACD B E V V V …… ……12分 20、(1)建立一个22⨯列联表如右下:…4分(2)假设H :“性别与患色盲没有关系”先算出2K 的观测值:14.2795644520480)644251438(100022=⨯⨯⨯⨯-⨯⨯=K …… …… …… …… 8分则有001.0)828.10(2=≥K P ,即是H 成立的概率不超过0.001,若认为“性别与患色盲有关系”,则出错的概率为0.001…… ……12分21、(1)∴)1)(23(23)(2/-+=--=x x x x x f …… …… …… …… ……2分当32-<x 或1>x 时,0)(/>x f , 当132<<-x 时,0)(/<x f ∴)(x f 在)32,(--∞或),1(+∞上递增,在)1,32(-上递减 …… … 6分 (2)由(1))(x f 在32-=x 取得极大值,c x f +=2722)(极大 … …… 8分 c f +=-21)1(,c f +=2)2(,∴在]2,1[-∈x 上c x f +=2)(max … 10分 ∴22c c <+,解得:1-<c 或2>c …… …… …… … …… 12分22、(1)直线AB 方程为:0=--ab ay bx ,∴⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=+=13233622b a b a ab a c ∴椭圆方程为:1322=+y x …… …… …… …… …… …… ……4分 (2)若存在k 值,由⎩⎨⎧=-++=033222y x kx y ,得:0912)31(22=+++kx x k …6分∴10)31(36)12(222>⇒>+-=∆k k k ,设)2211,(),,(y x D y x C ,则:⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x ,而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx y y 要使以CD 为直径的圆过点)0,1(-E ,当且仅当CE ⊥DE 时, … …8分则1112211-=++⋅x y x y ,即0)1)(1(2121=+++x x y y ∴05))(12()1(21212=+++++x x k x x k ,∴05)3112)(1(2319)1(222=++-++++kk k k k ,解得167>=k … 11分 ∴存在67=k ,使得以CD 为直径的圆过点E … … …… … …12分。