第7章-分布滞后模型与自回归模型多重共线性

合集下载

计量经济学课后思考题答案

计量经济学课后思考题答案

第五章 异方差性思考题5.1 简述什么是异方差?为什么异方差的出现总是与模型中某个解释变量的变化有关?答 :设模型为),....,,(....n 21i X X Y i i 33i 221i =μ+β++β+β=,如果其他假定均不变,但模型中随机误差项的方差为),...,,()(n 21i Var 2i i =σ=μ,则称i μ具有异方差性。

由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,所以异方差的出现总是与模型中某个解释变量的变化有关。

5.2 试归纳检验异方差方法的基本思想,并指出这些方法的异同。

答:各种异方差检验的共同思想是,基于不同的假定,分析随机误差项的方差与解释变量之间的相关性,以判断随机误差项的方差是否随解释变量变化而变化。

其中,戈德菲尔德-跨特检验、怀特检验、ARCH 检验和Glejser 检验都要求大样本,其中戈德菲尔德-跨特检验、怀特检验和Glejser 检验对时间序列和截面数据模型都可以检验,ARCH 检验只适用于时间序列数据模型中。

戈德菲尔德-跨特检验和ARCH 检验只能判断是否存在异方差,怀特检验在判断基础上还可以判断出是哪一个变量引起的异方差。

Glejser 检验不仅能对异方差的存在进行判断,而且还能对异方差随某个解释变量变化的函数形式进行诊断。

5.3 什么是加权最小二乘法?它的基本思想是什么?答:以一元线性回归模型为例:12i i i Y X u ββ=++经检验i μ存在异方差,公式可以表示为22var()()i i i u f X σσ==。

选取权数 i w ,当2i σ 越小 时,权数i w 越大。

当 2i σ越大时,权数i w 越小。

将权数与 残差平方相乘以后再求和,得到加权的残差平方和:2i 21i 2i i X Y w e w )(**β-β-=∑∑,求使加权残差平方和最小的参数估计值**ˆˆ21ββ和。

这种求解参数估计式的方法为加权最小二乘法。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。

第七章_分布滞后模型与自回归模型总结

第七章_分布滞后模型与自回归模型总结

段时间才能显示出来。只有经过一段时间以后,支出对利率
的反应增强,投资、进出口和消费才会不断上升,货币政 策才最终促使GDP增加。通常,货币扩张对GDP影响的最 高点可能是在政策实施以后的一到两年间达到。
思考
在现实经济活动中,滞后现象是普遍存
在的,这就要求我们在做经济分析时应该考
虑时滞的影响。
怎样才能把这类时间上滞后的经济关系
纳入计量经济模型呢?
第 七 章 分布滞后模型与自回归模型
本章主要讨论:
●滞后效应与滞后变量模型 ●分布滞后模型的估计 ●自回归模型的构建 ●自回归模型的估计
第一节 滞后效应与滞后变量模型
本节基本内容:
●经济活动中的滞后现象 ●滞后效应产生的原因 ●滞后变量模型
一、滞后变量模型
通常把这种过去时期的,具有滞后作用的变量 叫做滞后变量(Lagged Variable),含有滞后变量 的模型称为滞后变量模型。 滞后变量模型考虑了时间因素的作用,使静态 分析的问题有可能成为动态分析。含有滞后解释变 量的模型,又称动态模型(Dynamical Model)。
第一步,阿尔蒙变换
对于分布滞后模型
Yt i X t i t
i 0 s
取: 2 m i 0 1i 2i mi i 0,1, 2, , s ; m s
此式称为阿尔蒙多项式变换(图7.2)。
将阿尔蒙多项式变换代入分布滞后模型并整理, 模型变为如下形式 其中
有限期的分布滞后模型,OLS会遇到如下问题:
1、没有先验准则确定滞后期长度; 2、如果滞后期较长,将缺乏足够的自由度进行 估计和检验; 3、同名变量滞后值之间可能存在高度线性相关, 即模型存在高度的多重共线性。

第七章分布滞后与自回归

第七章分布滞后与自回归

ut
0 1
假设:
X
* t
X* t 1
(Xt
X
* t 1
)
本期的预期值X*t等于前一期的预期值加上修正量
(Xt
X
* t 1
)
是预期偏差
(Xt
X
* t 1
)
的一部分。
假设: X * X (1 ) X *
t
t
t 1
本期预期值是本期的实际值与上期预期值的加权平均
假设: X * X * ( X X * )
义货币增长率
2020/6/12
8
第二节 分布滞后模型及其估计
估计分布滞后模型存在的问题 有限分布滞后模型的修正估计法
经验加权法 阿尔蒙法
2020/6/12
9
一、分布滞后模型估计的困难
1、自由度问题
模型每增加一个解释变量就会失去一个自由度;滞后长度每增加 一期可利用的数就会少一个。
Yt 0 Xt 1Xt1 2 Xt2 ut
22
(三)缺点
(1)假定无限分布滞后呈几何滞后 结构,即滞后影响按某个固定比 例递减,这种假定对某些经济变 量可能不适用
(2)库伊克模型的随机扰动项存在 一阶自相关,将给模型的估计带 来困难
2020/6/12
23
二、自适应预期模型
影响被解释变量的因素不是Xt,而是预期值X*t,即有
Yt
X
* t
解释变量与 干扰项相关性
库伊克 有一阶自

相关
ut* ut ut1
自适应 有一阶自

预期
相关
ut* ut (1 )ut1
局部调 无一阶自

相关
ut* ut

分布滞后模型与自回归模型.ppt

分布滞后模型与自回归模型.ppt

1、滞后效应与产生滞后效应的原因
因变量受到自身或另一解释变量的前几 期值影响的现象称为滞后效应。
表示前几期值的变量称为滞后变量。 如:消费函数
通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响:
Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
以滞后变量作为解释变量,就得到滞后变量模 型。它的一般形式为:
Yt 0 1Yt1 2Yt2 qYtq 0 X t 1X t1 s X ts t q,s:滞后时间间隔
自回归分布滞后模型(autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归, 还包括着X分布在不同时期的滞后变量
无限分布滞后模型,主要是通过适当的模型 变换,使其转化为只需估计有限个参数的自回归 模型。
(1)经验加权法 根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
常见的滞后结构类型
w
w

t (c)
•递减型:
即认为权数是递减的,X的近期值对Y的影响较 远期值大。
本节基本内容:
●经济活动中的滞后现象 ●滞后效应产生的原因 ●滞后变量模型
一、滞后变量模型
通常把这种过去时期的,具有滞后作用的变量 叫做滞后变量(Lagged Variable),含有滞后变量 的模型称为滞后变量模型。
滞后变量模型考虑了时间因素的作用,使静态 分析的问题有可能成为动态分析。含有滞后解释变 量的模型,又称动态模型(Dynamical Model)。
如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。

分布滞后模型与自回归模型

分布滞后模型与自回归模型

分布滞后模型与自回归模型前面各章所讨论的回归模型属于静态模型,即认为被解释变量的变化仅仅依赖于解释变量的当期影响,没有考虑变量之间的前后联系。

事实上,在现实经济活动中,由于经济活动主体的决策与行动都需要一个过程,加之人们生活习惯的延续、制度或技术条件的限制以及预期效应等因素的影响,经济变量的变化往往存在时滞现象。

因此,为了探索受时滞因素影响的经济变量的变化规律,需要在回归模型中引入滞后变量进行分析。

本章主要介绍经济分析中较为常用的分布滞后模型与自回归模型,讨论它们的产生背景、特点及估计。

第一节滞后效应与滞后变量模型一、经济活动中的滞后现象一般来说,解释变量对被解释变量的影响不可能在短时间内完成,在这一过程中通常都存在时间滞后,也就是说解释变量需要通过一段时间才能完全作用于被解释变量。

此外,由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。

这种被解释变量受自身或其它经济变量过去值影响的现象称为滞后效应。

下面我们看两个涉及滞后效应的例子。

【例7.1】 消费滞后消费者的消费水平,不仅依赖于当年的收入,还同以前的收入水平有关。

一般来说,消费者不会把当年的收入全部花光。

假定消费者将每一年收入的40%用于当年花费,30%用于第二年花费,20%用于第三年花费,其余的作为长期储蓄。

这样,该消费者的消费函数就可以表示成:tt t t t u X X X Y ++++=--212.03.04.0α其中,t Y 、t X 分别为第t 年的消费和收入,α为常数。

【例7.2】 通胀滞后 通货膨胀与货币供应量的变化有着较为密切的联系。

物价上涨最直接的原因是相对于流通中商品和服务的价值量来说货币供应过多,货币的超量供应通常是通货膨胀产生的必要条件。

但是,货币供应量的变化对通货膨胀的影响并不是即期的,总存在一定时滞。

美国一学者在研究通胀滞后效应时,就采用了如下模型:t s t s t t t t u M M M M P ++++++=---ββββα 22110其中,t P 、t M 分别为第t 季度的物价指数和广义货币的增长率,s 是滞后(时滞)期。

计量经济学课件:第七章-分布滞后模型与自回归模型

计量经济学课件:第七章-分布滞后模型与自回归模型

第七章 分布滞后模型与自回归模型第一节 分布滞后模型与自回归模型的基本概念一、问题的提出 1、滞后效应的出现。

(1)在经济学分析中,研究消费函数,人们的消费行为不仅要受到当期收入的影响(绝对收入假设),还要受到前期收入的影响,甚至要受到前期消费的影响(相对收入假设)。

(2)研究投资问题,由于投资周期的原因,本年度投资的形成,与上年度,甚至再上年度的投资形成有关。

(3)运用经济政策调控宏观经济运行,经济政策的实施所产生的政策效果是一个逐步波及的扩散过程。

用计量经济学模型研究这类问题,怎样度量变量的滞后影响?怎样估计有滞后变量的模型?对于上述消费的情况,设C 表示消费,Y 表示收入,则123141t t t t t C Y Y C u ββββ--=++++ 对于上述投资的情况,设I 表示投资,Y 表示收入,则 12314253t t ttttI Y I I I u ααααα---=+++++ 2、静态计量经济学模型向动态计量经济学模型的扩展。

什么为“动态计量经济学模型”? 二、产生滞后效应的原因 1、心理预期因素的作用。

2、技术因素的作用。

3、制度因素的作用。

上述原因的结果表现为经济现象中的“惯性作用”。

二、滞后变量模型的类型1、分布滞后模型。

如果模型中没有滞后的被解释变量,即01122t t t t s t s t Y X X X X u αββββ---=++++++则模型为分布滞后模型。

由于s 可以是有限数,也可以是无限数,则分布滞后模型可分为有限分布滞后模型和无限分布滞后模型。

在分布滞后模型中,有关系数的解释如下:⑴乘数(又称倍数)的解释。

该概念首先由英国的卡恩提出(,1931)。

所谓乘数是指,在一个模型体系里,外生变量变化一个单位,对内生变量产生的影响程度。

据此进行的经济分析称为乘数分析或乘数效应分析。

如投资乘数,是指在边际消费倾向一定的情况下,投资变动对收入带来的影响,亦即增加一笔投资,可以引起收入倍数的增加。

第七章 分布滞后模型

第七章  分布滞后模型
4
1、分布滞后模型 分布滞后模型形式为: 分布滞后模型形式为: 形式为
Yt = α + β 0 X t + β1 X t −1 + ⋯ + β s X t − s + ut

Yt = α + β 0 X t + β1 X t −1 + ⋯ + ut
其中第一式的最大滞后长度s是一个确定的数, 其中第一式的最大滞后长度s是一个确定的数 ,因 此是有限分布滞后模型 有限分布滞后模型。 此是有限分布滞后模型。 而第二式没有规定最大滞后长度, 而第二式没有规定最大滞后长度,是无限分布滞后 模型。 模型。
2
二、滞后效应产生的原因
1.心理原因(习惯的影响、信息不充分) 1.心理原因 习惯的影响、信息不充分) 心理原因( 经济活动离不开人的参与, 经济活动离不开人的参与,人的心理因素对 经济变量的变化有很大影响。 经济变量的变化有很大影响。一方面是心理定势 及社会习惯的作用;另一方面是预期心理的影响。 及社会习惯的作用;另一方面是预期心理的影响。 2.客观原因(技术性原因、制度性原因) 2.客观原因 技术性原因、制度性原因) 客观原因( 在经济运行中,从生产到流通, 在经济运行中,从生产到流通,每一个环节 都需要一段时间,从而形成滞后现象。另外, 都需要一段时间,从而形成滞后现象。另外,现 代社会中经济活动都是在一定制度下进行的, 代社会中经济活动都是在一定制度下进行的,从 而限制了对市场反应的灵活性。 而限制了对市场反应的灵活性。
Koyck提出了如下假定:参数按几何数列衰减, Koyck提出了如下假定:参数按几何数列衰减, 提出了如下假定 即: β i = β i −1λ i = 0, 1, 2, … 0, 或
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章分布滞后模型与自回归模型7.1滞后效应与滞后变量模型在经济运行过程中,广泛存在时间滞后效应。

某些经济变量不仅受到同期各种因素的影响,而且也受到过去某些时期的各种因素甚至自身的过去值的影响。

通常把这种过去时期的,具有滞后作用的变量叫做滞后变量( Lagged Variable ),含有滞后变量的模型称为滞后变量模型。

滞后变量模型考虑了时间因素的作用,使静态分析的问题有可能成为动态分析。

含有滞后解释变量的模型,又称动态模型(Dynamical Model )。

一、滞后效应与与产生滞后效应的原因因变量受到自身或另一解释变量的前几期值影响的现象称为滞后效应。

表示前几期值的变量称为滞后变量。

女口:消费函数通常认为,本期的消费除了受本期的收入影响之外,还受前1期,或前2期收入的影响:C t= 0+ 1Y t+ 2Y t-1 + 3Y t-2 + tY t-1,Y t-2为滞后变量。

产生滞后效应的原因1、心理因素:人们的心理定势,行为方式滞后于经济形势的变化,如中彩票的人不可能很快改变其生活方式。

2、技术原因:如当年的产出在某种程度上依赖于过去若干期内投资形成的固定资产。

3、制度原因:如定期存款到期才能提取,造成了它对社会购买力的影响具有滞后性。

二、滞后变量模型以滞后变量作为解释变量,就得到滞后变量模型。

它的一般形式为:q , s :滞后时间间隔自回归分布滞后模型(autoregressive distributed lag model, ADL ):既含有 Y 对自身滞后变量的回归,还包括着 X 分布在不同时期的滞后变量有限自回归分布滞后模型:滞后期长度有限无限自回归分布滞后模型: 滞后期无限,(1)分布滞后模型(distributed-lag model )分布滞后模型:模型中没有滞后被解释变量,仅有解释变量X 的当期值及其若干期的滞后值:b0 :短期(short-run) 或即期乘数(impact multiplier) ,表示本期X 变化一单位对 Y 平均值的影响程度。

bi (i=1,2…,s):动态乘数或延迟系数,表示各滞后期 X 的变动对Y 平均值影响的大小。

「「称为长期(Iong-run )或均衡乘数(total distributed-lag multiplier单位,由于滞后效应而形成的对 丫平均值总影响的大小。

如果各期的X 值保持不变,则X 与Y 间的长期或均衡关系即为:2、自回归模型(autoregressive model )自回归模型:模型中的解释变量仅包含X 的当期值与被解释变量Y 的一个或多个滞后值丫t0 1X t 2丫t 1t),表示X 变动一个称为一阶自回归模型( first-order autoregressive model )。

§2分布滞后模型的参数估计一、分布滞后模型估计的困难无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计。

有限期的分布滞后模型,OLS会遇到如下问题:1、没有先验准则确定滞后期长度;2、如果滞后期较长,将缺乏足够的自由度进行估计和检验;3、同名变量滞后值之间可能存在高度线性相关,即模型存在高度的多重共线性。

二、分布滞后模型的修正估计方法人们提出了一系列的修正估计方法,但并不很完善。

各种方法的基本思想大致相同:都是通过对各滞后变量加权,组成线性合成变量而有目的地减少滞后变量的数目,以缓解多重共线性,保证自由度。

(1)经验加权法根据实际问题的特点、实际经验给各滞后变量指定权数,滞后变量按权数线性组合,构成新的变量。

权数据的类型有:递减型即认为权数是递减的,X的近期值对Y的影响较远期值大。

如消费函数中,收入的近期值对消费的影响作用显然大于远期值的影响。

例如:滞后期为3的一组权数可取值如下:1/2,1/4,1/6,1/8矩型:即认为权数是相等的,X的逐期滞后值对值Y的影响相同。

如滞后期为3,指定相等权数为1/4,则新的线性组合变量为:倒V 型权数先递增后递减呈倒“V ”型。

例如:在一个较长建设周期的投资中,历年投资X 为产出丫的影响,往往在周期期中投资对本期 产出贡献最大。

如滞后期为4,权数可取为1/6,1/4,1/2, 1/3, 1/5经验权数法的优点是:简单易行缺点是:设置权数的随意性较大通常的做法是:多选几组权数,分别估计出几个模型,然后根据常用的统计检验(R 方检验, F 检验,t 检验,D -W检验),从中选择最佳估计式。

(2)阿尔蒙(A lmon )多项式法主要思想:针对有限滞后期模型,通过阿尔蒙变换,定义新变量,以减少解释变量个数,然后 用OLS 法估计参数。

主要步骤为:第一步,阿尔蒙变换假定其回归系数可用一个关于滞后期的适当阶数的多项式来表示,即 其中,m<s-1。

阿尔蒙变换要求先验地确定适当阶数k ,例如取k=2,得对于分布滞后模型(3)科伊克(Koyck )方法科伊克方法是将无限分布滞后模型转换为自回归模型,然后进行估计。

科伊克变换假设bi 随滞后期i 按几何级数衰减: 其中,0<1<1 ,称为分布滞后衰减率,1-1称为调整速率(Speed of adjustment )。

科伊克模型的特点:(1)以一个滞后因变量 Yt-1代替了大量的滞后解释变量 Xt-i ,最大限度地节省了自由度,解决 了滞后期长度s 难以确定的问题;(2 )由于滞后一期的因变量 Yt-1与Xt 的线性相关程度可以肯定小于 X 的各期滞后值之间的相关程度,从而缓解了多重共线性。

但科伊克变换也同时产生了两个新问题:(1)模型存在随机项和vt 的一阶自相关性;(2 )滞后被解释变量Yt-1与随机项vt 不独立。

这些新问题需要进一步解决。

§7.3自回归模型的构造一个无限期分布滞后模型可以通过科伊克变换转化为自回归模型。

事实上,许多滞后变量模型都可以转化为自回归模型, 自回归模型是经济生活中更常见的模型。

以适应预期模型以及局部调整模型为例进行说明。

一、自适应预期(Adaptive expectation )模型在某些实际问题中,因变量Yt 并不取决于解释变量的当前实际值 Xt ,而取决于Xt 的“预期水平”对于无限分布滞后模型:或“长期均衡水平”Xte 。

例如,家庭本期消费水平,取决于本期收入的预期值;市场上某种商品供求量,决定于本期该商品价格的均衡值。

由于预期变量是不可实际观测的,往往作如下自适应预期假定其中:r 为预期系数(coefficient of expectation ) , 0 £ r 1。

该式的经济含义为: “经济行为者将根据过去的经验修改他们的预期”,即本期预期值的形成是一个逐步调整过程,本期预期值的增量是本期实际值与前一期预期值之差的一部分,其比例为可将自适应预期模型转化为自回归模型。

二、局部调整(Partial Adjustment) 模型局部调整模型主要是用来研究物资储备问题的。

例如,企业为了保证生产和销售,必须保持一定的原材料储备。

对应于一定的产量或销售量Xt ,存在着预期的最佳库存Yte 。

Yte 不可观测。

由于生产条件的波动,生产管理方面的原因,库存储备Yt 的实际变化量只是预期变化的一部分。

可见,局部调整模型转化为自回归模型§7.4自回归模型的参数估计估计时的主要问题:滞后被解释变量的存在可能导致它与随机扰动项相关,以及随机扰动项出因此,自适应预期模型最初表现形式是Y 0iX tet这个假定还可写成:X t erX t (1r)X t e!局部调整模型的最初形式为对于自回归模型现序列相关性。

因此,对自回归模型的估计主要需视滞后被解释变量与随机扰动项的不同关系进行估计。

以一阶自回归模型为例说明:工具变量法若Yt-1与mt 同期相关,则OLS 估计是有偏的,并且不是一致估计。

因此,对上述模型,通常采用工具变量法,即寻找一个新的经济变量Zt ,用来代替Yt-1。

参数估计量具有一致性。

在实际估计中,一般用X 的若干滞后的线性组合作为Yt-1的工具变量由于原模型已假设随机扰动项 mt 与解释变量X 及其滞后项不存在相关性,因此上述工具变量与 mt 不再线性相关。

一个更简单的情形是直接用Xt-1作为Yt-1的工具变量。

二、普通最小二乘法若滞后被解释变量Yt-1与随机扰动项 t 同期无关(如局部调整模型),可直接使用 OLS 法进行估计,得到一致估计量。

注意:上述工具变量法只解决了解释变量与mt 相关对参数估计所造成的影响,但没有解决mt 的自相关问题。

事实上,对于自回归模型,mt 项的自相关问题始终存在,对于此问题,至今没有完全有效的解决方法。

唯一可做的,就是尽可能地建立“正确”的模型,以使序列相关性的程度减轻。

例741 建立中国长期货币流通量需求模型经验表明:中国改革开放以来,对货币需求量 (Y )的影响因素,主要有资金运用中的贷款额(X)以及反映价格变化的居民消费者价格指数(P )。

对于一阶自回归模型Yt 0 1X t 2X 1 t1X t 1s X t s注意:尽管D.W.=1.733 ,但不能据此判断自回归模型不存在自相关 (Why?)。

但 LM=0.7855 ,=5% 下,临界值 2(1)=3.84 ,判断:模型已不存在一阶自相关。

§7.5格兰杰因果关系检验自回归分布滞后模型旨在揭示:某变量的变化受其自身及其他变量过去行为的影响。

然而,许多经济变量有着相互的影响关系问题:当两个变量在时间上有先导一一滞后关系时,能否从统计上考察这种关系是单向的还是双向的?即:主要是一个变量过去的行为在影响另一个变量的当前行为呢?还是双方的过去行为在相互影响着对方的当前行为?格兰杰因果关系检验( Gran ger test of causality )对两变量丫与X ,格兰杰因果关系检验要求估计如果:F>Fa(m,n-k),则拒绝原假设,认为 X 是丫的格兰杰原因。

注意:格兰杰因果关系检验对于滞后期长度的选择有时很敏感。

不同的滞后期可能会得到完全 不同的检验结果。

因此,一般而言,常进行不同滞后期长度的检验,以检验模型中随机误差项不存 在序列相关的滞后期长度来选取滞后期。

思考题1 、什么是滞后现象?产生滞后现象的原因是什么?2 、对分布滞后模型进行估计存在哪些困难?实际应用中如何处理这些困难?Y tm ■ X t -I t I i 1 I Y ; 1t分别做包含与不包含 X 滞后项的回归, 记前者与后者的残差平方和分别为 RSSU 、RSSR ;再计算F 统计量: (RS$ RSS U )/mRSS U /(n k)3 、检验一阶自回归模型随机扰动项是否存在自相关,为什么用德宾h 检验而不用DW 检验?。

相关文档
最新文档