原子吸收、原子发射、原子荧光的异同

合集下载

原子发射光谱法_原子吸收光谱法_原子荧光光谱法的比较

原子发射光谱法_原子吸收光谱法_原子荧光光谱法的比较

TECHNOLOGY WIND [摘要]通过三种方法的比较,可以得知不同的分析方法所适用的元素。

本文主要从基本原理,研究对象及温度三个方面进行比较。

[关键词原子发射光谱法;原子吸收光谱法;原子荧光光谱法原子发射光谱法、原子吸收光谱法、原子荧光光谱法的比较赫健(辽宁省有色地质局一0四队测试中心,辽宁营口115007)1基本原理三者从基本原理来看其相同点是:相应能级间的跃迁所得的3种光谱,波长或频率完全相同,而且发射强度、吸收强度、荧光强度与元素性质、谱线特征及外界条件间的依赖有关系基本类似。

因此,原子发射光谱法中的问题,在原子吸收和原子荧光法中也大多同样存在。

2研究对象三者之间也存在根本区别:从3种方法的研究对象来看是有区别的:原子发射光谱法是研究待测元素激发的辐射强度;原子吸收光谱法是研究待测原子蒸气对光源共振线的吸收强度,是属吸收光谱;原子荧光光谱法是研究待测元素受激发跃迁所发射的荧光强度,虽然激发主式与发射光谱法不同,但仍然是属发射光谱。

而原子荧光光谱法既具有发射光谱分析的特点,以与原子吸收法有许多相似之处,因此,介于两者之间,在某些方面兼具两者的优点。

谱线数目不同,复杂程度不同,光谱干扰程度也有很大差别:发射光谱谱线多,由谱线重叠引起的光谱干扰较严重。

由于基态原子密度较其他能级原子密度大,受激吸收机会占优势,因此原子吸收线多限于一些以基态为低能级的共振吸收线,其谱线数目远比发射线少,谱线重叠引起光谱干扰也较少。

由于只有产生受激吸收之后才能产生荧光,因此荧光谱线大多是强度较大的共振线,其谱线数目更少,相对光谱干扰也少。

3温度温度变化对原子发射强度、吸收强度、原子荧光强度的影响不同:激发态原子随温度变化是以指数形式变化,而基态原子数因温度变化引起的变化是很小的,实际上接近于恒定值。

这是由于参加跃迁的低能级的激发能一般很小(基态激发能等于零),玻尔慈曼因子近似等于1,因此原子吸收强度受原子化温度变化的影响,比发射光谱受激发温度影响小。

原子吸收法和原子荧光法的异同比较

原子吸收法和原子荧光法的异同比较

原子吸收法和原子荧光法的异同比较原子吸收法和原子荧光法是分析化学中常用的两种技术手段,用于测定物质中微量元素的含量。

尽管它们有着相似的应用领域,但在原理、仪器和操作上存在一些显著的差异。

在本文中,我将深入研究原子吸收法和原子荧光法,并比较它们之间的异同点。

一、原子吸收法原子吸收法(Atomic Absorption Spectroscopy, AAS)通过测量物质中特定元素在特定波长下吸收可见光的量,来确定该元素的含量。

其基本原理是根据原子吸收特定波长的光,但过渡态或分解态的离子并不吸收该波长的光,从而可以利用这一特性分析样品中特定元素的含量。

原子吸收法可以测定多种元素,包括金属和非金属元素。

1. 仪器和工作原理:在原子吸收法中,主要使用的仪器是原子吸收光谱仪。

该仪器包括光源、样品室、光学系统、检测器和数据处理系统。

其工作原理是将样品中的元素化合物转化为原子态,通过中空阴极放电灯或石墨炉技术,产生特定元素的原子吸收光谱,再通过光谱仪测量吸收光强度,最终计算出元素的浓度。

2. 优点和应用:原子吸收法具有高选择性、良好的线性范围和较低的检测限等优点。

它被广泛应用于环境监测、冶金、食品安全等领域。

可用原子吸收法测定土壤中的重金属含量、水中的污染物浓度以及食品中的微量元素含量。

二、原子荧光法原子荧光法(Atomic Fluorescence Spectroscopy, AFS)是一种利用原子或离子在受激发后发射荧光的现象来分析物质中元素含量的技术。

原子荧光法需要源于样品的非分解态的离子或原子进行测定。

它可以测定只能被激发成原子态的元素或离子。

1. 仪器和工作原理:在原子荧光法中,主要使用的仪器是原子荧光光谱仪。

该仪器包括光源、样品室、分光系统、荧光检测器和数据处理系统。

其工作原理是将样品中的元素通过光源激发成原子态并发射荧光,再将荧光信号由光谱仪检测并进行分析。

2. 优点和应用:原子荧光法具有高选择性、较低的检测限和较宽的线性范围等特点。

原子荧光 原子吸收的区别

原子荧光 原子吸收的区别

原子荧光原子吸收的区别原子荧光和原子吸收是两种不同的现象,它们分别描述了原子在不同光谱条件下的行为。

以下将对原子荧光和原子吸收的区别进行详细解析。

一、物理意义原子荧光是指原子在外界激发下,能够从低能级跃迁到高能级并释放出能量的现象。

在这个过程中,原子会吸收能量并进入激发态,然后再次发射光子回到基态,这个光子的能量对应着原子的能级差。

而原子吸收则是指原子吸收能谱中的某些频率的光子,通过电子跃迁上升到更高的能级中。

这个过程中,原子吸收光子的能量,而光子的能量将直接导致电子的跃迁和原子能级的升高。

二、反应规律原子荧光和原子吸收都遵循着波尔的量子化理论,即原子的能量是量子化的。

这意味着原子吸收或发射的光子能量必须与电子跃迁的能量差相等,才能发挥效果。

三、应用领域原子荧光和原子吸收都有着广泛的应用领域。

在分析化学领域,原子荧光和原子吸收都被用于原子吸收光谱法、原子荧光光谱法等。

它们可以用于分析气体、流体、液滴等样品中的元素,从而确定其化学成分和浓度。

在生物医学领域,原子荧光可用于确定细胞或组织中的某些元素,这有助于了解人体组织中的微量元素的含量。

原子吸收则可以用于医学诊断和治疗,如X射线视觉检测和放射性治疗等。

四、检测方法要检测原子荧光或原子吸收现象,需要使用特殊的仪器。

在原子荧光法中,需要使用荧光光谱仪和激发光源,以激发和捕捉从样品中出射的特定波长的光。

而在原子吸收光谱仪中,需要使用吸收仪和特定的光谱源,以测量从吸收材料中吸收特定波长的光的削弱程度。

总的来说,原子荧光和原子吸收虽然有着相似之处,但它们是两种不同的现象,分别描述了原子在不同场景下的行为。

它们在分析化学和生物医学领域中都有着广泛的应用,可以用于检测和诊断样品中的元素含量。

原子发射、吸收、荧光法之间的比较

原子发射、吸收、荧光法之间的比较

原子发射、吸收、荧光法之间的比较
14级硕5班陈梅锋201421021517
原子发射、吸收、荧光法三者之间既有相同点也有不同点。

下面分别述之:
相同点:三种方法都是利用原子在气体状态下发射或吸收特种辐射所产生的光谱进行元素定性、定量的分析。

基本原理都是由相应能级间的跃迁得到波长或频率完全相同光谱,而且发射强度、吸收强度、荧光强度与元素性质、谱线特征及外界条件间的依赖关系基本类似。

不同点:三种方法的研究对象有所区别:原子发射光谱法是研究待测元素激发的辐射强度,是目前进行元素定性检出的最好方法[1,2];原子吸收光谱法是研究待测原子蒸汽对光源共振线的吸收强度,是属于吸收光谱,这种方法对测量条件的选择要求比较严格[3];原子荧光光谱法是研究待测元素受激发跃迁所发射的荧光强度,虽然激发方式与发射光谱法不同,但仍然是属发射光谱,这种方法检出限低,可同时进行多元素分析[4,5]。

[1]孙友宝,马晓玲,李剑等,电感耦合等离子体原子发射光谱( ICP-AES) 法测定垃圾渗滤液中的多种金属元素[J],环境化学,2014,33(9),1623-1624.
[2]孙友宝,宋晓红,孙媛媛等,电感耦合等离子体原子发射光谱法测定海洋沉积物中的多种金属元素[J],中国无机分析化学,2014,4(3),35-38
[3]曹珺,赵丽娇,钟儒刚,原子吸收光谱法测定食品中重金属含量的研究进展[J],2012,33(7),304-309.
[4]高帅,原子荧光光谱法测定新疆雪菊中微量硒[J],福建分析测试,2014,23(5),56-58.
[5]李刚,胡斯宪,陈琳玲,原子荧光光谱分析技术的创新与发展[J],岩矿测试,2013,32(3),358-376.。

原子荧光、原子吸收和原子发射

原子荧光、原子吸收和原子发射

原子荧光光谱简介原子荧光光谱是1964年以后发展起来的分析方法。

原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。

但所用仪器与原子吸收光谱法相近。

原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。

原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。

它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度进行定量分析的方法。

原子荧光的波长在紫外、可见光区。

气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。

若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。

共振荧光强度大,分析中应用最多。

在一定条件下,共振荧光强度与样品中某元素浓度成正比。

该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3――5个数量级,特别是用激光做激发光源时更佳。

主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。

原理原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法。

气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8S,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。

原子荧光分为共振荧光、直跃荧光、阶跃荧光等。

发射的荧光强度和原子化器中单位体积该元素基态原子数成正比,式中:I f为荧光强度;$ 为荧光量子效率,表示单位时间内发射荧光光子数与吸收激发光光子数的比值,一般小于1;Io为激发光强度;A为荧光照射在检测器上的有效面积;L为吸收光程长度;& 为峰值摩尔吸光系数;N为单位体积内的基态原子数。

原子吸收、原子发射、原子荧光的异同1页

原子吸收、原子发射、原子荧光的异同1页

原子吸收、原子发射、原子荧光的异同1页原子吸收、原子发射、原子荧光是原子谱学中常见的三种现象,它们都与原子在吸收或发射能量后产生的特定的光谱有关。

本文将从原理、实验方法、应用等方面,对这三种现象进行比较和分析。

一、原理1、原子吸收:原子吸收的原理是当特定波长的光束照射到一定温度和压强下的原子蒸汽中时,原子会发生能级的跃迁,并吸收光束中与跃迁能量相等的能量。

因此,这种吸收现象也叫做吸收光谱。

2、原子发射:原子发射的原理是原子在受到能量刺激后,从高能级跃迁到低能级,释放出与跃迁能量等量的电磁波,形成一系列特定波长的光谱线。

这些特征光谱线是由于原子的每种元素具有其特有的能量差和能级结构而产生的。

因此,原子发射现象也被称为发射光谱。

3、原子荧光:原子荧光是指通过对激发某种原子的能级,让其发射出特定波长的电磁辐射,从而产生荧光现象。

通常情况下,原子的激发是通过将某种能源施加到样品中来实现的,如电子束、X射线、紫外线等。

原子荧光是由于被激起的原子在其基态中重新发射出辐射而形成的,所以也被称为复合光谱。

二、实验方法:原子吸收实验通常采用吸收分光光度计进行分析。

其原理是,在分光仪的光路中加入样品溶液或原子蒸汽,将特定波长的光通过样品或气体中,由于原子的吸收,特定波长的光子被吸收而发生减弱。

根据钙、铜等元素的吸收峰的吸光度来定量分析元素的含量。

原子发射分析通常采用原子发射光谱仪进行分析。

通过电弧、火焰等能量来源刺激样品,使原子被激发到高能级,然后原子跃迁到低能级时释放出能量。

通过将产生的辐射收集到发射光谱仪中,经过光栅等光学元件分析并检测,得到具有特定波长的光谱线,从而可以快速、精确地确定样品中的元素。

原子荧光实验主要使用荧光光谱仪进行分析。

样品被辐射后,被激发的原子在退激过程中会辐射出一些光子。

这些光子被荧光光谱仪测量,并转化为一个荧光发射谱。

与其他发光技术(如发射光谱)相比,荧光光谱具有更广泛的应用。

在材料科学、生物医学、化学分析和环境监测等领域,荧光光谱都得到了广泛应用。

原子荧光光谱和原子吸收光谱的区别

原子荧光光谱和原子吸收光谱的区别

原子荧光光谱和原子吸收光谱的区别
原子荧光光谱和原子吸收光谱是两种常见的光谱分析方法,它们的区别主要在于测量原理和应用领域。

原子荧光光谱是通过激发原子内部能级,使得原子中的电子跃迁到较高的能级,然后再回到基态时放出光子,从而形成光谱。

这种光谱具有独特的谱线,每个谱线对应着原子中某个特定的能级跃迁所释放出的能量。

原子荧光光谱常用于分析金属、非金属元素和稀土元素等化学元素的含量和化学结构。

原子吸收光谱则是通过测量样品中的元素吸收特定波长的光线,来推断该元素的含量。

原子吸收光谱要求样品经过化学处理,使得其中的元素以单质或者化合物的形式存在,并且必须具有一定的浓度。

在测量过程中,光源会发射特定波长的光线,这些光线会穿过样品,被吸收掉一部分,未被吸收的光线会被检测器测量。

吸收光线的强度与样品中元素的含量成正比,因此可以通过测量吸收光线的强度来推断样品中元素的含量。

原子吸收光谱常用于分析金属、非金属元素以及汞、铅等有毒元素的含量。

总之,原子荧光光谱和原子吸收光谱各有优缺点,应根据具体需要选择合适的方法进行分析。

- 1 -。

原子吸收光谱和原子发射光谱的区别

原子吸收光谱和原子发射光谱的区别

原子吸收光谱和原子发射光谱的区别根据有关资料,比较完整的解释:原子吸收光谱原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。

由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

原子吸收光谱法该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。

在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。

即A=KC 式中,K为常数。

据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。

该法主要适用样品中微量及痕量组分分析。

原子吸收光谱法是根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。

其优点与不足:<1> 检出限低,灵敏度高。

火焰原子吸收法的检出限可达到ppb 级,石墨炉原子吸收法的检出限可达到10-10-10-14g。

<2> 分析精度好。

火焰原子吸收法测定中等和高含量元素的相对标准差可<1%,其准确度已接近于经典化学方法。

石墨炉原子吸收法的分析精度一般约为3-5%。

<3> 分析速度快。

原子吸收光谱仪在35分钟内,能连续测定50个试样中的6种元素。

<4> 应用范围广。

可测定的元素达70多个,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。

<5> 仪器比较简单,操作方便。

<6> 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:13级食检班姓名:王建
原子吸收、原子发射、原子荧光的比较
方法原子吸收光谱法原子发射光谱法原子荧光光谱法
不同点
原理
吸收光谱
基态原子吸收特征谱
线,产生吸收光谱
发射光谱
基态原子在一定条件
下受激发后,发射特征
谱线
发射光谱
基态原子吸收光能被
激发,再跃迁到基态,
同时发射特征谱线
(荧光)
定量依据 A = KC I=ac b或lgI=lga+ blgc If=KC
光源锐线光源(空心阴极
灯)
激发光源(直流电弧、
交流电弧、高压火花、
ICP)
高强度空心阴极灯和
无极放电灯
激发方式原子化系统激发光源原子化系统
组成部件光源-原子化器-单色
器-检测器
光源-分光系统-检测
系统
光源-单色器-原子化
器-单色器-检测器
排列顺序所有部件排成直线所有部件排成直线光源与检测器垂直
应用微量元素定量(化工、
水土、生物、环境)
元素定性、定量、半
定量(冶金、采矿)
元素定性,微量、痕
量元素定量(超纯物
质中杂质分析)
局限性①只能用于确定元素
的组成与含量,不能
给出物质分子结构、
价态、和状态等信息
②不能用于分析有机
物和一些非金属元素
①测每一种元素要用
专用的灯②难熔元
素、非金属元素测定
困难③不能同时多元

①散射光影响较严
重,在一定程度上限
制了该法的普及和发
展②测定元素不多
(14种)
相同点光谱类型都是原子光谱(线光谱)应用都是进行元素分析。

相关文档
最新文档