概率试题
概率试题及答案

D( X ) = 1 ; 统计量 X ~ N (2, 1 ) 。
4
4
二、选择题(每题 3 分,共 15 分) 1.设 A, B 为任二事件, 则下列关系正确的是( D )。
(A) P(A − B) = P(A) − P(B)
(B) P(A B) = P(A) + P(B)
(C) P(AB) = P(A)P(B)
-2 4
4
P{X = −1,Y = 1} = P{U ≤ −1,U 1} = 0 ,
P{X = 1,Y = −1} = P{U −1 ,U ≤1} = 1 1 dx = 1 ,
−1 4
2
P{X = 1,Y = 1} = P{U −1,U 1} = 2 1 dx = 1 .
(D) P( A) = P( AB) + P( AB)
2. 设 X ~ N(0,1), 又常数 c 满足 P{X≥c} = P{X c} , 则 c 等于( B )。
(A) 1
(B) 0
(C) 1 2
(D) -1
3.设 X ~ B(n, p), E( X ) = 6, D( X ) = 3.6 , 则有( C )。
3.设随机变量
X
的概率密度为
f
(x)
=
e−x ,
x 0, 则 E(e−2 X ) =
1
。
0, x≤0.
3
4.设X~ NhomakorabeaN (1, 32 ) , Y
~
N (0, 42 ) ;X与Y的相关系数 XY
=
1 −,
2
Z = X + Y ,则E(Z)= 32
1 3
,D(Z)= 3。
5 . 设 总 体 X ~ N(2, 25) , X1, X 2 , , X100 是 从 该 总 体 中 抽 取 的 样 本 , 则 E( X ) = 2;
概率测试题及答案

概率一、选择题(将唯一正确的答案填在题后括号内)1.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰好是白球;③两次抛掷正方体骰子,掷得的数字之和小于13;④抛掷硬币1000次,第1000次正面向上其中是可能事件的为( )A .①③B .①④C .②③D .②④2.下列事件发生的概率为0的是( )A.随意掷一枚均匀的硬币两次,至少有一次反面朝上;B.今年冬天黑龙江会下雪;C.随意掷两个均匀的骰子,朝上面的点数之和为1;D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
3.给出下列结论:①打开电视机它正在播广告的可能性大于不播广告的可能性;②小明上次的体育测试是“优秀”,这次测试他百分之百的为“优秀”;③小明射中目标的概率为0.6,因此,小明连射三枪一定能够击中目标;④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等. 其中正确的结论有( )A.1个B.2个C.3个D.4个 4.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是( )A. B. C. D. 5.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A .2519B .2510C .256D .255 6.下列事件中,必然事件是( )A .掷一枚硬币,正面朝上.B .a 是实数,l a l ≥0.C .某运动员跳高的最好成绩是20 .1米.D .从车间刚生产的产品中任意抽取一个,是次品.7.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ) A .只发出5份调查卷,其中三份是喜欢足球的答卷B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8C .在答卷中,喜欢足球的答卷占总答卷的53 D .发出100份问卷,有60份答卷是不喜欢足球8.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中103215131第20题 随机摸出一个球,它是白球的概率为23,则黄球的个数为( ) A.2 B.4C.12D.16 9.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全.小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是( ) A.81 B.83 C.85 D.87 10.现有A.B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A . 118B .112C .19D .1611.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A .13B .14C .16D .11212.如图,A.B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A .21B .32C .43D .54二、填空题13.在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是_____________.14.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+=的k 值,则所得的方程中有两个不相等的实数根的概率是 .15.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .16.某学校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项试验.在这次测试中,小亮和大刚恰好做同一项实验的概率是______________.17.在“石头、剪子、布”的游戏中,两人做同样手势的概率是________.18.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是。
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。
答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。
答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。
答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。
四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。
2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。
求事件A和事件B同时发生的概率。
答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。
五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。
答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。
例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。
高中概率试题及答案

高中概率试题及答案一、选择题(每题2分,共10分)1. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 0.25C. 0.75D. 12. 从52张扑克牌中随机抽取一张,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/3D. 1/133. 一个袋子里有3个红球和2个蓝球,随机取出一个球,取到蓝球的概率是多少?A. 1/3B. 1/2C. 2/5D. 3/54. 一个事件的概率为0.3,那么它的对立事件的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.65. 一个班级有30名学生,其中10名男生和20名女生,随机抽取一名学生,抽到女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/4二、填空题(每题3分,共15分)6. 一个骰子有6个面,每个面出现的概率是_________。
7. 如果一个事件的概率是0.4,那么它发生的概率是_________。
8. 从10个不同的球中随机抽取3个,不放回,抽到特定3个球的概率是_________。
9. 一个袋子里有5个红球和5个蓝球,随机取出2个球,两个球都是红球的概率是_________。
10. 一个事件的概率为0.2,那么它不发生的概率是_________。
三、解答题(每题5分,共10分)11. 一个袋子里有2个红球和3个蓝球,随机取出2个球,求至少一个红球的概率。
12. 一个班级有50名学生,其中25名男生和25名女生。
随机抽取3名学生,求至少有1名男生的概率。
四、计算题(每题7分,共14分)13. 一个袋子里有5个红球,3个蓝球和2个黄球。
随机取出3个球,求取出的球中至少有一个红球的概率。
14. 一个盒子里有10个球,其中3个是中奖球。
随机抽取2个球,求至少抽到一个中奖球的概率。
五、应用题(每题8分,共16分)15. 一个学校有500名学生,其中300名是高中生,200名是初中生。
随机抽取10名学生,求至少有8名高中生的概率。
概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。
2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。
3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。
在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。
4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。
5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。
6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。
7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。
概率计算练习题

概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。
现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。
2. 有一批产品,其中20%是次品。
从中随机抽取3个产品,求恰好有一个是次品的概率。
3. 一批产品中有30%的次品。
从中随机抽取5个产品,求至少有一个是次品的概率。
4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。
甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。
现从该批产品中随机选择一件,求其出现故障的概率。
5. 一批产品中有20%的次品。
从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。
二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。
已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。
现从该班级中随机选择一名学生,求该学生学习吉他的概率。
2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。
从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。
3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。
已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。
现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。
4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。
从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。
5. 某城市每天发生车辆事故的概率为0.03。
概率考试试题

概率考试试题一、选择题(每题3分,共30分)1. 以下哪项是概率的定义?A. 事件发生的次数与总次数的比值B. 事件发生的可能性大小C. 事件的必然性D. 事件的不可能性2. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0B. 0.5C. 1D. 不确定3. 以下哪个事件是必然事件?A. 明天会下雨B. 太阳从东方升起C. 某人活到200岁D. 以上都不是4. 以下哪个事件是不可能事件?A. 掷骰子得到1点B. 掷骰子得到7点C. 掷骰子得到6点D. 掷骰子得到任何点数5. 一袋中有3个红球和2个蓝球,随机抽取一个球,抽到红球的概率是多少?B. 2/5C. 3/5D. 5/76. 如果事件A的概率为0.3,事件B的概率为0.4,且A和B互斥,那么A和B至少有一个发生的概率是多少?A. 0.1B. 0.7C. 0.5D. 0.87. 以下哪个选项正确描述了独立事件?A. 事件A和B的结果相互影响B. 事件A发生会影响事件B发生的概率C. 事件A不发生会影响事件B发生的概率D. 事件A发生与否不影响事件B发生的概率8. 以下哪个选项是条件概率的定义?A. P(A|B) = P(A)P(B)B. P(A|B) = P(A ∩ B) / P(B)C. P(A|B) = P(A) / P(B)D. P(A|B) = P(A ∪ B)9. 一枚均匀的骰子连续投掷两次,向上的点数之和为5的概率是多少?A. 1/6B. 1/9C. 1/12D. 1/1810. 如果一个事件的概率为0.05,那么它的对立事件的概率是多少?B. 0.95C. 0.9D. 无法确定二、填空题(每题4分,共20分)11. 如果一个事件的概率为P(A),那么它的补事件的概率为______。
12. 两个独立事件同时发生的概率等于各自发生概率的______。
13. 在一次随机抽样中,如果一个事件的发生不受其他事件的影响,那么这个事件被称为______事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计模拟题一、填空题1、已知,7.0)B (P 4.0)A (P ==,B (A P )=0.2,则B)P(A +=____________________。
2、已知,7.0)(,3.0)(=⋃=B A p B p 则B A P ()=____________________。
3、已知随机事件A 的概率0.5P(A)=,随机事件B 的概率P(B)=0.6,及条件概率 P(A|B)=0.8,则事件A B 的概率P(A B)=____________________。
4、已知事件A ,B ,C 相互独立,且P(A)=0.5,P(B)=0.9,P(C)=0.4。
则{}B C A )(P +=__________。
5、某射手每射击一枪击中目标的概率为0.8,今他对靶独立重复射击10枪,则至少有一枪击中目标的概率是__________________。
6、一口袋中装有4只白球,3只黑球,从中陆续不放回地取出三只球,则取出的三只球恰好有二只黑球的概率是 。
7、袋中有4个白球,10个红球。
甲先从袋中任取一个球,取后不放回,再放入一个与所取的颜色相反的球,然后乙再从袋中任取一球。
则甲取出的是白球,乙取出的是红球的概率是__________________。
8、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则同时订甲、乙两种报的住户的百分比(概率)是 。
9、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有2%住户同时订两种报纸。
则住户至少订甲、乙两种报纸中的一种报纸的百分比(概率)是____________。
10、若某居民小区有60%住户订甲报,有30%住户订乙报,有25%住户同时订甲、乙两种报纸。
则订甲报而不订乙报的住户的百分比(概率)是________。
11、已知事件A 与B 相互独立,又知A 发生且B 不发生的概率与B 发生且A不发生的概率相等即P(A B )=B)A P(。
又已知95)B A P(=。
则)(A P =__________。
12、某个问题,要由甲、乙两人回答,甲先回答,答对的概率是0.8;若甲答错再由乙回答,答对的概率是0.6。
则问题被解答对的概率是_______________。
13、某小区居民有40%住户订甲种报纸,有35%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则只订甲种报纸而不订乙种报纸的住户的百分比(概率)是__________。
14、已知随机变量X 的分布列为1.03.02.043101b a P XK-,且知E(X)=1.4,则 a =________,b =____________。
15、设随机变量X 的分布律为21813101b a P Xk - ,且知()830=≤X P ,则=a ,=b 。
16、已知随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≥<≤<≤-<=;4,1;42,8.0;21,3.0;1-,0)(x x x x x F ,则X 的分布列是K P X。
17、已知随机变量X 的分布律为4.03.01.02.02101K P X -,则Y=X 2+1的分布律为Y P K 。
18、已知随机变量X K 都服从正态分布N (μ,σ2),K=1,2,…5,且X 1,X 2,…X 5相互独立,则在一次观察中上述五个随机变量取值恰好有两个大于μ的概率是 。
19、已知随机变量X 服从正态分布N(20,4),则随机变量Y=3X+2服从 __________分布,其中参数____________,__________2==σμ。
20、已知随机变量X 与Y 相互独立,且知X~N(10,2),Y~N(4,1)。
则P(X —Y ≤6)=__________。
21、已知随机变量X 与Y 相互独立,且知X~N(1,2),Y~N(0,1),且随机变量Z=2X-Y+3的概率密度_________________)(=z f 。
22、已知二维离散型随机变量(X,Y )的联合分布律为3.04.01.02.020.11Y321-Xc ba , 则常数的值应是________,=a =b ___________,=c _____________。
23、设总体X 服从参数为p(0<p<1,未知)的(0—1)分布,即X~B(1,p)。
(),21n X X X 是取自该总体的简单随机样本,则(),21n X X X ,的联合概率密度函数),,(21n x x x f =___________。
24、设随机变量X 的概率密度244221)(++-=x x e x f π,则E )2(2X X -=_____________。
25、设随机变量X 服从正态分布N (10,4),Y 在区间[0,6]上服从均匀分布,且X 与Y 相互独立,则D(2X-3Y)=__________________。
26、设随机变量X 与Y 相互独立,且知随机变量X 服从二项分布,即X~B(100,0.3),Y 服从参数为4=λ的泊松分布,即(4)~Y π,则D(X —2Y+9)=_______________。
27、已知随机变量X 与Y 的相关系数81=XY ρ,且知X 服从正态分布)920(,N ,Y 服从参数的泊松分布,4=λ即(4)~Y π。
则=+Y),32COV(X 。
28.盒中有五件同类产品,其中2件次品,3件正品。
每次从中任取一件是次品的个数是随机变量X 。
现从盒中每次任取一件有放回地抽取8次,得容量为8的样本821,X X X 。
则样本方差2s 的数学期望)(2S E =_____________________。
29、设总体X 服从参数为m=100,p=0.3的二项分布,即X~B (100,0.3)。
从该总体中抽取样本容量为36的样本(362,1..,.........X X X ),∑==nk k X n 11X 是样本均值。
则)X E(=_______,D(X )=__________。
30、设总体X 在[]1,+θθ区间上服从均匀分布,即X~[]1,+θθU ,参数θ未知。
(),21n X X X 是取自该总体的样本,样本的均值为X 。
则参数θ的矩估计量是____。
31、设1ˆθ和2ˆθ分别是参数θ的无偏估计,若要21ˆ)9-(3ˆK θθK +也是θ的无偏估计,则应K=________________。
32、设随机变量X 的分布律为 X -1 0 1 3 ,且知P(0≤X )=83,则 P K 81 a b 21 a=____________,b=_________, E(X)=__________。
二、单选题(将各题正确答案前的字母填入该题的括号内)。
1、袋中有10个球,其中只有一个红球,每次取一球取后放回,直到第8次才取得3次红球的概率为( )。
(A )3-83109)101()( (B )338101C )(38)109(- (C ) 1338101C -)(38)109(- (D )27C 3-83109)101()( 2、汽车经过n 个交叉路口,设每个路口碰到红灯的概率都是p ,且各路口的红、绿灯是相互独立的。
汽车在行驶中遇到红灯的次数是随机变量X 。
则P(X=K)=( )。
=K 0,1,2 nA 、k n k p p --)1(B 、k n k k n p pC --)1(C 、k n k p np --)1(D 、k k n p C3、每次实验事件A 成功(发生)的概率都是P 。
独立重进行多次试验。
则在事件A 第2次成功之前已经失败了3次的概率是( )。
A 、32)1(3p p -B 、32)1(4p p -C 、32)1(2p p -D 、32)1(p p -4、甲、乙二个车间生产的同类产品,分别放在二个箱子内。
已知装甲车间产品的箱子内正品是20件,次品5件;装乙车间产品箱内有正品25件,次品是5件。
无区分标志。
现从二个箱子任取一箱再从该箱中任取一件产品是次品的概率是( )。
A .112B .6011C .409D .3011 5、甲乙二人同时回答某个问题。
甲答对的概率是0.9,乙答对的概率是0.8.现问题已被解答对,则该问题是由甲答对的概率是( )。
A 、 )(0.80.9210.921+⨯B 、 )(0.80.9210.9+ C 、)(0.80.921+ D 、0.9 6、设随机事件A ,B 的概率是P(A)=p ,P(B)=q )1010(<<<<q p , ,且知P(A+B)=pq q p -+,则A 与B 的关系应是( )。
A.互不相容B.不独立C.对立D.相容且独立7、连续型随机变量X的概率密度函数为),(x f 则)(x f 必满足条件( )。
A 、⎰+∞=≥01)(0)(dx x f x f 且; B 、1)(0≤≤x f 且⎰+∞∞-=1)(dx x f ; C 、⎰+∞=≤≤01)(1)(0dx x f x f 且; D 、0)(≥x f ,且⎰+∞∞-=1)(dx x f8、设随机变量X 服从标准正态分布N(0,1),)(x ϕ是X 的概率密度,)(x Φ是X 的分布函数,则对任意实数a ,有( )。
A 、⎰-=-Φadx x a 0)(1)(ϕ B 、)()(a a Φ=-Φ C 、1)(2)(-Φ=-Φa a D 、⎰-=-Φa dx x a 0)(21)(ϕ 9、设X 与Y 相互独立,且知X~N(20,4),Y ~N(8,2),则Z=2X-Y 服从的分布是( )。
A 、N(32,14);B 、N(32,10)C 、N(32,6);D 、N(32,,18)10、设随机变量X 的分布列为b a 3.00.2P 2101-XK ,且知E(X)=0.5,则b a ,的值应是( )。
A 、3.0=a ,2.0=bB 、3.0=a ,1.0=bC 、2.0=a ,3.0=bD 、4.0=a ,2.0=b11、设随机变量X 与Y 相互独立,且知其概率分布相同,即4341P 32X ,4341P 32Y,则有( ) A 、X-Y=0 B 、2X+Y=3X C 、P(X=Y)=1610 D 、P (X=Y )=112、设随机变量X 与Y 相互独立,且都服从参数为)10(<<p p 的(0—1)分布,则有( )。
A 、P(X=Y)=2pB 、P(X=Y)= 2p +2)1(p -C 、X=YD 、P(X=Y)= 113、已知二维离散型随机变量X 与Y 相互独立,且知其分布律为: X 1 2 , P 0.6 0.4 Y 0 1P 0.2 0.8 ,则(X,Y )的联合分布律为( )。