5薄壁圆管弯扭组合变形测定_实验报告

合集下载

薄壁圆管弯扭组合变形测定实验报告数据

薄壁圆管弯扭组合变形测定实验报告数据

薄壁圆管弯扭组合变形测定实验报告数据近年来,薄壁圆管的弯扭组合变形测定实验受到了广泛的重视,因此,作为研究该项技术的一个基本实验,我们就此进行了一项实验,数据详述如下:实验参数:该实验中,研究对象为薄壁圆管,材料为不锈钢,直径为150mm,厚度为2mm。

实验所用的工具包括:一台动力转子台,一台扭矩传感器,一台测力仪和一台凸轮钳。

实验中设定的参数:初始扭矩为10N.m,递增步长为0.2N.m,扭矩最大值为50N.m,扭矩比值为0.6,频率为30r/min,弯曲角度的最小变化量为0.2°。

实验结果:实验中,以扭矩为变量,以形变量(弯曲角度)为因变量,于是我们获得了以下实验数据:扭矩/N.m 弯曲角度/°10.0 -2.210.2 -2.510.4 -2.810.6 -3.010.8 -3.211.0 -3.411.2 -3.511.4 -3.711.6 -3.811.8 -4.0……50.0 -20.5根据以上实验数据,可以看出,随着扭矩的增大,薄壁圆管的弯曲角度也随着增大。

实验分析:从上文的实验数据可以看出,当扭矩增加时,薄壁圆管的弯曲角度也会随之增加,这表明薄壁圆管具有较强的弯曲变形能力。

因此,利用该材料可以制造出更加精致的零件,为自动化制造、精密机械等领域提供参考依据。

结论:通过本次实验,我们可以得出结论:1、薄壁圆管具有较强的弯曲变形能力,这表明其可以用来制作精致的零件。

2、实验结果可以作为自动化制造、精密机械等领域的参考依据。

3、未来可以增大实验范围,收集更多的实验数据,以深化对薄壁圆管弯扭组合变形的研究。

本次实验为薄壁圆管弯扭组合变形提供了一份深入的数据报告,从这份报告中,我们可以更好地了解薄壁圆管变形性能,从而为未来的研究提供参考。

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验
实验目的: (1)了解在弯曲和扭转组合变形情况下的测试方法
(2)测定薄壁圆筒试件在弯曲和扭转组合受力情况下,试件表面某
点的正应力,并与理论值比较。

实验仪器: XL3418材料力学多功能试验台;测力仪;静力电阻应变仪。

实验原理: 薄壁圆筒受弯曲和扭转组合作用,使圆筒的m 点处于平面应力状态如图1所示。

在m 点单元体上有弯矩引起来的正应力x σ,和由扭矩引起来的剪应力n τ。

主应力是一对拉应力1σ和一对压应力3σ。

理论值计算:
132x σσσ=±
022n
x
tg τασ-=
x z M
W σ= 4
3132z D d W D π⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ M P L =∆⋅
n T
T
W τ= 43116T D d W D π⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
T P a =∆⋅
实验值计算:
°
°
145453()2(1)E εεσσμ-+=- °°°°°45-450045-45()2(2)
tg εεαεεε-=
--
图1 圆筒m 点的应力状况。

弯扭组合变形实验报告

弯扭组合变形实验报告

弯扭组合变形实验报告在本次实验中,我们将探讨弯扭组合变形的现象及其可能的影响。

弯扭组合变形是一种常见的材料变形方式,特别是在金属材料中。

通过施加弯曲和扭转力,可以使材料发生复杂的变形,这既可以用于制造工艺中,也可以用于材料性能的研究。

我们进行了一组简单的实验,选取了不同种类的金属材料进行弯扭组合变形。

通过在材料上施加不同方向和大小的力,我们观察到了材料发生的变形情况。

在弯曲力的作用下,材料产生了弯曲变形,而扭转力则使材料发生了扭转变形。

当两种力同时作用在材料上时,就会出现弯扭组合变形的情况,这种变形形式更加复杂,具有更多的变形模式。

接着,我们对不同金属材料在弯扭组合变形过程中的性能进行了比较。

我们发现,一些材料在受到弯扭组合变形后,其强度和硬度有所提高,但塑性却有所下降。

这说明弯扭组合变形可以提高材料的强度,但也可能导致其脆性增加。

而对于另一些材料来说,弯扭组合变形后,其塑性反而有所提高,但强度和硬度可能会降低。

因此,在实际应用中,需要根据具体材料的性能需求来选择是否采用弯扭组合变形工艺。

我们还研究了弯扭组合变形对材料微观结构的影响。

通过金相显微镜的观察,我们发现在弯扭组合变形后,材料的晶粒结构发生了明显的变化。

晶粒可能会发生细化,晶界的移动和变形也会加剧。

这些微观结构的变化对材料的性能有着重要影响,因此对于材料的微观结构进行研究是十分必要的。

总的来说,弯扭组合变形是一种重要的材料变形方式,可以有效改善材料的性能,但也可能导致一些负面影响。

因此,在工程实践中,需要充分考虑弯扭组合变形对材料性能的影响,合理选择工艺参数,以实现最佳的效果。

希望通过本次实验,可以更深入地了解弯扭组合变形的机理及其在材料加工中的应用。

实验五弯扭组合变形薄壁筒应力测量实验-桥路变换接线实验

实验五弯扭组合变形薄壁筒应力测量实验-桥路变换接线实验

实验五常见力学仪器操作及数据分析专项能力训练——扭组合变形薄壁筒应力测量实验一、实验目的1.用电测法测定平面应力状态下主应力的大小及方向,并与理论值进行比较;2.测定弯扭组合变形杆件中分别由弯矩、剪力和转矩所引起的应力,并确定内力分量弯矩、剪力和转矩的实验值。

二、实验仪器和设备1.多功能组合实验装置一台;2.弯扭组合变形实验梁一根;3.TS3860型数字应变仪一台。

三、实验原理和方法弯扭组合薄臂圆筒实验梁是由薄壁圆筒、扇臂、手轮、旋转支座等组成。

实验时,转动手轮,加载螺杆和载荷传感器都向下移动,载荷传感器就有压力电信号输出,此时电子秤数字显示出作用在扇臂端的载荷值。

扇臂端的作用力传递到薄壁圆筒上,使圆筒产生弯扭组合变形。

薄壁圆筒材料为铝,其弹性模量E=210GPa,泊松比μ=0.29。

圆筒外径D o=37mm,壁厚t=1.8mm。

薄壁圆筒弯扭组合变形受力简图如图5-1所示。

截面I—I为被测位置,由材料力学可知,该截面上的内力有弯矩、剪力和l转矩。

取其前、后、上、下的A、C、B、D为四个被测点,其应力状态如图5-2所示。

每点处按-45°、0°、+45°方向粘贴一个三轴45︒应变花(见图5-3(a)。

实验内容和方法如下:图5-1薄壁圆筒受力图图5-2 A、B、C、D点应力状态1.确定主应力大小及方向弯扭组合变形薄壁圆筒表面上的点处于平面应力状态,先用应变花测出三个方向的线应变,随后算出主应变的大小和方向,再运用广义胡克定律公式即可求出主应力的大小和方向。

由于薄壁圆筒上的点处于平面应力状态且材料为钢,与应变片灵敏系数的标定条件不符,故应进行横向效应的修正。

此时只要将主应力公式中的弹性模量E、泊松比μ用表观弹性模量E a、表观泊松比μa代替即可得到修正的主应力公式。

E a、μa的表达式按式(5-1)、式(5-2)分别为μμH H E E --=1)1(0a (5-1) μμμH H --=1a (5-2) 式中:E 、μ——分别为薄壁圆筒材料的弹性模量和泊松比;μ0——应变片灵敏系数标定梁材料的泊松比。

实验力学实验报告

实验力学实验报告

实验力学实验报告姓名:耿臻岑学号:130875指导老师:郭应征实验一薄壁圆管弯扭组合应力测定实验一、实验目的1、用应变花测定薄壁圆管在弯扭条件下一点处的主应力和主方向2、测定薄壁圆管在弯扭组合条件下的弯矩、扭矩和剪力等内力3、进一步熟悉和掌握不同的桥路接线方法4、初步了解在组合变形情况下测量某一内力对应应变的方法二、实验设备1、电阻应变仪YJ-282、薄壁圆管弯扭组合装置,见图1-1本次实验以铝合金薄壁圆管EC为测试对象,圆管一段固定,另一端连接与之垂直的伸臂AC,通过旋转家里手柄将集中荷载施加在伸臂的另一端,由力传感器测出力的大小。

荷载作用在伸臂外端,其作用点距圆通形心为b,圆通在荷载F 作用下发生弯扭组合变形。

要测取圆筒上B截面(它到荷载F作用面距离为L)处各测点的主应力大小和方向。

试样弹性模量E=72GPa,泊松比μ=0.33,详细尺寸如表1-1图1-1 薄壁圆筒弯扭组合装置表1-1 试样参数表外径D(mm) 内径d(mm) b(mm) L(mm)40 34 200 300三、实验原理1、确定主应力和主方向平面应力状态下任一点的应力有三个未知数(主应力大小及方向)。

应用电阻应变仪应变花可测的一点沿不同方向的三个应变值,如图1-2所示的三个方向已知的应变。

根据这三个应变值可以计算出主应变的大小和方向。

因而主应力的方向也可确定(与主应变方向重合)()()()()04545045452245451,2450450454500454511222212222tan 2211x y xy EEεεεεεεγεεεεεεεεεεεαεεεσεμεμσεμεμ------==+-=-+=±-+--=--=+-=+-ooooooooo oo oo oooo图1-2 应变花示意图 图1-3 B 、D 点贴片位置示意图2、测定弯矩在靠近固定端的下表面D 上,粘一个与点B 相同的应变花,如图1-3所示。

薄壁圆筒在弯扭组合变形主应力测定报告

薄壁圆筒在弯扭组合变形主应力测定报告

薄壁圆筒在弯扭组合变形主应力测定报告一、概述薄壁圆筒是工程中常见的一种结构形式,其在使用过程中受到的弯曲和扭转载荷往往同时存在,因此对其在弯扭组合变形条件下的主应力进行准确测定具有重要意义。

本报告旨在对薄壁圆筒在弯扭组合变形下的主应力进行测定,并提供权威的数据支持。

二、实验目的1.对薄壁圆筒在弯曲和扭转载荷下的主应力进行测定;2.掌握薄壁圆筒在弯扭组合变形条件下的变形规律;3.提供准确可靠的数据支持,为工程设计提供参考依据。

三、实验原理在弯曲和扭转载荷共同作用下,薄壁圆筒内部会产生主应力和主剪应力。

其主应力由弯曲应力和扭转应力共同决定,根据相关理论原理,可以通过测定薄壁圆筒表面的变形情况,推导出其在弯扭组合变形条件下的主应力。

四、实验装置和材料1.薄壁圆筒实验样品;2.应变仪;3.扭转载荷施加装置;4.弯曲载荷施加装置;5.数据采集系统;6.相关辅助工具;7.其他必要的辅助材料。

五、实验步骤1.准备薄壁圆筒样品,清洁表面并固定在实验台上;2.根据实验要求,施加弯曲载荷,并记录薄壁圆筒的变形情况;3.根据实验要求,施加扭转载荷,并记录薄壁圆筒的变形情况;4.利用应变仪等装置对薄壁圆筒表面的应变变化进行实时监测和记录;5.根据采集的数据,推导出薄壁圆筒在弯扭组合变形条件下的主应力。

六、实验数据处理和分析1.根据实验采集的数据,绘制出薄壁圆筒在不同弯曲和扭转载荷下的主应力变化曲线;2.对数据进行详细分析和比对,得出薄壁圆筒在不同载荷情况下的主应力范围;3.分析实验中存在的误差和不确定性,并提出相应的修正方案;4.对实验结果进行合理的解释和结论。

七、实验结果与结论1.根据实验数据处理和分析,得出薄壁圆筒在弯扭组合变形条件下的主应力范围为△σ;2.对实验结果进行科学的解释和结论,明确指出实验的可靠性和局限性;3.在结论部分提出对后续研究和工程应用的建议和展望。

八、实验总结1.总结全文工作,重点强调实验的意义和价值;2.对实验中存在的问题和不足进行梳理和反思;3.为未来相关研究和工程设计提供经验和借鉴。

弯扭组合实验实验报告

弯扭组合实验实验报告

弯扭组合实验实验报告
实验目的:
通过弯扭组合实验探究材料在受到弯曲和扭曲加载作用下的变形和破坏特性,验证其力学性能。

实验材料与设备:
实验材料包括钢材、铝材等常用材料,实验设备包括弯曲试样机和扭转试样机。

实验步骤:
1. 制备不同材料的弯扭组合试样。

2. 将试样固定在弯曲试样机上,施加加载力进行弯曲测试,记录弯曲应力应变曲线。

3. 将试样固定在扭转试样机上,施加加载力进行扭转测试,记录扭转应力应变曲线。

4. 对实验数据进行分析,得出材料的力学性能参数。

实验结果及分析:
通过弯扭组合实验,我们得到了不同材料在受到弯曲和扭转加载作用下的应力应变曲线。

通过分析实验数据,我们可以得出不同材料的弯曲强度、扭转强度以及屈服强度等力学性能参数,进一步了解材料的变形和破坏特性。

结论:
弯扭组合实验是一种有效的手段,可以帮助我们深入了解材料在不同加载条件下的性能表现,为材料的选用和设计提供重要参考依据。

在今后的研究中,我们将进一步探索材料的力学性能,为材料科学领域的发展做出更大的贡献。

弯扭组合变形实验

弯扭组合变形实验

薄壁圆管弯扭组合变形应变测定实验SQ1001804A004 李扬一.实验目的1.用电测法测定平面应力状态下主应力的大小及方向;2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。

二.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ静态数字电阻应变仪。

三.实验原理弯扭组合实验装置如图1所示。

它由薄壁圆管1(已粘好应变片),扇臂2,钢索3,传感器4,加载手轮5,座体6,数字测力仪7等组成。

试验时,逆时针转动加载手轮,传感器受力,将信号传给数字测力仪,此时,数字测力仪显示的数字即为作用在扇臂顶端的载荷值,扇臂顶端作用力传递至薄壁圆管上,薄壁圆管产生弯图1扭组合变形。

薄壁圆管材料为铝合金,其弹GN, 泊松比μ性模量E为722m为0.33。

薄壁圆管截面尺寸、受力简图如图2所示,Ⅰ-Ⅰ截面为被测试截面,由材料力学可知,该截面上的内力有弯矩、剪力和扭矩。

取Ⅰ-Ⅰ截面的A、B、C、D四个被测点,其应力状态如图3所示。

每点处按–450、00、+450方向粘贴一枚三轴450应变花,如图4所示。

图2图3 图4 图5四.实验内容及方法1. 指定点的主应力大小和方向的测定受弯扭组合变形作用的薄壁圆管其表面各点处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。

本实验用的是450应变花,若测得应变ε-45、ε0、ε45,则主应力大小的计算公式为()()()⎥⎦⎤⎢⎣⎡-+--±++-=--24502045454523121211εεεεμεεμμσσE主应力方向计算公式为 ()()04545045452εεεεεεα----=--tg2. 弯矩、剪力、扭矩所分别引起的应力的测定a. 弯矩M 引起的正应力的测定用B 、D 两被测点00方向的应变片组成图5(a )所示半桥线路,可测得弯矩M 引 的正应变 2MdM εε=由虎克定律可求得弯矩M 引起的正应力 2MdM M E E εεσ== b. 扭矩M n 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可测得扭矩M n在450方向所引起的应变为 4ndn εε=由广义虎克定律可求得剪力M n 引起的剪应力 ()214ndnd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的应变为 4QdQ εε=由广义虎克定律可求得剪力Q 引起的剪应力 ()214QdQd Q G E εμετ=+=五.实验步骤1.将传感器与测力仪连接,接通测力仪电源,将测力仪开关置开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄壁圆管弯扭组合变形测定实验
实验日期
姓名 班级 学号 实验组别 同组成员 指导教师(签字)
一、实验目的
二、实验设备名称及型号
三、实验数据记录与处理
1.基本数据
材料常数: 弹性模量 E = 70 GPa 泊松比 33.0=μ 装置尺寸: 圆筒外径 D = 39mm 圆筒内径 d = 34mm 加载臂长 h = 250 mm 测点位置 L I-I =140 mm
2.计算方法
(1)指定点的主应力和主方向测定
实验值:主应力大小:()()()⎥⎦
⎤⎢
⎣⎡-+--±
++-=
--2
45
02
45
45
45
2
3
1
2
12
11ε
εεεμ
ε
εμ
μ
σ
σE
主应力方向:()()
45
45
045
450
2εεε
εεεα
----=--tg
理论值:主应力大小:2
2
3
1
22
T
M M
τσσ
σ
σ+⎪⎭

⎝⎛±
=
;主应力方向:M
T
tg σ
τα220
-
=
(2)指定截面上的弯矩、扭矩和剪力所分别引起的应力的测定 a.弯矩M 引起的正应力的测定
实验值:2
di
M E εσ
=

理论值:()32
/14
3
απσ
-=
-D FL I
I M 理
,其中:D d /=α
b. 扭矩T 引起的切应力的测定
实验值:)1(4μετ+=di T E 实 理论值:()16
/14

πτ-=
D Fh
T 理
c. 剪力F Q 引起的切应力的测定
实验值:)
1(4μετ+=
di F E Q 实
理论值:z max
Z 2FS I τδ
=
剪,12
3
3
max z d D S -=
3.实验数据
1.指定点的主应力和主方向测定(表1、表2)
2.指定截面上的弯矩、扭矩和剪力所引起的应力测定(表3)
续表1
表3 指定截面上的弯矩、扭矩和剪力所引起的应力测定
四、数据分析及结论(写背面)。

相关文档
最新文档