重难点2-4 抽象函数及其性质8大题型(原卷版)

合集下载

抽象函数常见题型

抽象函数常见题型

抽象函数的对称性、奇偶周期性常用结论及题型归纳3、等价定义法设函数的定义域为D,在定义域内任取 , ,且,若 >0,则函数单调递增;若有<0,则函数单调递减(证明从略),以上是函数单调性的第二定义。

数形结合法赋值法例1 若奇函数))((R x x f ∈,满足1)2(=f ,)2()()2(f x f x f +=+,则=)1(f ( )A. 0B. 1C.21-D.21 解:由)2()()2(f x f x f +=+联想到原型函数)0()(≠=k kx x f ,又1)2(=f ,21,12==∴k k ,x x f 21)(=,则21)1(=f ,选D 。

2012届高考冲刺专题4--抽象函数的周期性与对称性知识点梳理一、 抽象函数的对称性定理1. 若函数)(x f y =定义域为R ,且满足条件:)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2ba x +=对称。

推论1. 若函数)(x f y =定义域为R ,且满足条件:)()(x a f x a f -=+,则函数)(x f y =的图像关于直线a x =对称。

推论2. 若函数)(x f y =定义域为R ,且满足条件:)2()(x a f x f -=),则函数)(x f y =的图像关于直线a x =对称。

总结:x 的系数一个为1,一个为-1,相加除以2,可得对称轴方程推论 3. 若函数)(x f y =定义域为R ,且满足条件:)()(x a f x a f -=+, 又若方程0)(=x f 有n 个根,则此n 个根的和为na 。

定理2. 若函数)(x f y =定义域为R ,且满足条件:c x b f x a f =-++)()((c b a ,,为常数),则函数)(x f y =的图象关于点)2,2(cb a +对称。

推论 1. 若函数)(x f y =定义域为R ,且满足条件:0)()(=-++x b f x a f 成立,则)(x f y = 的图象关于点)0,2(ba +对称。

抽象函数-题型大全(例题-含答案)之欧阳地创编

抽象函数-题型大全(例题-含答案)之欧阳地创编

高考抽象函数技巧总结时间:2021.03.04创作:欧阳地由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

实数重难点题型分类(八大题型)(原卷版)

实数重难点题型分类(八大题型)(原卷版)

专题03 实数重难点题型分类(八大题型)【题型1 无理数的概念】【题型2 平方根、算术平方根与立方根的概念】 【题型3 实数大小比较、无理数的估算】 【题型4 最简二次根式及同类二次根式】 【题型5 无理数在数轴上的表示】 【题型6 绝对值的非负性】 【题型7 算术平方根的非负性】【题型8 算术平方根钰绝对值的非负性综合】类型一: 绝对值的非负性任何一个实数的绝对值是非负数类型二:算术平方根的非负性1. 二次根式具有双重非负性,即)(≥≥a 0a2. 几个非负数的和为0,这几个非负数都为0.【题型1 无理数的概念】 1.(2023春•庄河市期末)实数,0.6,0,﹣2中,无理数是( )A .B .0.6C .0D .﹣22.(2023春•福田区校级期末)在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有( ) A .2个B .3个C .4个D .5个3.(2023春•肇源县期末)下列各数中,无理数是( ) A .﹣2B .3.14C .D .4.(2023春•徐汇区校级期中)若a 、b 是不相等的无理数,则( )A.a+b一定是无理数B.a﹣b一定是无理数C.a•b一定是无理数D.不一定是无理数5.(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.B.C.D.π6.(2022•包头自主招生)下列说法中正确的是()A.带根号的数是无理数B.无理数不能在数轴上表示出来C.无理数是无限小数D.无限小数是无理数【题型2 平方根、算术平方根与立方根的概念】7.(2023•荔湾区校级二模)实数4的算术平方根是()A.B.±C.2D.±2 8.(2023•东营区校级三模)的算术平方根是()A.4B.2C.±4D.±2 9.(2023春•榆树市期末)若x2=4,则x的值是()A.2B.±2C.16D.±16 10.(2023春•长宁区期末)下列等式中,正确的是()A.()²=5B.(﹣)²=5C.D.11.(2023春•和平区校级期末)若在实数范围内有意义,则m的取值范围是()A.m≥0B.m≥﹣2C.m D.m 12.(2023春•邕宁区期末)如图,用边长为3的两个小正方形拼成一个大正方形,则大正方形的边长最接近的整数是()A.3B.4C.5D.6 13.(2023•碑林区校级一模)8的立方根为()A.2B.4C.﹣4.D.﹣2 14.(2023•灞桥区校级模拟)计算的结果是()A.﹣8B.﹣4C.±8D.±4 15.(2023春•长沙期末)下列运算正确的是()A.B.C.=﹣3D.16.(2023春•梁山县期中)立方根和算术平方根都等于它本身的数是()A.0B.1,0C.0,1,﹣1D.0,﹣1 17.(2023春•惠城区校级期中)若a2=4,b3=27,则a﹣b的值为()A.﹣1B.5C.﹣1或﹣5D.﹣1或5 18.(2023春•龙江县期中)﹣的立方根与36的平方根的和为()A.4B.6C.4或﹣6D.4或﹣8【题型3 实数大小比较、无理数的估算】20.(2023春•滨海新区期末)估计的值在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间21.(2023•和平区模拟)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.0 22.(2023春•巴南区期末)估计的值在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间23.(2023春•丰都县期末)比较大小:.24.(2022秋•慈溪市期末)比较大小:1.(填“>”,“=”或“<”)25.(2023•鄞州区校级一模)比较大小:﹣﹣2.(填“>”、“=”或“<”)【题型4 最简二次根式及同类二次根式】26.(2023春•巴南区期末)下列二次根式中,是最简二次根式的是()A.B.C.D.27.(2023春•花都区期末)下列根式是最简二次根式的是()A.B.C.D.28.(2023春•武昌区期末)下列二次根式中,与是同类二次根式的是()A.B.C.D.29.(2023春•大观区校级期末)下列根式中,与为同类二次根式的是()A.B.C.D.30.(2023春•蒙城县校级期中)若最简二次根式与是同类二次根式,则a=()A.﹣1B.1C.3D.﹣3 31.(2023春•凤台县期末)如果最简二次根式与是同类根式,那么a 的值是()A.a=5B.a=3C.a=﹣5D.a=﹣3 32.(2023春•大连期末)若最简二次根式与可以合并,则a=﹣.【题型5 无理数在数轴上的表示】33.(2023春•嵩明县期末)数轴上点A所表示的实数可能是()A.B.C.﹣1.5D.π34.(2023春•海淀区期末)如图,一条数轴被污渍覆盖了一部分,把下列各数表示在数轴上,则被覆盖的数可能为()A.﹣πB.C.D.35.(2023春•路北区期中)如图,两个边长为1的正方形并排放在数轴上,且OA=OB,则数轴上点A所表示的数是()A.B.C.﹣2.5D.﹣2 36.(2023春•历城区期末)如图,在数轴上点A表示的实数是()A.B.2.2C.2.3D.37.(2023春•西吉县期中)如图,OA=OB,BD=1,则数轴上点A所表示的数为()A.B.C.D.38.(2023•浠水县二模)如图,数轴上点A表示的实数是()A.﹣1B.C.+1D.﹣1【题型6 绝对值的非负性】39.(2023•都昌县校级模拟)已知实数a,b在数轴上对应的点的位置如图所示,则化简|a﹣b|﹣|1﹣a|+|b﹣2|的结果是.40.(2023春•防城区期中)实数a,b在数轴上的位置如图所示,则|b﹣a|﹣|a+b|=.41.(2022秋•高新区期末)实数a、b在数轴上的位置如图所示,则化简|a+3b|+|a ﹣b|的结果为.42.(2022秋•成县期中)实数a,b在数轴上的位置如图所示,化简代数式|b ﹣a|﹣|a﹣2|+|b+1|的结果是.【题型7 算术平方根的非负性】43.(2022秋•青神县期末)若,则x的取值范围是()A.x=2B.x≤﹣2C.x≤2D.x≥2 44.(2023春•上城区校级期中)若,则x的取值范围是()A.x>3B.x≥3C.x<3D.x≤3 45.(2022秋•广饶县校级期末)若,|b|=5,且ab<0,则a+b的算术平方根为()A.4B.2C.±2D.3【题型8 算术平方根和绝对值的非负性综合】46.(2023春•无棣县期中)已知实数x、y满足,则的值是()A.1B.2C.3D.4 47.(2023春•繁峙县期中)若a,b为实数,且,则(a+b)2023=()A.1B.﹣1C.﹣2023D.2023 48.(2023春•八步区期中)已知,则a+b=()A.8B.﹣8C.6D.﹣6 49.(2023春•江城区期中)若,则5x+y2的平方根是()A.3B.2C.±2D.±3 50.(2023•巧家县校级三模)若,则a b的值为.。

第8讲 抽象函数7种导函数构造(解析版)-2024高考数学常考题型

第8讲 抽象函数7种导函数构造(解析版)-2024高考数学常考题型

第8讲抽象函数7种导函数构造【题型目录】题型一:具体函数抽象化解不等式题型二:构造幂函数型解不等式题型三:构造指数函数型解不等式题型四:构造对数函数型解不等式题型五:构造三角函数型解不等式题型六:构造()kx x f +型函数解不等式题型七:复杂型:二次构造【典例例题】题型一:具体函数抽象化解不等式【例1】(2022·广东·南海中学高二阶段练习)已知()2cos ,R f x x x x =+∈,若()()1120f t f t ---≥成立,则实数t 的取值范围是()A .20,3⎛⎫ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .()2,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭D .()20,,03⎛⎤-∞ ⎥⎝⎦ 【答案】B 【解析】【分析】由奇偶性的定义得出函数()y f x =为偶函数,利用导数知函数()y f x =在区间[)0,∞+上为增函数,由偶函数的性质将不等式()()1120f t f t ---≥变形为()()112f t f t -≥-,利用单调性得出112t t -≥-,从而可解出实数t 的取值范围.【详解】解:函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=Q ,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x =+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t -≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦.故选:B.【题型专练】1.(2022·贵州遵义·高二期末(理))已知函数()ln e xxf x x =-,设()3log 2a f =,()0.2log 0.5b f =,()ln 4c f =,则a ,b ,c 的大小为()A .c a b >>B .a c b>>C .b c a>>D .c b a>>【答案】A 【解析】【分析】利用函数解析式求导数,判断导数大于零恒成立,故确定函数单调性,比较自变量大小确定函数值a ,b ,c 的大小即可.【详解】解:因为()ln e x x f x x =-,则,()0x ∈+∞,所以()2211e 11e e e (4e 2x x x x x xf x x x x x x x +--+-'==-=-又,()0x ∈+∞时,21111,(24e 4xx >--≥-,所以()0f x '>恒成立所以()ln e xxf x x =-在,()0x ∈+∞上单调递增;又30log 21<<,0.215351log 0.5log log 2log 22==<,ln 41>所以30.2ln 4log 2log 0.5>>,则c a b >>.故选:A.2.(2022·上海·复旦附中高二期末)设()2sin f x x x =+,若()()20221120210f x f x ++-≥,则x 的取值范围是___________.【答案】2x ≥-【解析】【分析】奇偶性定义判断()f x 奇偶性,利用导数研究()f x 的单调性,再应用奇偶、单调性求x 的范围.【详解】由()2sin (2sin )()f x x x x x f x -=--=-+=-且R x ∈,易知:()f x 为奇函数,所以(20221)(20211)f x f x +≥-,又()2cos 0f x x =+>',故()f x 在R x ∈上递增,所以2022120211x x +≥-,可得2x ≥-.故答案为:2x ≥-题型二:构造幂函数型解不等式【例1】(2022·黑龙江·哈师大附中高二期末)已知定义在(0,+∞)上的函数()f x 满足()()0xf x f x '-<,其中()f x '是函数()f x 的导函数,若()()()202220221f m m f ->-,则实数m 的取值范围为()A .(0,2022)B .(2022,+∞)C .(2023,+∞)D .(2022,2023)【答案】D 【解析】【分析】构造函数()g x ,使得()()2()0xf x f x g x x'-=<,然后根据函数()g x 的单调性解不等式即可.【详解】由题设()()2()()()0xf x f x f x g x g x x x'-'=⇒=<,所以()g x 在()0,∞+上单调递减,又()()()()()2022120222022120221f m f f m m f m -->-⇒>-,即(2022)(1)202212023g m g m m ->⇒-<⇒<,又函数()f x 的定义域为()0,∞+,所以202202022m m ->⇒>,综上可得:20222023m <<.故选:D.【例2】(2022·四川雅安·高二期末(理))设奇函数()()0f x x ≠的导函数是()f x ',且()20f -=,当0x >时,()()20xf x f x '-<,则不等式()0f x <的解集为______.【答案】()()2,02,-+∞ 【解析】【分析】设()()2f x g x x=,利用导数求得()g x 在(0,)+∞为单调递减函数,进而得到函数()g x 为奇函数,且()g x 在(,0)-∞为单调递减函数,结合函数()g x 的单调性,即可求解.【详解】设()()2f x g x x =,可得()()()32xf x f x g x x'-'=,因为当0x >时,()()20xf x f x '-<,可得()0g x '<,所以()g x 在(0,)+∞为单调递减函数,又因为函数()f x 为奇函数,且()20f -=,可得()20f =,则满足()()()()22()f x f x g x g x x x --==-=--,所以函数()g x 也为奇函数,所以()g x 在(,0)-∞为单调递减函数,且()()220g g -==,当0x >时,由()0f x <,即()0g x <,即()()2g x g <,可得2x >;当0x <时,由()0f x <,即()0g x <,即()()2g x g <-,可得20x -<<;所以不等式()0f x <的解集为()()2,02,-+∞ .故答案为:()()2,02,-+∞ .【例3】(2022·河南信阳·高二期中(理))已知定义域为R 的函数()f x 满足()()1f x xf x '+>(()f x '为函数()f x 的导函数),则不等式()()()2111x f x f x x +->-+的解集为()A .()0,∞+B .(]0,1C .(],1-∞D .()[),01,-∞⋃+∞【答案】A 【解析】【分析】构造函数()()g x xf x x =-,由题意可知()g x 在R 上单调递增,再对x 分情况讨论,利用函数()g x 的单调性即可求出不等式的解集.【详解】由2(1)(1)(1)x f x f x x +->-+,(1)当1x <时,可得2(1)(1)(1)(1)(1)(1)x x f x x f x x x -+->--+-,即222(1)(1)(1)(1)x f x x f x x x -->--+-,即222(1)(1)(1)(1)(1)(1)x f x x x f x x ---->----,构造函数()(),()()()10g x xf x x g x f x xf x ''=-=+->,所以函数()g x 单调递增,则211x x ->-,此时01x <<,即01x <<满足;(2)当1x >时,可得222(1)(1)(1)(1)(1)(1)x f x x x f x x ----<----,由函数()g x 递增,则211x x -<-,此时0x <或1x >,即1x >满足;(3)当1x =时,2(0)(0)1f f >+,即(0)1f >满足()()1f x x f x '+⋅>.综上,,()0x ∈+∞.故选:A.【例4】已知定义在R 上的奇函数()f x ,其导函数为()'f x ,当0x ≥时,恒有())03(xf f x x '+>.则不等式33()(12)(12)0x f x x f x -++<的解集为().A .{|31}x x -<<-B .1{|1}3x x -<<-C .{|3x x <-或1}x >-D .{|1x x <-或1}3x >-【答案】D 【解析】先通过())03(x f f x x '+>得到原函数()()33x f x g x =为增函数且为偶函数,再利用到y 轴距离求解不等式即可.【详解】构造函数()()33x f x g x =,则()()()()()322'''33x x g x x f x f x x f x f x ⎛⎫=+=+ ⎪⎝⎭由题可知())03(x f f x x '+>,所以()()33x f x g x =在0x ≥时为增函数;由3x 为奇函数,()f x 为奇函数,所以()()33x f x g x =为偶函数;又33()(12)(12)0x f x x f x -++<,即33()(12)(12)x f x x f x <++即()()12g x g x <+又()g x 为开口向上的偶函数所以|||12|x x <+,解得1x <-或13x >-故选:D 【点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.【例5】函数()f x 是定义在区间()0,∞+上的可导函数,其导函数为()f x ',且满足()()20xf x f x '+>,则不等式(2020)(2020)3(3)32020x f x f x ++<+的解集为A .{}|2017x x >-B .{}|2017x x <-C .{}|20200x x -<<D .{}|20202017x x -<<-【答案】D 【解析】设函数()()()2,0g x x f x x =>,根据导数的运算和题设条件,求得函数()g x 在()0,∞+上为增函数,把不等式转化为22(2020)(2020)3(3)x f x f ++<,即()()20203g x g +<,利用单调性,即可求解.【详解】由题意,设函数()()()20g x x f x x =>,则()()()()()222()2g x x f x x f x x f x xf x ''''=⋅+⋅=+,因为()f x 是定义在区间()0,∞+上的可导函数,且满足()()20xf x f x '+>,所以()0g x '>,所以函数()g x 在()0,∞+上为增函数,又由(2020)(2020)3(3)32020x f x f x ++<+,即22(2020)(2020)3(3)x f x f ++<,即()()20203g x g +<,所以020203x <+<,解得20202017x -<<-,即不等式的解集为{}|20202017x x -<<-.故选:D .【点睛】本题主要考查了函数的导数与函数的单调性的关系及应用,其中解答中根据题设条件,构造新函数()()()20g x x f x x =>是解答的关键,着重考查了构造思想,以及推理与计算能力.【题型专练】1.(2021·新疆维吾尔自治区喀什第二中学高三阶段练习(理))定义在R 上的偶函数()f x 的导函数为()f x ',且当0x >时,()()20xf x f x '+<.则()A .()()2e 24ef f >B .()()931f f >C .()()2e 39ef f -<D .()()2e 39ef f ->【答案】D 【解析】【分析】由题构造函数()()2g x x f x =,利用导函数可得函数()()2g x x f x =在(0,+∞)上为减函数,且为偶函数,再利用函数的单调性即得.【详解】设()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦,又当0x >时,()()20xf x f x '+<,∴()()()()()2220g x xf x x f x x f x xf x '''=+=+<⎡⎤⎣⎦,则函数()()2g x x f x =在(0,+∞)上为减函数,∵()f x 是定义在R 上的偶函数,∴()()()()()22g x x f x x f x g x -=--==,即g (x )为偶函数,所以()()e 2g g <,即()()2e 24ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()e 3g g >,即()()2e 39ef f >因为()f x 为偶函数,所以()()33f f -=,所以()()2e 39ef f ->,故C 错误,D 正确.故选:D.【点睛】关键点点睛:本题的关键是构造函数()()2g x x f x =,结合条件可判断函数的单调性及奇偶性,即得.2.(2022·黑龙江·哈尔滨市阿城区第一中学校高二期末)已知()f x 是定义在()(),00,∞-+∞U 上的奇函数,当0x >时,()()0f x xf x '+>且()122f =,则不等式()1f x x>的解集是______.【答案】()()2,02,-+∞ 【解析】【分析】根据已知条件构造函数()()g x xf x =并得出函数()g x 为偶函数,利用导数与单调性的关系得出函数()g x 的单调性进而可以即可求解.【详解】设()()g x xf x =,则()()()g x f x xf x ''=+因为()f x 是定义在()(),00,∞-+∞U 上的奇函数,所以()()()()g x xf x xf x g x -=--==,所以()g x 是()(),00,∞-+∞U 上的偶函数,当0x >时,()()()0g x f x xf x ''=+>,所以()g x 在()0,+∞上单调递增,所以()g x 在(),0-∞上单调递减.因为()122f =,所以()()1222212g f ==⨯=,所以()()221g g -==.对于不等式()1f x x>,当0x >时,()1xf x >,即()()2g x g >,解得2x >;当0x <时,()1xf x <,即()()2g x g <-,解得20x -<<,所以不等式()1f x x>的解集是()()2,02,-+∞ .故答案为:()()2,02,-+∞ 【点睛】解决此题的关键是构造函数,进而讨论新函数的单调性与奇偶性,根据函数的性质即可求解不等式的解集.3.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为()'f x ,且有()()22'f x xf x x +>则不等式()()()220192019420x f x f ++--<的解集为()A .()20192017--,B . 20211()209--,C .()20192018--,D .(2020,2019)--【答案】B 【解析】【分析】令()()2F x x f x =,确定()F x 在(,0)-∞上是减函数,不等式等价为()()201920F x F +--<,根据单调性解得答案.【详解】由()()()22',0f x xf x x x +><,得()()23 2'xf x x f x x +<,即()23'0x f x x ⎡⎤⎣⎦<<,令()()2F x x f x =,则当0x <时,得()F'0x <,即()F x 在(,0)-∞上是减函数,()()()2201920192019f F x x x +∴+=+,()() 242F f -=-,即不等式等价为()()201920F x F +--<,()F x Q 在(),0-∞是减函数,∴由()()20192F x F +<-得20192x +>-,即2021x >-,又20190x +<,解得2019x <-,故 20212019x -<<-.故选::B .【点睛】本题考查了利用函数单调性解不等式,构造函数()()2F x x f x =,确定其单调性是解题的关键.4.已知()f x 是定义在()(),00,-∞+∞ 上的奇函数,且0x >时,()()20f x f x x'+<,又()10f =,则()0f x >的解集为()A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()(),10,1-∞-D .()()1,01,-⋃+∞【答案】C 【解析】【分析】令2()()g x x f x =,则()[()2()]g x x xf x f x ''=+,由题设易知0x >上()2()0xf x f x '+<,且()g x 在()(),00,-∞+∞ 上是奇函数,即()g x 在0x >、0x <都单调递减,同时可知(1)(1)0=-=g g ,利用单调性求()0>g x 的解集,即为()0f x >的解集.【详解】令2()()g x x f x =,则2()()2()[()2()]g x x f x xf x x xf x f x '''=+=+,由0x >时,()()20f x f x x'+<知:()2()0xf x f x '+<,∴在0x >上,()0g x '<,()g x 单调递减,又()(),00,-∞+∞ 上()f x 为奇函数,∴22()()()()()g x x f x x f x g x -=--=-=-,故()g x 也是奇函数,∴()g x 在0x <上单调递减,又()10f =,即有(1)(1)0=-=g g ,∴()0f x >的解集,即()0>g x 的解集为(,1)(0,1)-∞- .故选:C5.设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 【解析】【分析】设()()f x F x x=,求其导数结合条件得出()F x 单调性,再结合()F x 的奇偶性,得出()F x 的函数值的符号情况,从而得出答案.【详解】设()()f x F x x =,则()()()2xf x f x F x x'-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.题型三:构造指数函数型解不等式【例1】(2022·四川省资阳中学高二期末(理))已知定义域为R 的函数()f x 的导函数为()f x ',且满足()()(),41f x f x f '>=,则不等式()224e xf x ->的解集为___________.【答案】()2,2-【解析】【分析】令()()xf xg x =e,利用导数说明函数的单调性,则原不等式等价于()()24g xg >,再根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:令()()xf xg x =e ,R x ∈,则()()()e xf x f xg x '-'=,因为()()f x f x '>,即()()0f x f x '-<,所以()0g x '<,即()g x 在R 上单调递减,又()41f =,所以()()4444e e f g -==,所以不等式()224ex f x->,即()242eexf x ->,即()()24g xg >,即24x <,解得22x -<<,所以原不等式的解集为()2,2-.故答案为:()2,2-【例2】(2023·全国·高三专题练习)已知函数()f x 的导函数为()f x ',若对任意的R x ∈,都有()()2f x f x >'+,且()12022f =,则不等式()12020e 2x f x --<的解集为()A .()0,∞+B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,+∞D .(),1-∞【答案】C 【解析】【分析】设函数()()2e xf xg x -=,根据题意可判断()g x 在R上单调递减,再求出()01202e g =,不等式()12020e 2x f x --<整理得()22020e ex f x -<,所以()()1g x g <,利用()g x 单调性解抽象不等式即可.【详解】设函数()()2e xf xg x -=,所以()()()()()2e 2e2e ex xxxf x f x f x f xg x '⎡⎤⨯--⨯'-+⎣⎦'==,因为()()2f x f x >'+,所以()()20f x f x '-+<,即()0g x '<,所以()g x 在R 上单调递减,因为()12022f =,所以()()122020e 1e f g -==,因为()12020e 2x f x --<,整理得()22020e ex f x -<,所以()()1g x g <,因为()g x 在R 上单调递减,所以1x >.故选:C.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.【例3】(2023·全国·高三专题练习)已知定义在R 上的可导函数()f x 的导函数为()'f x ,满足()()f x f x '<且()3f x +为偶函数,(1)f x +为奇函数,若(9)(8)1f f +=,则不等式()e x f x <的解集为()A .()3,-+∞B .()1,+∞C .(0,)+∞D .()6,+∞【答案】C【解析】【分析】先证明出()f x 为周期为8的周期函数,把(9)(8)1f f +=转化为(0)1f =.记()()xf xg x =e ,利用导数判断出()g x 在R 上单调递减,把原不等式转化为()()0g x g <,即可求解.【详解】因为()3f x +为偶函数,(1)f x +为奇函数,所以()()33f x f x +=-+,(1)(1)0f x f x ++-+=.所以()()6f x f x =-+,()(2)0f x f x +-+=,所以(6)(2)0f x f x -++-+=.令2t x =-+,则(4)()0f t f t ++=.令上式中t 取t -4,则()(4)0f t f t +-=,所以(4)(4)f t f t +=-.令t 取t +4,则()(8)f t f t =+,所以()(8)f x f x =+.所以()f x 为周期为8的周期函数.因为(1)f x +为奇函数,所以(1)(1)0f x f x ++-+=,令0x =,得:(1)(1)0f f +=,所以(1)0f =,所以(9)(8)1f f +=,即为(1)(0)1f f +=,所以(0)1f =.记()()xf xg x =e,所以()()()exf x f xg x '-'=.因为()()f x f x '<,所以()0g x '<,所以()()xf xg x =e在R 上单调递减.不等式()xf x e <可化为()1exf x <,即为()()0g x g <.所以0x >.故选:C 【点睛】解不等式的常见类型:(1)一元二次不等式用因式分解法或图像法;(2)指对数型不等式化为同底的结构,利用单调性解不等式;(3)解抽象函数型不等式利用函数的单调性.【例4】(2022·山西省长治市第二中学校高二期末)已知可导函数f (x )的导函数为()'f x ,f (0)=2022,若对任意的x ∈R ,都有()()f x f x '<,则不等式()2022e xf x <的解集为()A .()0,∞+B .22022,e ∞⎛⎫+ ⎪⎝⎭C .22022,e ∞⎛⎫- ⎪⎝⎭D .(),0∞-【答案】D 【解析】【分析】根据题意,构造函数()()xf xg x =e ,求导可知()g x 在x ∈R 上单调递增,利用单调性求解即可.【详解】令()(),e xf xg x =对任意的x ∈R ,都有()()()()(),0e xf x f x f x f xg x -<∴=''>',()g x ∴在x ∈R 上单调递增,又()()()()()02022,02022,2022e 0xf g f x g x g =∴=∴<⇔<,0,x ∴<∴不等式()2022e x f x <的解集(),0∞-,故选:D.【例5】(2022·重庆巴蜀中学高三阶段练习)已知奇函数()f x 的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【解析】【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时,()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞.故答案为:()(2,02,)-⋃+∞.【题型专练】1.(2022·陕西榆林·三模(理))已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,且()()1f x f x '+>,(1)2f =,则下列结论一定成立的是()A .12(2)f +<e eB .1(2)f +<e eC .12(2)f +>eeD .1(2)f +>e e【答案】D 【解析】【分析】构造()()e e x xg x f x =-利用导数研究其单调性,即可得()()21g g >,进而可得答案.【详解】令()()e e x x g x f x =-,则()()()e 10xg x f x f x ⎡⎤=+->⎣⎦'',则()g x 是增函数,故()()21g g >,即22e (2)e e (1)e e f f >--=,可得()1e2ef +>.故选:D2.(2022·江西·萍乡市上栗中学高二阶段练习(理))定义在R 上的函数()f x 满足()()e 0x f x f x '-+<(e 为自然对数的底数),其中()'f x 为()f x 的导函数,若3(3)3e f =,则()e x f x x >的解集为()A .(,2)-∞B .(2,)+∞C .(3),-∞D .(3,)+∞【答案】D 【解析】【分析】构造新函数,并利用函数单调性把抽象不等式()e x f x x >转化为整式不等式即可解决.【详解】设()()e x f x g x x =-,则3(3)(3)30ef g =-=,所以()e x f x x >等价于()0(3)g x g >=,由()()e 0x f x f x '-+<,可得()()e 0x f x f x '->>则()()()10e xf x f xg x '-'=->,所以()g x 在R 上单调递增,所以由()(3)g x g >,得3x >.故选:D3.(2022·安徽省蚌埠第三中学高二开学考试)已知可导函数()f x 的导函数为()f x ',若对任意的x ∈R ,都有()()1f x f x '-<,且()02021f =,则不等式()12022e xf x +>的解集为()A .(),0∞-B .()0,∞+C .1,e ⎛⎫-∞ ⎪⎝⎭D .(),1-∞【答案】A 【解析】【分析】构造函数()()1e x f x F x +=,通过导函数研究其单调性,利用单调性解不等式.【详解】构造函数()()1e xf x F x +=,则()()()()()2e 1e1e ex xx xf x f x f x f x F x '⋅-+⋅⎡⎤'--⎣⎦'==,因为()()1f x f x '-<,所以()0F x '<恒成立,故()()1e x f x F x +=单调递减,()12022e xf x +>变形为()12022exf x +>,又()02021f =,所以()()00102022ef F +==,所以()()0F x F >,解得:0x <,故答案为:(),0∞-.故选:A4.若()f x 在R 上可导且()00f =,其导函数()f x '满足()()0f x f x '+<,则()0f x <的解集是_________________【答案】()0,∞+【解析】【分析】由题意构造函数()()e xg x f x =,利用导数判断出()g x 单调递减,利用单调性解不等式.【详解】设()()e xg x f x =,则()()()()()()e e e x x x g x f x f x f x f x '''=+=+,因为()()0f x f x '+<,所以()0g x '<在R 上恒成立,所以()g x 单调递减,又()00f =得()00g =,由()0f x <等价于()0g x <,所以0x >,即()0f x <的解集是()0,∞+.故答案为:()0,∞+5.若定义在R 上的函数()f x 满足()()1f x f x '+>,()04f =,则不等式()31xf x e >+(e 为自然对数的底数)的解集为()A .(0,)+∞B .(,0)(3,)-∞⋃+∞C .(,0)(0,)-∞+∞D .(3,)+∞【答案】A 【解析】【分析】把不等式()31x f x e>+化为()3x x e f x e >+,构造函数令()()3x xF x e f x e =--,利用导数求得函数()F x 的单调性,结合单调性,即可求解.【详解】由题意,不等式()31x f x e>+,即()3x x e f x e >+,令()()3x x F x e f x e =--,可得()()()()()[1]x x x xF x e f x e f x e e f x f x '''=+-=+-,因为()()1f x f x '+>且0x e >,可知()0F x '>,所以()F x 在R 上单调递增,又因为()()()00003040F e f e f =--=-=,所以()0F x >的解集为(0,)+∞.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及导数的四则运算的逆用,其中解答中结合题意构造新函数,利用导数求得新函数的单调性是解答的关键,着重考查构造思想,以及推理与运算能力.题型四:构造对数函数型解不等式【例1】(2022·江西·赣州市赣县第三中学高二阶段练习(文))定义在(0,+∞)的函数f (x )满足()10xf x '-<,()10f =,则不等式()e 0x f x -<的解集为()A .(-∞,0)B .(-∞,1)C .(0,+∞)D .(1,+∞)【答案】C【解析】【分析】根据题干条件构造函数()()ln F x f x x =-,0x >,得到其单调递减,从而求解不等式.【详解】设()()ln F x f x x =-,0x >则()()()110xf x F x f x x x-=-=''<',所以()()ln F x f x x =-在()0,∞+上单调递减,因为()10f =,所以()()11ln10F f =-=,且()()ee xxF f x =-,所以由()e 0x f x -<得:()()e 1xF F <结合单调性可得:e 1x >,解得:0x >,故选:C【例2】已知函数()f x 的定义域为R ,图象关于原点对称,其导函数为()f x ',若当0x >时()()ln 0x x f x f x +⋅'<,则不等式()()44x f x f x ⋅>的解集为______.【答案】()(),10,1-∞-⋃【解析】【分析】依据函数单调性和奇偶性把抽象不等式转化为整式不等式去求解即可.【详解】当0x >时,()()()()()ln 0ln 0ln 0f x f x x x f x x f x x f x x'''+⋅<⇔+⋅<⇔⋅<⎡⎤⎣⎦,故函数()()ln g x x f x =⋅在()0,∞+上单调递减,易知()10g =,故当()0,1x ∈时,()0g x >,()0f x <,当()1,x ∈+∞时,()0g x <,()0f x <;而()()()44440x xf x f x f x ⎡⎤⋅>⇔⋅->⎣⎦,而()()44xh x f x ⎡⎤=⋅-⎣⎦为奇函数,则当0x >时,当()440xf x ⎡⎤⋅->⎣⎦的解为01x <<,故当x ∈R 时,()440xf x ⎡⎤⋅->⎣⎦的解为1x <-或01x <<,故不等式()()44xf x f x ⋅>的解集为()(),10,1-∞-⋃.故答案为:()(),10,1-∞-⋃【例3】已知()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,()'f x 是()f x 的导函数,(1)0,f ≠且满足:()()ln 0,f x f x x x⋅+<'则不等式(1)()0x f x -⋅<的解集为()A .(1,)+∞B .(,1)(0,1)-∞- C .(),1-∞D .()(,01),-∞⋃+∞【答案】D 【解析】【分析】根据给定含导数的不等式构造函数()()ln g x f x x =,由此探求出()f x 在(0,)+∞上恒负,在(,0)-∞上恒正,再解给定不等式即可.【详解】令()()ln g x f x x =,0x >,则()()()ln 0f x g x f x x x''=+<,()g x 在(0,)+∞上单调递减,而(1)0g =,因此,由()0>g x 得01x <<,而ln 0x <,则()0f x <,由()0g x <得1x >,而ln 0x >,则()0f x <,又(1)0f <,于是得在(0,)+∞上,()0f x <,而()f x 是(,0)(0,)-∞+∞ 上的奇函数,则在(,0)-∞上,()0f x >,由(1)()0x f x -⋅<得:10()0x f x ->⎧⎨<⎩或10()0x f x -<⎧⎨>⎩,即10x x >⎧⎨>⎩或10x x <⎧⎨<⎩,解得0x <或1x >,所以不等式(1)()0x f x -⋅<的解集为(,0)(1,)-∞⋃+∞.故选:D 【题型专练】1.(2022·陕西汉中·高二期末(文))定义在(0,)+∞上的函数()f x 满足()()110,2ln 2f x f x '+>=,则不等式()e 0xf x +>的解集为___________.【答案】(ln 2,)+∞【解析】【分析】令()()ln (0)g x f x x x =+>,根据题意得到函数()g x 在(0,)+∞上为单调递增,把不等式()e 0xf x +>,可得()()e 2x g g >,结合函数()g x 的单调性,即可求解.【详解】由题意,函数()f x 满足()()110,2ln 2f x f x '+>=,令()()ln (0)g x f x x x =+>,可得()()10g x f x x''=+>所以函数()g x 在(0,)+∞上为单调递增,且()()22ln 20g f =+=,又由不等式()e 0x f x +>,可得()()e 2xg g >,所以e 2x >,解得ln 2x >,即不等式()e 0xf x +>的解集为(ln 2,)+∞.故答案为:(ln 2,)+∞.2.(2022·河北·石家庄二中高二期末)已知定义域为R 的函数()f x 满足()()114f x f x ++-=,且当1x >时()0f x '≥,则不等式()()2ln 10f x x ⎡⎤-->⎣⎦的解集为()A .()2,+∞B .()1,+∞C .()1,2D .()22,e【答案】A 【解析】【分析】由条件得出()f x 关于()1,2成中心对称,进一步得出函数的单调性,然后再根据题意可得()()ln 102x f x ⎧->⎪⎨>⎪⎩,或()()ln 102x f x ⎧-<⎪⎨<⎪⎩,从而可得出答案.【详解】由()()114f x f x ++-=得()f x 关于()1,2成中心对称.令0x =,可得()12f =当1x >时()0f x '≥,则()f x 在[)1,∞+上单调递增.由()f x 关于()1,2成中心对称且()12f =,故()f x 在R 上单调递增由()()2ln 10f x x ⎡⎤-->⎣⎦,则()()ln 102x f x ⎧->⎪⎨>⎪⎩,或()()ln 102x f x ⎧-<⎪⎨<⎪⎩解得21x x >⎧⎨>⎩,或121x x <<⎧⎨<⎩,故2x >故选:A3.(多选)已知函数()f x 的定义域是()0,∞+,其导函数是()f x ',且满足()()1ln 0x f x f x x'⋅+⋅>,则下列说法正确的是()A .10e f ⎛⎫> ⎪⎝⎭B .10e f ⎛⎫< ⎪⎝⎭C .()e 0f >D .()e 0f <【答案】AC 【解析】【分析】根据题意,构造()()ln g x f x x =⋅,由题意,得到()g x 单调递增,进而利用()g x 的单调性,得到1(1)()eg g >,再整理即可求解【详解】设()()ln g x f x x =⋅,可得()()1'()ln 0g x x f x f x x'=⋅+⋅>,()g x 单调递增,又因为(e)(e)ln e (e)g f f =⋅=,1111(()ln ()e e e e g f f =⋅=-,(1)(1)ln10g f =⋅=,且 1e 1e >>,1(e)(1)()e g g g ∴>>,得(e)0f >,110()()e eg f >=-,整理得1(0e f >,AC 正确;故选:AC题型五:构造三角函数型解不等式【例1】已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()'f x ,当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,42ππ⎛⎫ ⎪⎝⎭B .,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】由题意,设()()cosf xg xx=,利用导数求得()g x在0,2π⎛⎫⎪⎝⎭上单调递减,且为偶函数,再把不等式()cos4f x f xπ⎛⎫< ⎪⎝⎭,转化为()(4g x gπ<,结合单调性,即可求解.【详解】由题意,设()()cosf xg xx=,则2()cos()sin()cosf x x f x xg xx'+'=,当02xπ<<时,因为()cos()sin0f x x f x x'+<,则有()0g x'<,所以()g x在0,2π⎛⎫⎪⎝⎭上单调递减,又因为()f x在,22ππ⎛⎫- ⎪⎝⎭上是偶函数,可得()()()()cos()cosf x f xg x g xx x--===-,所以()g x是偶函数,由()cos4f x f xπ⎛⎫< ⎪⎝⎭,可得()()cos4f xxπ<,即()()4cos cos4ππ<ff xx,即()(4g x gπ<又由()g x为偶函数,且在0,2π⎛⎫⎪⎝⎭上为减函数,且定义域为,22ππ⎛⎫- ⎪⎝⎭,则有||4xπ>,解得24xππ-<<-或42xππ<<,即不等式的解集为,,2442ππππ⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭,故选:B.【点睛】本题主要考查了导数在函数中的综合应用,其中解答中构造新函数,求得函数的奇偶性和利用题设条件和导数求得新函数的单调性,结合函数的单调性求解是解答的关键,着重考查构造思想,以及推理与运算能力,属于中档试题.【例2】已知函数()f x的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x.有()cos()sin0f x x f x x'+<,则关于x的不()2cos6x f xπ⎛⎫< ⎪⎝⎭的解集为()A.,32ππ⎛⎫⎪⎝⎭B.,62ππ⎛⎫⎪⎝⎭C.,63ππ⎛⎫--⎪⎝⎭D.,26ππ⎛⎫--⎪⎝⎭【答案】B【分析】令()()cos f x F x x =,根据题设条件,求得()F'0x <,得到函数()()cos f x F x x =在,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,再把不等式化为()6cos cos 6f f x x ππ⎛⎫⎪⎝⎭<,结合单调性和定义域,即可求解.【详解】由题意,函数()f x 满足()()'cos sin 0f x x f x x +<,令()()cos f x F x x =,则()()()2'cos sin '0cos f x x f x xF x x +=<函数()()cos f x F x x=是定义域,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,由于cos 0x >,关于x()2cos 6x f x π⎛⎫< ⎪⎝⎭可化为()6cos cos 6f f x x ππ⎛⎫⎪⎝⎭<,即()6F x F π⎛⎫< ⎪⎝⎭,所以22x ππ-<<且6x π>,解得26x ππ>>,()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为,62ππ⎛⎫ ⎪⎝⎭.故选:B 【点睛】方法点睛:构造法求解()f x 与()f x '共存问题的求解策略:对于不给出具体函数的解析式,只给出函数()f x 和()f x '满足的条件,需要根据题设条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题,常见类型:(1)()()()()f x g x f x g x ''±型;(2)()()xf x nf x '+型;(3)()()(f x f x λλ±为常数)型.【题型专练】1.已知可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集为()A .ππ,26⎛⎫-- ⎪⎝⎭B .π,06⎛⎫- ⎪⎝⎭C .ππ,24⎛⎫-- ⎪⎝⎭D .π,04⎛⎫- ⎪⎝⎭【答案】D 【解析】【分析】构造函数()sin xf x ,并依据函数()sin xf x 的单调性去求解不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集.【详解】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则()()cos sin 0xf x f x x '+>则函数()sin xf x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,又可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数则()sin xf x 是ππ,22⎛⎫- ⎪⎝⎭上的偶函数,且在π,02⎛⎫- ⎪⎝⎭单调递减,由πππ222ππ22x x ⎧-<+<⎪⎪⎨⎪-<-<⎪⎩,可得π,02x ⎛⎫∈- ⎪⎝⎭,则ππ0,22x ⎛⎫+∈ ⎪⎝⎭,π0,2x ⎛⎫-∈ ⎪⎝⎭则π,02x ⎛⎫∈- ⎪⎝⎭时,不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭可化为()()ππsin sin 22x f x x f x ⎛⎫⎛⎫+⋅+>-⋅- ⎪ ⎪⎝⎭⎝⎭又由函数()sin xf x 在π0,2⎛⎫⎪⎝⎭上单调递增,且π0,2x ⎛⎫-∈ ⎪⎝⎭,ππ0,22x ⎛⎫+∈ ⎪⎝⎭,则有ππ022x x >+>->,解之得π04x -<<故选:D2.已知函数()f x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()'()tan 0f x f x x +>,则不等式cos sin ()02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为()A .,42ππ⎛⎫⎪⎝⎭B .,42ππ⎛⎫- ⎪⎝⎭C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】构造函数()()sin g x f x x =,则经变形后得[]'()()'()tan cos g x f x f x x x =+⋅,进而得到()g x 在0,2x π⎡⎫∈⎪⎢⎣⎭时单增,结合()f x 单调性证出()g x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数,再去“f ”,即可求解【详解】令()()sin g x f x x =,[]'()()cos '()sin ()'()tan cos g x f x x f x x f x f x x x =+=+⋅,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()'()tan 0f x f x x +>,'()0g x ∴>,即函数()g x 单调递增.又(0)0g =,0,2x π⎡⎫∈⎪⎢⎣⎭∴时,()()sin 0g x f x x =>,()f x 是定义在,22ππ⎛⎫-⎪⎝⎭上的奇函数,()g x ∴是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数.不等式cos sin ()02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭,即sin sin ()22x f x xf x ππ⎛⎫⎛⎫++> ⎪⎪⎝⎭⎝⎭,即()2g x g x π⎛⎫+> ⎪⎝⎭,||2x x π∴+>,4x π∴>-①,又222x πππ-<+<,故0x π-<<②,由①②得不等式的解集是,04π⎛⎫- ⎪⎝⎭.故选:C 【点睛】本题考查利用构造函数法解不等式,导数研究函数的增减性的应用,一般形如()()()()0f a g a f b g b ±>的式子,先构造函数()()()h x f x g x =⋅,再设法证明()h x 的奇偶性与增减性,进而去“f ”解不等式3.奇函数()f x 定义域为()(),00,ππ-U ,其导函数是()f x ',当0πx <<时,有()()sin cos 0f x x f x x '->,则关于x 的不等式()2()sin 6f x f x π<的解集为A .(,0)(,)66πππ-B .(,0)(0,)66ππ-⋃C .(,)(,)66ππππ--⋃D .(,)(0,)66πππ--⋃【答案】D 【解析】【详解】根据题意,可构造函数()f x g x sinx=(),其导数()()2f x sinx f x cosxg x sin x'-'=()当0x π∈(,)时,有’0f x sinx f x x -()()>,其导数0g x g x '()>,()在0π(,)上为增函数,又由f x ()为奇函数,即f x f x -=-()(),则()()()()f x f xg x g x sin x sin x --===-()(),即函数g x ()为偶函数,当0x π∈(,)时,0sinx >,不等式()12()6626f x f x f sinx fg x g sinx πππ⇒⇒()<()<()<(),又由函数g x ()为偶函数且在0π(,)上激增,则66g x g x ππ⇒()<()<,解得 66x ππ-<<此时x 的取值范围为06(,)π;当0x π∈-(,)时,0sinx <,不等式()()62162f f x f x f sinx sinx ππ⇒()<(>6g x g π⇒()>(),同理解得此时x 的取值范围为6ππ--(,);综合可得:不等式的解集为,0,66πππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭故选D .【点睛】本题考查函数的导数与函数单调性的关系,解题的关键是根据题意构造新函数()f x g x sinx=(),,并利用导数分析g x ()的单调性.题型六:构造()kx x f +型函数解不等式【例1】设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =--,当(),0x ∈-∞时,()142f x x '+<.若()()3132f m f m m +≤-++,则实数m 的取值范围是A .1,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)1,-+∞D .[)2,-+∞【答案】A 【解析】【详解】构造函数法令2()()2F x f x x =-,则1()()402F x f x x ''=-<-<,函数()F x 在(,0)-∞上为减函数,因为2()()()()40F x F x f x f x x -+=-+-=,即()()F x F x -=-,故()F x 为奇函数,于是()F x 在(,)-∞+∞上为减函数,而不等式3(1)()32f m f m m +≤-++可化为(1)()F m F m +≤-,则1m m +≥-,即12m ≥-.选A.【例2】设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是()A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】构造函数,由已知得出所构造的函数的单调性,再利用其单调性解抽象不等式,可得选项.【详解】设()()cos F x f x x =-,∵()()2cos f x f x x +-=,即()()cos cos f x x x f x -=--,即()()F x F x =--,故()F x 是奇函数,由于函数()f x 在R 上存在导函数()f x ',所以,函数()f x 在R 上连续,则函数()F x 在R 上连续.∵在[)0,+∞上有()sin f x x '>-,∴()()sin 0F x f x x ''=+>,故()F x 在[)0,+∞单调递增,又∵()F x 是奇函数,且()F x 在R 上连续,∴()F x 在R 上单调递增,∵()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭,∴()cos sin cos 222f x x f x x f x x πππ⎛⎫⎛⎫⎛⎫-≥--=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()2F x F x π⎛⎫≥- ⎪⎝⎭,∴2x x π≥-,故4x π≥,故选:B .【点睛】本题考查运用导函数分析函数的单调性,从而求解抽象不等式的问题,构造合适的函数是解决问题的关键,属于较难题.【例3】(2022·重庆八中高二期末)已知函数()f x 满足:R x ∀∈,()()2cos f x f x x +-=,且()sin 0f x x '+<.若角α满足不等式()()0f f παα++,则α的取值范围是()A .,2π⎡-+∞⎫⎪⎢⎣⎭B .,2π⎛⎤-∞- ⎥⎝⎦C .,22ππ⎡⎤-⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦【答案】A。

抽象函数-题型大全(例题-含答案)之欧阳学文创作

抽象函数-题型大全(例题-含答案)之欧阳学文创作

高考抽象函数技巧总结欧阳学文由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

高中数学抽象函数常见题型及解法教案

高中数学抽象函数常见题型及解法教案

抽象函数常见题型及解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题是函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,对函数性质通过代数表述给出.抽象函数的相关题目往往是在知识网络的交汇处设计,高考对抽象函数的要求是考查函数的概念和知识的内涵及外延的掌握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,特就抽象函数常见题型及解法评析如下.一、函数的基本概念问题 1.抽象函数的定义域问题例1 已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域. 解:由)(2x f 的定义域是[1,2],是指1≤x≤2,所以1≤x 2≤4, 即函数)(x f 的定义域是[1,4].评析:一般地,已知函数[()]f x ϕ的定义域是A ,求)(x f 的定义域问题,相当于已知[()]f x ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题.例2 已知函数)(x f 的定义域是[-1,2],求函数)]3([log 21x f -的定义域.解:由)(x f 的定义域是[-1,2],意思是凡被f 作用的对象都在[-1,2]中,由此易得-1≤log 21(3-x )≤2 ⇒ (21)2≤3-x≤(21)1-⇒1≤x≤411.∴函数)]3([log 21x f -的定义域是[1,411]. 评析:这类问题的一般形式是:已知函数)(x f 的定义域是A ,求函数))((x f ϕ的定义域.正确理解函数符号及其定义域的含义是求解此类问题的关键.一般地,若函数)(x f 的定义域是A ,则x 必须是A 中的元素,而不能是A 以外的元素,否则,)(x f 无意义.因此,如果)(0x f 有意义,则必有x 0∈A .所以,这类问题实质上相当于已知)(x ϕ的值域是A ,据此求x 的取值范围,即由)(x ϕ∈A 建立不等式,解出x 的范围.例2和例1形式上正相反.2.抽象函数的值域问题例4 设函数f (x) 定义于实数集上,对于任意实数x 、y ,f (x + y) =f (x)f (y)总成立,且存在x 1≠x 2,使得f (x 1)≠f ( x 2),求函数f (x)的值域.解:令x = y = 0,得f (0) =f2(0),即有f (0) = 0或f (0) = 1.若f (0) = 0,则f (x) =f (x + 0) =f (x)f (0) = 0,对任意x∈R 均成立,这与存在实数x 1≠x 2,使得f (x 1)≠f ( x 2)成立矛盾.故f (0)≠0,即f (0) = 1.由于f (x + y) =f (x)f (y) 对任意x 、y∈R 均成立,因此,对任意x∈R ,有f (x) =f (2x +2x ) =f (2x )f (2x ) = [f (2x)]2≥0. 下面只需证明,对任意x∈R ,f (0)≠0即可.设存在x 0∈R ,使得f ( x 0) = 0,则f (0) =f ( x 0-x 0) =f ( x 0)f (-x 0) = 0,这与f (0)≠0矛盾,因此,对任意x∈R ,f (x)≠0. 所以f (x)>0.评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.3.抽象函数的解析式问题例5 设对满足 x≠0,x≠1的所有实数 x ,函数f (x) 满足f (x) +f (xx 1-) = 1 + x ,求f (x) 的解析式. 解:在f (x) +f (x x 1-) = 1 + x , (1) 中以xx 1-代换其中 x ,得:f(x x 1-) +f (-11-x ) =xx -12 , ⑵再在(1)中以-11-x 代换x ,得 :f (-11-x ) +f (x) =12--x x , ⑶(1)-(2) + ⑶ 化简得:f (x) =)1(2123x -x x x --.评析:如果把x 和xx 1-分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键.通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.二、寻觅特殊函数模型问题 1.指数函数模型例6 设)(x f 定义于实数集R 上,当x >0时,)(x f >1 ,且对于任意实数x 、y ,有f (x + y) =)(x f ·)(y f ,同时f (1) = 2,解不等式f (3x -x 2)>4.联想:因为a y x += a x ·a y (a >0,a≠1),因而猜测它的模型函数为)(x f = a x (a >0,a≠1)(由f (1) = 2,还可以猜想)(x f = 2x ).思路分析:由)2(f =)11(+f =)1(f ·)1(f = 4,需解不等式化为f (3x -x 2)>)2(f .这样,证明函数)(x f 的(由)(x f = 2x ,只证明单调递增)成了解题的突破口.解:由 f (x + y) =f (x) ·f (y) 中取x = y = 0 ,得f (0) =f2(0),若f (0) = 0,令x >0 ,y = 0 ,则 f (x) = 0,与f (x)>1 矛盾.∴ f (0)≠ 0,即有f (0) = 1 .当x >0 时 ,f (x)>1>0 ,当x <0 时 ,-x >0,f (-x)>1>0 , 而f (x) ·f (-x) =f (0) = 1, ∴ f (x) =)(1x f ->0 .又当x = 0 时,f (0) = 1>0 ,∴x∈R ,f (x)>0 .设 -∞<x 1<x 2<+∞ ,则x 2-x 1>0 ,f ( x 2-x 1)>1 . ∴ f ( x 2) =f [ x 1+ ( x 2-x 1)] =f (x 1)f ( x 2-x 1)>f ( x 1) . ∴ y =f (x) 在R 上为增函数又∵f (1) = 2,∴f (3x -x 2)>f (1) ·f (1) =f (1 + 1) =f (2),由f (x)的单调递增性质可得:3x -x 2>2,解得1<x <2. 2.对数函数模型例7 已知函数)(x f 满足:⑴f (21) = 1;⑵函数的值域是[-1,1];⑶在其定义域上单调递减;⑷()f x +()f y =f (x·y) 对于任意正实数x 、y 都成立.解不等式)(1x f-·)11(1x f--≤21. 联想:因为log a (x·y) = log a x +log a y ,而log 2121= 1,y = log 21x 在其定义域[-1,1]内为减函数,所以猜测它的模型函数为)(x f = log 21x 且)(1x f-的模型函数为)(1x f-= (21)x. 思路分析:由条件⑵、⑶知,)(x f 的反函数存在且在定义域[-1,1]上递减,由⑴知)1(1-f=21.剩下的只需由)(1x f -的模型函数性质和运算法则去证明)(11x f-·)(21x f-=112()f x x -+,问题就能解决了.解:由已知条件⑵、⑶知,f (x)的反函数存在,且f 1-(1) =21,又在定义域[-1,1]上单调递减.设y 1=f1-(x 1),y 2=f1-(x 2),则有x 1=f (y 1),x 2=f ( y 2) ,∴x 1+ x 2=f (y 1) +f ( y 2) =f (y 1y 2),即有y 1y 2=f 1-(x 1+ x 2).∴)(11x f-·)(21x f-=112()f x x -+,于是,原不等式等价于:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤-≤-≤≤-≤-+≤-≤-+--.1111,11,1111,)1()11(11x x x x f x x f ⇒ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤-≤-≤≤-≤-+≤-≥-+.1111,11,1111,111x x x x x x ⇒ x = 0. 故原不等式的解集为{0}.解这类问题可以通过化抽象为具体的方法,即通过联想、分析,然后进行类比猜测,经过带有非逻辑思维成份的推理,即可寻觅出它的函数模型,由这些函数模型的性质、法则来探索此类问题的解题思路.3.幂函数模型例8 已知函数)(x f 对任意实数x 、y 都有)(xy f =)(x f ·)(y f ,且)1(-f =1,)27(f =9,当0≤x <1时,0≤)(x f <1时.⑴判断)(x f 的奇偶性;⑵判断)(x f 在[0,+∞)上的单调性,并给出证明; ⑶若a≥0且)1(+a f ≤39,求a 的取值范围.联想:因为n x ·n y = (x·y)n ,因而猜测它的模型函数为)(x f =n x (由)27(f =9,还可以猜想)(x f = x 32).思路分析:由题设可知)(x f 是幂函数y = x 32的抽象函数,从而可猜想)(x f 是偶函数,且在[0,+∞)上是增函数.解:⑴令y =-1,则)(x f -=)(x f ·)1(-f , ∵)1(-f =1,∴)(x f -= )(x f ,即)(x f 为偶函数.⑵若x≥0,则()f x=f=f·f=[f ]2≥0. 设0≤x 1<x 2,则0≤21x x <1,∴)(1x f =)(221x x x f ⋅=)(21x xf ·)(2x f , ∵当x≥0时()f x ≥0,且当0≤x <1时,0≤)(x f <1. ∴0≤)(21x x f <1,∴)(1x f <)(2x f ,故函数)(x f 在[0,+∞)上是增函数. ⑶∵)27(f =9,又)93(⨯f =)3(f ·)9(f =)3(f ·)3(f ·)3(f = [)3(f ]3, ∴9 = [)3(f ]3,∴)3(f =39, ∵)1(+a f ≤39,∴)1(+a f ≤)3(f ,∵a≥0,(a +1),3∈[0,+∞),函数在[0,+∞)上是增函数. ∴a +1≤3,即a≤2, 又a≥0,故0≤a≤2. 三、研究函数的性质问题 1.抽象函数的单调性问题例9 设f (x) 定义于实数集上,当x >0时,f (x)>1 ,且对于任意实数x 、y ,有f (x + y) =f (x) ·f (y),求证:f (x) 在R 上为增函数.证明:由 f (x + y) =f (x)f (y) 中取x = y = 0,得f (0) =)0(2f , 若f (0) = 0,令x >0,y = 0,则 f (x) = 0,与f (x)>1 矛盾.∴ f (0)≠0,即有f (0) = 1.当x >0时,f (x)>1>0,当x <0时,-x >0,f (-x)>1>0, 而f (x) ·f (-x) =f (0) = 1,∴ f (x) =)(1x f ->0 . 又当x = 0 时,f (0) = 1>0 ,∴x∈R ,f (x)>0. 设 -∞<x 1<x 2<+∞,则x 2-x 1>0,f ( x 2-x 1)>1.∴ f ( x 2) =f [ x 1+ ( x 2-x 1)] =f (x 1)f ( x 2-x 1)>f ( x 1). ∴ y =f (x) 在R 上为增函数.评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,而变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联.2.抽象函数的奇偶性问题例10 已知函数f (x) (x∈R ,x≠0)对任意不等于零实数x 1、x 2 都有f (x 1·x 2) =f (x 1) +f (x 2),试判断函数f (x) 的奇偶性.解:取x 1=-1,x 2= 1得:f (-1) =f (-1) +f (1),∴f (1) = 0. 又取x 1= x 2=-1得:f (1) =f (-1) +f (-1),∴f (-1) = 0. 再取x 1= x ,x 2=-1则有f (-x) =f (-1) +f (x),即f (-x) =f (x), ∵f (x)为非零函数,∴f (x)为偶函数. 3.抽象函数的周期性问题例11 函数)(x f 定义域为全体实数,对任意实数 a 、b ,有f (a +b)+f (a-b) =2f (a) ·f (b),且存在C >0 ,使得)2(Cf = 0 ,求证f (x) 是周期函数.联想:因为cos(a +b)+cos(a -b) = 2cosacosb ,且cos2π= 0,因而得出它的模型函数为y = cosx ,由y = cosx 的周期为π2,可猜想2C 为)(x f 的一个周期.思路分析:要在证明2C 为)(x f 的一个周期,则只需证)2(C x f +=)(x f ,而由已知条件)2(Cf = 0和f (a +b)+f (a -b) =2f (a) ·f (b)知,必须选择好a 、b 的值,是得条件等式出现)2(Cf 和)(x f .证明:令a = x +2C ,b =2C,代入f (a +b)+f (a -b) = 2f (a) ·f (b)可得f (x +C ) =-f (x).∴f (x +2C ) =f [(x +C)+C ] =-f (x +C ) =f (x) ,即)(x f 是以 2C 为周期的函数.评析:如果没有余弦函数作为模型,就很难想到2C 就是所求函数的周期,解题思路是难找的.由此可见,寻求或构造恰当的模型函数,可以为思考与解题定向,是处理开放型问题的一种重要策略.4.抽象函数的对称性问题例12 已知函数y =)(x f 满足)(x f +)(x f -= 2002,求)(1x f -+)2002(1x f--的值.解:由已知,在等式)(x a f ++)(x a f -= 2b 中a = 0,b = 2002,所以,函数y =)(x f 关于点(0,2002)对称,根据原函数与其反函数的关系,知函数y =)(1x f-关于点(2002,0)对称.∴)1001(1+-x f +)0011(1x f--= 0,将上式中的x 用x -1001换,得)(1x f -+)2002(1x f--= 0.评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:即:设a 、b 均为常数,函数y =)(x f 对一切实数x 都满足)(x a f ++)(x a f -= 2b ,则函数y =)(x f 的图象关于点(a ,b) 成中心对称图形.四、抽象函数中的网络综合问题例13 定义在R 上的函数()f x 满足:对任意实数m ,n ,总有()f m n +=()f m ·()f n ,且当x >0时,0<()f x <1.⑴判断()f x 的单调性;⑵设A = {(x ,y)|2()f x ·2()f y >(1)f },B = {(x ,y)|(f ax y -+= 1,a ∈R},若A I B =φ,试确定a 的取值范围.解:⑴在()f m n +=()f m ·()f n 中,令m = 1,n = 0,得(1)f =(1)f ·(0)f ,因为(1)f ≠0,所以(0)f = 1.在()f m n +=()f m ·()f n 中,令m = x ,n =-x ,∵当x >0时,0<()f x <1,∴当x <0时,-x >0,0<()f x -<1, 而f (x) ·f (-x) =(0)f = 1,∴ f (x) =)(1x f ->1>0 . 又当x = 0 时,f (0) = 1>0,所以,综上可知,对于任意x∈R ,均有f (x)>0.设 -∞<x 1<x 2<+∞ ,则x 2-x 1>0,0<f ( x 2-x 1)<1. ∴f ( x 2) =f [ x 1+( x 2-x 1)] =f (x 1)·f ( x 2-x 1)<f ( x 1) . ∴ y =f (x) 在R 上为减函数.⑵由于函数y =f (x)在R 上为减函数,所以2()f x ·2()f y =2(f x +2)y >(1)f ,即有x 2+y 2<1.又(f ax y -+= 1 =(0)f ,根据函数的单调性,有ax -y = 0.由A I B =φ,所以,直线ax -y = 0与圆面x 2+y 2<1无公共点,因≥1,解得-1≤a≤1.评析:⑴要讨论函数的单调性必然涉及到两个问题,一是(0)f 的取值问题,二是)(x f >0的结论都成为解题的关键性步骤,完成这些又在抽象函数式中进行,由特殊到一般的解题思想,联想类比思维都有助于问题的思考和解决.。

抽象函数-题型大全(例题-含答案)之欧阳道创编

抽象函数-题型大全(例题-含答案)之欧阳道创编

高考抽象函数技巧总结 时间:2021.03.06 创作:欧阳道由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

高中常见抽象函数题型归纳

高中常见抽象函数题型归纳
3•利用约分化简求值
如果f(x y)
f(x)f(y),且f(1)
2,则f(2)f(4)
f(6)
f(2000)
的值是
f⑴f⑶
f(5)
f(2001)
.2000
f2(1) f(2)
f2(2) f⑷
f2(3)f⑹
f2(4) f (8)
f (1)
f(3)
f (5)
f (7)
.(
f(n)
2,原式=16)
(三)值域问题
4
0,—, 3,8
值域为•答案:3
(二)函数值问题
1.赋特殊值法求值
例1•已知f(x)的定义域为R,且f(xy)f(x)f(y)对一切正实数x,y都成立,若f(8)4,则
f(2)
分析:在条件f(xy) f(x) f(y)中,令xy4,得
f (8)f(4) f⑷2f⑷4f(4)2
又令x y 2,得f⑷f(2)f(2)2,f( 2)1
例5.对任意实数
分析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:
f(x+y2)=f(x)+2[f(y)]2

2
f(n) 2[f(1)],
令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2,
令x=y=0,得:f(0)=0, •••
1in200
即f(n 1)-f( n)-,故f(n) —, f(2001)一f(1)=2,222
2
f (x)f (-)0
此,2,又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)丰0矛盾,所以f(x)>0. 3.
例2•若函数h(x),g(x)均为奇函数,f(x)=ah(x)+bg(x)+2在(0,+^)上有最大值5,求f(x)在(—^,0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重难点2-4 抽象函数及其性质8大题型抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。

抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。

一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

【题型1 抽象函数的定义域问题】【例1】(2022秋·四川广安·高三四川省邻水县第二中学校考阶段练习)已知(21)y f x =+定义域为(]1,3,则(1)y f x =+的定义域为( )A .(]2,6B .(]0,1C .(]1,2D .(]1,3【变式1-1】(2021秋·福建福州·高三校考开学考试)已知函数()2xy f =的定义域是[]1,1-,则函数()3log f x 的定义域是( )A .[]1,1-B .1,33⎡⎤-⎢⎥⎣⎦C .[]1,3 D.⎤⎦【变式1-2】(2022秋·河南驻马店·高三校联考期中)已知()5f x -的定义域为[]2,6,则()1f x +的定义域为________.【变式1-3】(2022秋·上海黄浦·高三格致中学校考期中)函数()f x 的定义域是(1,)+∞,则函数()222f x x --的定义域是______.【变式1-4】(2022秋·四川遂宁·高三校考阶段练习)已知函数()f x 的定义域为[]3,6,则函数2f x y =______【题型2 抽象函数的求值问题】【例2】(2022秋·浙江杭州·高三浙江省杭州第二中学校考阶段练习)已知对所有的非负整数(),x y x y ≥均有()()()()11222f x y f x y x y f x f y ++--+-=+⎡⎤⎣⎦,若()13f =,则()5f =______.【变式2-1】(2021秋·河南·高三阶段练习)已知定义在(0,)+∞上的函数()f x 满足对任意x ,(0,)∈+∞y ,()()x f x f y f y ⎛⎫-= ⎪⎝⎭,()21f =,则14f ⎛⎫= ⎪⎝⎭___________.【变式2-2】(2022秋·浙江衢州·高三统考阶段练习)已知定义在[]0,1上的函数()f x ,对于任意[]12,0,1x x ∈,当12x x <时,都有()()12f x f x ≤,又()f x 满足()()()()100,11,32x f f x f x f f x ⎛⎫=-+== ⎪⎝⎭,则1ln3e 34f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭______.(e 为自然对数的底数)【变式2-3】(2022秋·上海浦东新·高一上海市建平中学校考期末)若函数()f x 是定义在[]0,1上的增函数,满足①()00f =,②对任意[]0,1x ∈,有11f x f x,③对于10,4x ⎡⎤∈⎢⎥⎣⎦,有()2f x x ≥恒成立,则457131313f f f ⎛⎫⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________________.【变式2-4】(2022秋·江苏南京·高三南京师大附中校联考阶段练习)已知函数()f x 的定义域R ,()00f ≠,()1f ()()()f x y f x f y +=.若数列{}n a 是首项为0,公差为2的等差数列,则()()()1210f a f a f a ++⋅⋅⋅+=______.【题型3 抽象函数的解析式问题】【例3】(2022秋·河南开封·高三校考阶段练习)已知函数()f x 为定义在R 上的函数满足以下两个条件:(1)对于任意的实数x ,y 恒有()()()1f x y f x f y +=++; (2)()f x 在R 上单调递减.请写出满足条件的一个()f x =___________.【变式3-1】(2022秋·广东·高三统考开学考试)已知函数f (x )满足:①对m ∀,0n >,()()()f m f n f mn +=;②112f ⎛⎫=- ⎪⎝⎭.请写出一个符合上述条件的函数f (x )=______.【变式3-2】(2023·全国·高三专题练习)定义在实数集上的函数()f x 的图象是一条连绵不断的曲线,x ∀∈R ,()()()3266f x x f x x f x +=+⎡⎤⎡⎤⎣⎦⎣⎦,且()f x 的最大值为1,最小值为0.(1)求()1f 与()1f -的值; (2)求()f x 的解析式.【变式3-3】(2022秋·安徽六安·高三六安市裕安区新安中学校考阶段练习)(1)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +=+,求函数()f x 的解析式;(2)已知()()22f x f x x x +-=-,求函数()f x 的解析式;(3)已知()f x 是R 上的函数,()01f =,并且对任意的实数x ,y 都有()()()21f x y f x y x y -=--+,求函数()f x 的解析式.【题型4 抽象函数的值域问题】【例4】(2022秋·海南省直辖县级单位·高三嘉积中学校考阶段练习)已知函数()f x 对任意的,R x y ∈,总有()()()f x y f x f y +=+,若(),0x ∈-∞时,()0f x >,且()213f =-,则当[]3,1x ∈-时,()f x 的最大值为( )A .0B .23 C .1 D .2【变式4-1】(2022秋·浙江杭州·高一杭州四中校考期中)已知函数()y f x =的定义域是R ,值域为[1,2]-,则值域也为[1,2]-的函数是( )A .2()1y f x =+B .|(21)|y f x =+C .()1y f x =-+D .|()|y f x =【变式4-2】(2022秋·上海普陀·高三曹杨二中校考阶段练习)已知定义在R 上的函数()f x 满足(1)()f x f x +=,若函数()()g x f x x =-在区间[1,2]上的值域为[1,3]-,则()g x 在区间[3,5]-上的值域是___________.【变式4-3】(2023·全国·高三专题练习)若函数()y f x =的值域是[]1,3-,则函数()32(1)g x f x =-+的值域为__.【变式4-4】(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足(1)()f x f x +=,若函数()()g x f x x =-在区间[1,2]上的值域为[1,3]-,则()g x 在区间[]2021,2021-上的值域为__________.【变式4-5】(2022·全国·高三专题练习)()f x 是R 上的奇函数,()g x 是R 上的偶函数,若函数()()f x g x +的值域为[]1,4-,则()()f x g x -的值域为_____________.【变式4-6】(2022·浙江·高三专题练习)已知定义在()0,∞+上的函数()f x 为减函数,对任意的()0,x ∈+∞,均有()()3124⎛⎫⋅+= ⎪⎝⎭f x f f x x ,则函数()()3g x f x x =+的最小值是( )A .2B .5C .103D .3【题型5 抽象函数的单调性问题】【例5】(2021秋·江苏南京·高三南京市第一中学校考期中)已知函数f (x )的定义域是(0,+∞),()()()f x y f x f y ⋅=+,113f ⎛⎫=- ⎪⎝⎭,当x >1时, f (x )>0,则满足不等式f (x )-f (x -2)≥2的x 的取值范围为__________.【变式5-1】(2022秋·河南南阳·高三南阳中学校考阶段练习)已知函数()f x 是定义在R 上的函数,对任意,x y R ∈,满足条件()()()2f x f x y f y -=+-,()13f =且当0x <时,()2f x <.(1)求证:()f x 是R 上的递增函数;(2)解不等式()()2log 3log 3a a f x f x ≥--,(0a >且1a ≠).【变式5-2】(2022秋·江苏扬州·高三统考期中)(多选)设函数()()f x g x ,的定义域都为R ,且00f x,g x,f x 是减函数,()g x 是增函数,则下列说法中正确的有( )A .()()g x f x +是增函数B .()()f x g x -是减函数C .()()f x g x 是增函数D .()()f xg x 是减函数【变式5-3】(2022·浙江台州·统考模拟预测)(多选)已知定义在R 上的函数()f x ,满足:x ∀,R y ∈,()()()f x y f x f y +=,则( ) A .函数()f x 一定为非奇非偶函数 B .函数()f x 可能为奇函数又是偶函数C .当0x >时,()1f x >,则()f x 在R 上单调递增D .当0x <时,()1f x <,则()f x 在R 上单调递减【变式5-4】(2022秋·江苏常州·高三校考开学考试)已知定义在R 上的函数()f x 满足:①当0x >时,()1f x >,②对任意,R x y ∈都有()()()f x y f x f y +=,③()12f = (1)求()2f 的值.(2)求证:对任意(),0x f x > (3)证明:()f x 在R 上是增函数.【题型6 抽象函数的奇偶性问题】【例6】(2022秋·上海普陀·高三统考期中)记{},max ,,x x yx y y x y ≥⎧=⎨<⎩,已知()()f xg x 、均是定义在实数集R 上的函数,设()max{(),()}h x f x g x =,有下列两个命题: ①若函数()()f x g x 、都是偶函数,则()h x 也是偶函数; ②若函数()()f x g x 、都是奇函数,则()h x 也是奇函数. 则关于两个命题判断正确的是( )A .①②都正确B .①正确②错误C .①错误②正确D .①②都错误【变式6-1】(2022秋·河北廊坊·高三统考开学考试)已知定义域为R 的函数()f x 满足:,R x y ∀∈,()()()()f x y f x y f x f y ++-=,且()11f =,则下列结论错误的是( )A .()02f =B .()f x 为偶函数C .()f x 为奇函数D .()21f =-【变式6-2】(2022春·四川成都·高三成都七中校考开学考试)已知()11y f x =-+是奇函数,则下列等式成立的是( )A .()()112f x f x -+--=-B .()()112f x f x -+--=C .()()11f x f x =+-D .()()11f x f x +=--【变式6-3】(2022秋·黑龙江牡丹江·高三校考阶段练习)定义在R 上的连续函数()()f x g x 、满足对任意x y ∈R 、 ,()()()()()f x y f x g y f y g x +=+⋅,2()()()()(),(2)2[()]1g x y f x f y g x g y g x g x +=+=-.(1)证明:()()g x f x >;(2)请判断()()f x g x 、的奇偶性;(3)若对于任意x R ∈ ,不等式(2)()6g x mg x ≥-恒成立,求出m 的最大值.【变式6-4】(2021秋·山西太原·高三统考期中)已知函数()f x 对任意x R ∈都有()()()f x y f x f y +=+,且当0x >时,()0f x >.(1)证明:()y f x =为定义在R 上的单调递增奇函数; (2)若(4)4f =,求()2log 1f x >的解集.【6-5】(2021·全国·高三专题练习)已知函数()f x 对任意x ,R y ∈,()()()f x y f x f y +=+,且当0x >时,()0f x >,判断函数()f x 的单调性.【题型7 抽象函数的周期性问题】【例7】(2022秋·河南·高三信阳高中校联考期末)已知()(),f x g x 是定义在R 上的函数,且均不恒为()0,g x 为偶函数,()23f =.若对任意的x ∈R ,都有()()()21f x f x x ++=+,()()()42g x g x g +=+,则下列说法正确的是( )A .函数()f x 的一个周期为4B .函数()g x 的一个周期为6C .函数()()f x g x +的一个周期为4D .()()66663f g +=【变式7-1】(2022·四川达州·统考一模)已知定义在 R 上的函数()f x 满足()()()()11,f x f x f x f x -=-+=-,当[]1,1x ∈-时,()33f x x x =-,则()2023f 等于( )A .1B .2-C .1-D .2【变式7-2】(2022·四川宜宾·统考模拟预测)已知定义在R 上的奇函数()f x 满足(1)2f =,(4)(2)f x f x -+=-,则(2022)(2023)f f +=( )A .4B .0C .2-D .4-【变式7-3】(2022秋·河南安阳·高三校联考阶段练习)已知函数()f x 的定义域为R ,()1f x -是偶函数,()2f x +是奇函数,则()2022f =( ) A .()1f B .()2f C .()3f D .()4f【变式7-4】(2022秋·浙江·高三浙江省新昌中学校联考期中)(多选)已知定义在R 上的函数()f x 与()g x 满足()()()()111,111f x g x g x f x +=+=--,则() A .()0f x ≠ B .()()4f x f x += C .()()6g x g x += D .()()3g x f x +=【变式7-5】(2022秋·上海黄浦·高三上海市光明中学校考期中)已知奇函数()f x对任意x ∈R 都有()()()623f x f x f ++=,则()2022f =______.【变式7-6】(2022秋·江苏苏州·高三昆山震川高级中学校联考阶段练习)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则20231()i f k =∑ =( )A .-3B .-2C .0D .1【变式7-7】(2022秋·江西宜春·高三江西省丰城中学校考开学考试)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑______【题型8 抽象函数的对称性问题】【例8】(2022秋·四川成都·高三成都七中校考专题练习)已知函数()(),f x g x 的定义域均为()R,f x 为偶函数,且()()21f x g x +-=,()()43g x f x --=,下列说法正确的有( )A .函数()g x 的图象关于1x =对称B .函数()f x 的图象关于()1,2--对称C .函数()f x 是以4为周期的周期函数D .函数()g x 是以6为周期的周期函数【变式8-1】(2022秋·浙江·高三慈溪中学校联考期中)已知函数()f x 的定义域为R ,且112f x ⎛⎫+ ⎪⎝⎭是偶函数,()1f x -是奇函数,则( )A .()00f =B .102f ⎛⎫= ⎪⎝⎭C .()10f =D .()30f =【变式8-2】(2022秋·河南开封·高三校考阶段练习)已知函数()f x ,()g x 都是定义域为R 的函数,函数()1g x -为奇函数,()()10f x g x +-=,()()320f x g x ----=,则()2f =( )A .-1B .0C .1D .2【变式8-3】(2022秋·吉林四平·高三四平市第一高级中学校考阶段练习)已知定义在R 上的函数()f x 满足:()()()()22,22,52()f f x f x f x f x =+-==.且当1202x x ≤<≤时,()()12f x f x ≤,则1910008f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .1716 B .98C .3132D .32【变式8-4】(2022·浙江·模拟预测)(多选)已知函数()f x ,()g x 的定义域均为R ,且()()13f x g x +-=,()()35g x f x --=.若()y g x =的图象关于直线1x =对称,()12g =,则( )A .()31f =-B .()31g =-C .()()13g g -=D .()()241g f =-【变式8-6】(2022·上海·统考模拟预测)己知函数()f x ()R x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()()()112220232023,,,,,x y x y x y ,则()20231i i i x y =+=∑________;(建议用时:60分钟)1.(2022秋·江西赣州·高三校联考期中)若函数(1)f x -的定义域为[2,3]-,则函数(24)f x -的定义域为( )A .1,32⎡⎤⎢⎥⎣⎦B .[8,2]-C .[1,4]-D .[6,4]-2.(2022秋·广东广州·高三华南师大附中校考阶段练习)已知函数()f x的定义域为30,,则函数()21f x +的定义域为( ) A .122⎡⎤--⎢⎥⎣⎦, B .30, C .302,⎡⎤-⎢⎥⎣⎦ D .21, 3.(2022秋·山东济宁·高三校考阶段练习)已知函数()y f x =的定义域为[]1,5-,则函数()221y f x =-的定义域为( )A.[]0,3 B .[]3.3- C .[ D .[]3,0-4.(2023·全国·高三专题练习)已知()(21)1g x f x =-+,且()g x 的定义域为(1,4],值域为[3,)∞+,设函数()f x 的定义域为A 、值域为B ,则A B =( )A .∅B .[4,7]C .[2,7]D .[2,5]2 5.(2022·全国·高三专题练习)定义在R 上的函数()f x 对一切实数x 、y 都满足()0f x ≠,且()()()f x y f x f y +=⋅,已知()f x 在()0,∞+上的值域为()0,1,则()f x 在R 上的值域是( )A .RB .()0,1C .()0,∞+D .()()0,11,+∞ 6.(2019·陕西安康·统考一模)已知偶函数()f x 对任意的x ∈R 都有(2)()(1)f x f x f +-=,且(0)8f =,则(99)(100)f f +=( )A .0B .6C .8D .167.(2022秋·江苏扬州·高三统考开学考试)已知函数()f x 的定义域为R ,且满足(2)(2)f x f x -+=-+,又(1)f x +为偶函数,若(1)1f =,则(2)(7)+=f f ( )A .0B .1C .2D .1-8.(2023·全国·高三专题练习)已知定义在R 上的函数()f x ,对任意的x ∈R ,都有()(4)f x f x =--,且()(2)f x f x =-,则下列说法正确的是( ) A .()f x 是以2为周期的偶函数 B .()f x 是以2为周期的奇函数C .()f x 是以4为周期的偶函数D .()f x 是以4为周期的奇函数9.(2022·全国·高三专题练习)(多选)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,则( ) A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞10.(2022秋·重庆开州·高三临江中学校考开学考试)(多选)已知函数()f x 的定义域是()0,∞+,且()()()f xy f x f y =+,当1x >时,()0f x <,()21f =-,则下列说法正确的是( )A .()10f =B .函数()f x 在()0,∞+上是减函数C .()()()()1111232021202220222022202132f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+++++⋅⋅⋅++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D .不等式()132f f x x ⎛⎫--≥ ⎪⎝⎭的解集为[)4,+∞ 11.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,R y ∈,恒有()()()()2f x y f x y f x f y ++-=⋅,则下列说法正确的有( ) A .()01f = B .()f x '必为奇函数C .()()00f x f +≥D .若()112f =,则()2023112n f n ==∑ 12.(2021秋·河南信阳·高三河南省信阳市第二高级中学阶段练习)若定义在R 上的函数()f x 满足:①对于任意的,x y ∈R ,都有()()()f xy f f y x =-;②()f x 为奇函数.则函数()f x 的一个解析式可以是___________.13.(2017秋·上海徐汇·高三上海市南洋模范中学校考阶段练习)设()f x 是定义域为R 的奇函数,()g x 是定义域为R 的偶函数,若函数()()f x g x +的值域为[)1,3,则函数()()f x g x -的值域为________.14.(2023·全国·高三专题练习)对任意实数,?x y ,均满足()()()222f x y f x f y ⎡⎤+=+⎣⎦且()10f ≠, 则()2001f =_______.15.(2022·全国·高三专题练习)根据下列条件,求函数的解析式: (1)已知f 1)=x +;(2)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1;(3)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1).16.(2022秋·陕西咸阳·高三武功县普集高级中学校考阶段练习)已知函数f (x )的定义域为R ,且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),且当x >0时,f (x )<0恒成立.(1)求f (0);(2)证明:函数y =f (x )是奇函数;(3)证明:函数y =f (x )是R 上的减函数.17.(2023·全国·高三专题练习)已知函数()f x 是定义在(0,)+∞上的函数,且对任意(),0,x y ∈+∞,都有()()()f xy f x f y =+,()21f =,求()()4,8f f .18.(2022秋·山东枣庄·高三滕州市第一中学新校校考阶段练习)已知定义在R 上的函数()f x 满足:对任意,x y ∈R 都有()()()f x y f x f y +=+,且当0x >时,()0f x >.(1)判断并证明()f x 的奇偶性;(2)判断函数()f x 的单调性,并证明;(3)若()()124820x x x x f k f +⋅+-->对任意[]1,2x ∈-恒成立,求实数k 的取值范围.。

相关文档
最新文档