13: 第六章 勒让德多项式
13: 第六章 勒让德多项式

(19.1.5)
称为 l 阶勒让德(legendre)方程.
同样若记 arc cos x , y(x) (x)
,则上述方程也可写为下列形式的 l 阶勒让德方程
d [(1 x2 ) dy ] l(l 1) y 0
dx
dx
(19.1.6)
19.1.2 勒让德多项式的表示
1. 勒让德多项式的级数表示
3cos
)
P4
(x)
1 8
(35x4
30x2
3)
1 64
(35 cos
4
20
cos
2
9)
P5
(x)
1 8
(63x5
70
x3
15x)
1 128
(63cos
5
35
cos
3
30
cos
)
P6
(x)
1 16
(231x6
315x4
105x 2
5)
1 512
(231cos
6
126 cos
4
105 cos
2
50)
我们知道:在自然边界条件下,勒让德方程的解 Pl (x)
为
[l]
Pl (x)
2
(1)k
k 0
2l
(2l k!(l
2k)!
xl2k
k)!(l 2k)!
(19.1.7)
式中
[
l] 2
l
l, 2 1 2
,
l 2n l 2n 1
(n 0,1,2, )
l 上式具有多项式的形式,故称 Pl (x) 为
阶勒让德多项式.勒让德多项式也称为第一类勒让德函数.
数学物理方程课件第六章勒让德多项式

2 (2n)!
2n n!
2n n! 2n n!2n 1 2n 153
2 (2n)!
2n 1!
2 2n 1
数学物理方程与特殊函数
第6章勒让德多项式
性质2 递推公式
(n 1)Pn1 (x) (2n 1)xPn (x) nPn1 (x) 0
Pn1 (x) Pn1 (x) 2n 1Pn (x)
n0
Cn
2n 1 2
1 1
x Pn (x)dx
C0
1 2
1
1 x P0 (x)dx
1 2
1
x dx
1
1 2
C2n1 0
C2n
4n 1 2
1 1
x
P2n
(x)dx
4n
1
1 0
xP2n
( x)dx
4n 1
22n 2n!
1 d2n 0 x dx2n
(x2 1)2n dx
4n 1 22n 2n !
数学物理方程与特殊函数
第6章勒让德多项式
三 勒让德多项式
y APn (x) BQn (x)
Pn
(x)
M
(1)m
m0
2n 2m!
2n m!(n m)!(n
2m)!
xn2m
Pn
1 2n n!
dn dx n
(x2
1)n
当n为偶数时M
n 2
当n为奇数时 M
n 1 2
P0 (x) 1
P1(x) x
2)(n 1)(n 4!
3)
x4
]
c 1 c0
y2
a1[ x
(n
1)(n 3!
2)
勒让德多项式递推公式证明

勒让德多项式递推公式证明以勒让德多项式是数学中一类重要的特殊函数,其递推公式是证明其性质的关键。
本文将通过介绍以勒让德多项式的定义、性质和递推公式的证明,来解释这一标题。
以勒让德多项式是数学中的一类正交多项式,它们是解决物理和工程问题中的常微分方程的重要工具。
以勒让德多项式的定义如下:$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n\right]$$其中,$n$为非负整数,$P_n(x)$表示以勒让德多项式的第$n$阶,$x$为自变量。
以勒让德多项式具有一系列重要的性质,如正交性、归一性等,这些性质使其在数学和物理学中得到广泛应用。
以勒让德多项式的递推公式是证明其性质的关键。
递推公式的形式如下:$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$下面我们来证明这个递推公式。
我们将以勒让德多项式的定义代入递推公式中,得到:$$(n+1)\left(\frac{1}{2^{n+1} (n+1)!} \frac{d^{n+1}}{dx^{n+1}} \left[(x^2 - 1)^{n+1}\right]\right) = (2n+1)x\left(\frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n\right]\right) - n\left(\frac{1}{2^{n-1} (n-1)!} \frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]\right) $$化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} \frac{d^{n+1}}{dx^{n+1}} \left[(x^2 - 1)^{n+1}\right] = \frac{2n+1}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]$$我们将上式中的$n+1$分布到第一项中,并利用导数的链式法则进行化简,得到:$$\frac{1}{2^{n+1} (n+1)!} \frac{d}{dx}\left[(2n+1)x(x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$继续化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]$$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$继续化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$通过以上推导,我们证明了以勒让德多项式的递推公式。
勒让德多项式

例1:将 x 2 在[-1,1]内展成勒让德多项式的级数形式
x 2 Cn Pn (x) n0
Cn
2n 1 2
1 1
x
2
Pn
(
x)dx
1 1
xk
Pn
( x)dx
0
n2
4 1
C2 2
1 x2 1 (3x2 -1)dx 5
1 2
4
1 3x4 x2
1
dx
5 6 2 2 45 3 3
第6章勒让德多项式
例2:将Pl(x) 在[-1,1]内展成勒让德多项式的级数形式
解:方法一
l 1
(l 1) / 2
Pl(x) CnPn (x) CnPn (x)
Cl2n1Pl2n1 ( x)
n0
n0
n0
2l 4n 1
Cl2n1
2
1
1 Pl(x)Pl2n1(x)dx
2l 4n 1 2
1 0
xd
d 2n1 dx 2 n 1
(x2
1)2n
4n 22n
1 2n
!
x
d 2 n 1 dx 2 n 1
(x2
1)2n|10源自1 0d 2 n1 dx 2 n 1
(x2
1)2n
dx
4n 22n
1 2n
!
d 1 2n1 0 dx2n1
(x2
1)2n dx
4n 22n
1 2n
!
d2n2 dx 2 n 2
0
0
0
/ 2 sin 2n1 d 2n / 2 sin 2n1 d
0
2n 1 0
1 P2n (x)dx 1
第六章 勒让德多项式

y1 ( x ) = ∑ m = 0 a2 m x 2 m ,
∞
y2 ( x ) = a1 x + a3 x 3 + a5 x 5
西安理工大学应用数学系
不妨取n为非负整数,那么对应多项式结构如何? 不妨取 为非负整数,那么对应多项式结构如何?这时 为非负整数
an+2 = an+4 =⋯= 0 ak ≠ 0, k ≤ n
( n − 1)( n + 2) a3 = − a1 3⋅ 2 ( n − 3)( n + 4) ( n − 1)( n − 3)( n + 2)( n + 4) a5 = − a3 = a1 5⋅4 5!
西安理工大学应用数学系
( n − 3)( n + 4) ( n − 1)( n − 3)( n + 2)( n + 4) a5 = − a3 = a1 5⋅4 5!
y2 ( x ) 中有
西安理工大学应用数学系
( k − n)( k + n + 1) ak + 2 = ak k = 0,1, 2,⋯ ( k + 1)( k + 2) m n( n − 2)⋯ ( n − 2 m + 2)( n + 1)( n + 3)⋯ ( n + 2 m − 1) a2 m = ( −1) a0 (2m )! m ( n − 1)( n − 3)⋯( n − 2m + 1)( n + 2)( n + 4)⋯( n + 2m ) a2 m +1 = ( −1) a1 (2m + 1)!
( k − n)( k + n + 1) ak + 2 = ak ( k + 1)( k + 2) ( k + 1)( k + 2) ak = ak + 2 k ≤ n−2 ( k − n)( k + n + 1) n( n − 1) an − 2 = − an 2(2n − 1) ( n − 2)( n − 3) n( n − 1)( n − 2)( n − 3) an − 4 = − an − 2 = an 4(2n − 3) 2 ⋅ 4(2n − 1)(2n − 3) n( n − 1)( n − 2)⋯( n − 2m + 1) m an − 2 m = ( −1) an 2 ⋅ 4⋯ ⋅ 2m (2n − 1)⋯ (2n − 2m + 1)
数学物理方程第六章 勒让德多项式

(
)
n
n n! 1 1 n 2 − = x x2 ) ( ) ( 1 ∑ n n 2 n! 2 n! m =0 (n − m )!m!
a n −6 = −
2
n
一般说来,当 n − 2m ≥ 0 时,有
M
a n − 2 m = (− 1)
m
2
n
(2n − 2m )! m!(n − m )!(n − 2m )!
(2n − 2m )! x n−2m m!(n − m )!(n − 2m )! (2n − 2m )! x n−2m m!(n − m )!(n − 2m )!
2 2 2
(6.2.1)
的解为
y = ∑ ak x k
k =0
∞
(6.2.2)
,整理得 对上式求导,得出 y ′, y ′′ 的级数表达式,连同式(6.2.2)一齐代入式(6.2.1)
∑ {(k + 1)(k + 2)a
k =0
∞
k +2
+ [n(n + 1) − k (k + 1)]a k }x k = 0
(3x (5x
2
−1
) ) ) )
3
− 3x
4
(35x (63x
− 30 x 2 + 3
5
− 70 x 3 + 15 x
它们的图形如图 6-1 所示。
为了应用上的方便,我们将 Pn ( x ) 表示为
Pn ( x ) =
n 1 dn 2 ( x − 1) n n 2 n! dx
(6.3.2)
的形式。称式(6.3.2)为勒让德多项式的罗德里格斯(Rodrigues)表达式。该公式的证明如下。 证明:用二项式定理把 x − 1 展开,有
第六章---数理方程勒让德多项式

y2
x
(n
1)(n 3!
2)
x3
(n
1)(n
3)(n 5!
2)(n
4)
x5
(2k 1 n)(2k 3 n) (1 n)(n 2) (n 2k) x2k1 (2k 1)!
6. 3 勒让德多项式
6. 3 勒让德多项式
将6.2中的递推公式写成
ak
(k 2) (k 1) (n k)(k n 1)
2)!
6. 3 勒让德多项式
an4
(2n 4)! 2!2n (n 2)!(n
4)!
一般地当 n 2k 0 时,有
6.1 勒让德方程的引出
第二个方程为
d 2
d 2
cot
d
d
n
n
1
m2
sin2
0
令 x cos ,并记 P( x) (cos )
1 x2
d2P dx 2
2x
dP dx
n
n
1
m2 1 x2
P
0
k0
(k c 2)(k c 1)ak2 [(k c)(k c 1) n(n 1)ak 0
a k0 k2
(k
(k+c)(ck)(k
cc1)a1k)xk
c2
n(n
(k+c 1)(k c 2)
0 1)
ak
勒让德多项式表示形式

勒让德多项式表示形式
勒让德多项式,又称勒让德多项式,是一种数学表达式,用来表示一个多项式的值。
它是
由法国数学家勒让德(Joseph Louis Lagrange)在1795年发明的。
勒让德多项式的表达式是一个多项式,它由一系列的系数和指数组成,每个系数和指数都
有一个特定的含义。
系数表示多项式中每一项的系数,而指数表示多项式中每一项的指数。
勒让德多项式的表达式可以用来表示一个多项式的值,它可以用来计算多项式的值,也可
以用来求解多项式的根。
它还可以用来求解多项式的导数和积分。
勒让德多项式的表达式可以用来表示一个多项式的值,它可以用来计算多项式的值,也可
以用来求解多项式的根。
它还可以用来求解多项式的导数和积分。
勒让德多项式的表达式可以用来解决许多数学问题,它可以用来解决多项式的根,也可以
用来解决多项式的导数和积分。
它还可以用来解决更复杂的数学问题,比如求解微分方程
和积分方程。
勒让德多项式的表达式是一种非常有用的数学表达式,它可以用来解决许多数学问题,比
如求解多项式的根,求解多项式的导数和积分,以及求解微分方程和积分方程。
它的表达
式简洁明了,可以让我们更容易理解多项式的值,从而更好地解决数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本篇主要内容: 勒让德多项式及球函数;贝塞 尔函数和柱函数. 本篇重点:勒让德多项式和贝塞尔函数. 本篇特点:加强了思维能力的训练, 以及计算机 仿真绘图在特殊函数中的应用.
第十九章 勒让德多项式 球函数
19.1 勒让德方程及其解的表示 19.1.1 勒让德方程 勒让德多项式
在分离变量法一章中,我们已经知道拉普拉斯方程
l l 1 1 l ! 1 2 2 l 2 l k k k l 2 k ( x 1 ) ( x ) ( 1 ) ( 1 ) x l l l ( l k )! k ! 2 l ! 2 l ! 2 k ! ( l k )! k 0 k 0
.
(19.1.8)
l 2n (即为偶数)时, 则 P 2 n ( x ) 含有常数项,即
(19.1.7)中
n
k l 2 n 的那一项,所以
( 2 n ) ! ( 2 n 1 ) ! ! n P ( 0 ) (1 ) n n (1 ) (19.1.9) 2 n 2 n ! 2 n ! ( 2 n ) ! ! 2 n ) ! ! ( 2 n ) ( 2 n 2 ) ( 2 n 4 ) 6 4 2 式中记号 ( 而 ( 2 n 1 ) ! ! ( 2 n 1 ) ( 2 n 3 ) ( 2 n 5 ) 5 3 1 因此, ( 2 n ) ! ( 2 n ) ! ! ( 2 n 1 ) ! !
P0 ( x ) 1
P ( x ) x c o s 1
1 2 1 P () x ( 3 x 1 ) ( 3 c o s 2 1 ) 2 2 4
1 3 1 P () x ( 5 x 3 x ) ( 5 c o s 3 3 c o s) 3 2 8
(19.1.1)
和球谐函数方程
2 1 Y Y 1 s i n 2 l ( l1 ) Y 0 2 s i n i n s
(19.1.2)
(19.1.2)式的解 Y ( , ) 与半径 ,或简称为球函数.
r 无关,故称为球谐函数
k
l [] 2
(19.1.7)
式中
l , l [ ] 2 l 1 2 , 2
l 2 n ( n 0 , 1 ,2 , ) l 2 n 1
上式具有多项式的形式,故称
Pl ( x )
为
l
阶勒让德多项式.勒让德多项式也称为第一类勒让德函数.
式(19.1.7)即为勒让德多项式的级数表示. 注意到 xc o s , 故可方便地得出前几个勒让德多项式:
2 1 2 u 1 u 1 u ( r ) (sin ) 0 2 2 2 2 2 r r r r sin r sin
在球坐标系下分离变量后得到欧拉型常微分方程
2 d R d R 2 r 2 2 r ll ( 1 ) R 0 d r d r
勒让德多项式的图形可通过计算机仿真(如MATLAB仿真) 得到
图 1 9 .1
计算 P l ( 0 ) ,这应当等于多项式 P l ( x ) 的常数项.
如
l
为
2n 1
则 (即为奇数)时,
P2 n 1 ( x )
只含奇 数次幂,不含常数项,所以
P ) 0 2n 1(0
,则上述方程也可写为下列形式的
l
阶勒让德方程
d y 2 d [ ( 1 x) ] ll ( 1 ) y 0 d x d x
(19.1.6)
19.1.2 勒让德多项式的表示
1. 勒让德多项式的级数表示 我们知道:在自然边界条件下,勒让德方程的解 P l ( x ) 为
( 2 l 2) k! l 2 k P ( x ) ( 1 ) x l l 2 k ! ( l k ) ! ( l 2) k! k 0
球谐函数方程进一步分离变量,令
Y (, ) () ()
得到关于
的常微分方程
2 1d m d s i n ll ( 1 ) 2 0 s i nd s i n d
(19.1.3)
称为 令
l
阶连带勒让德方程 . l
2 勒让德多项式的微分表示
l 1 d 2 l P( x ) ( x 1 ) l l l 2 l!d x
(19.1.10)
上式通常又称为勒让德多项式的罗德里格斯(Rodrigues) 表示式.
下面证明表达式(19.1.10)和(19.1.7)是相同的.
2 l ( x 1 ) 【证明】 用二项式定理把 展开
x cos 和 y (x ) (x )
把自变数从 换为
x,则方程(19.1.3)可以化为下列
形式的 l 阶连带勒让德方程
2 2 d ቤተ መጻሕፍቲ ባይዱ d y m 2 ( 1 x ) 2 2 x ll ( 1 ) y 0 (19.1.4) 2 d x d x 1 x
若所讨论的问题具有旋转轴对称性,即定解问题的解与
无关,则
m0
,即有 (19.1.5)
1 d d s i n ll ( 1 ) 0 s i n d d
称为 l 阶勒让德(legendre)方程.
同样若记
a r cc o sx , y (x ) (x )
1 4 1 2 P ( x ) ( 3 5 x 3 0 x 3 ) ( 3 5 c o s 42 0 c o s 29 ) 4 8 6 4 15 1 3 P ( x ) ( 6 37 x 01 x 5 x ) ( 6 3 c o s 5 3 5 c o s 3 3 0 c o s ) 5 8 1 2 8 16 1 4 2 P ( x ) ( 2 3 1 x 3 1 5 x 1 0 5 x 5 ) ( 2 3 1 c o s 6 1 2 6 c o s 4 1 0 5 c o s 2 5 0 ) 6 1 6 5 1 2