材料力学梁弯曲时的位移

合集下载

材料力学位移公式

材料力学位移公式

材料力学位移公式材料力学中的位移公式,那可是个相当有趣且重要的家伙!咱先来说说啥是位移。

想象一下,你有一根长长的木棍,你给它施加了各种力,然后这根木棍的位置发生了变化,这个变化量就是位移啦。

在材料力学里,位移公式就像是一把神奇的钥匙,能帮我们解开很多结构变形的谜题。

比如说,梁的弯曲变形,柱的压缩伸长等等。

就拿梁来说吧,梁在受到外力作用时,会产生弯曲。

这时候我们就要用到位移公式来计算它的变形量。

这里面有个很关键的概念,叫挠度。

挠度就是梁在弯曲时,某个点沿着垂直方向的位移。

咱们来具体讲讲位移公式是咋来的。

这可不是一拍脑袋就想出来的,而是经过了无数科学家们的努力和研究。

他们通过做实验、观察、分析数据,一点点地总结归纳出来的。

我记得有一次,在给学生们讲解这个知识点的时候,有个特别调皮的小家伙,他眨巴着大眼睛问我:“老师,这公式有啥用啊,我们为啥要学它?”我笑了笑,然后拿起教室里的一把塑料直尺,把一端固定在桌子上,另一端用手往下压。

我问同学们:“你们看,这直尺发生了啥变化?”大家都七嘴八舌地说尺子弯了。

我接着说:“那如果这尺子是一座桥,我们得知道它能承受多大的压力,变形多少才不会出危险,这时候位移公式就派上用场啦!”再说个实际的例子,像我们生活中的大楼,那可都是用各种材料搭建起来的。

如果工程师们不懂得位移公式,不了解材料在受力时的变形情况,那这大楼盖起来可能就歪歪扭扭,甚至还会有倒塌的危险。

在学习位移公式的时候,可别死记硬背哦。

得理解它背后的物理意义,搞清楚每个变量代表的是什么。

比如说,公式里的力的大小、作用点、材料的弹性模量等等,这些都会影响位移的大小。

而且,位移公式不仅仅是在理论上重要,在实际工程中那更是用处多多。

比如设计桥梁的时候,要根据车流量、载重等计算桥梁的位移,确保桥梁在使用过程中的安全和稳定;在制造机械零件的时候,也要考虑零件在工作时的位移,保证零件的精度和可靠性。

总之,材料力学位移公式虽然看起来有点复杂,但只要我们用心去学,去理解,就能发现它的魅力所在,它能帮助我们解决很多实际问题,让我们的生活变得更加安全和美好。

工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

P
B C
l 2 l 2
A
x
P 解:AC段:M ( x ) x 2 y P EIy x 2 A P 2 EIy x C x 4 l 2 P 3 EIy x Cx D 12
P
B C
l 2
x
由边界条件: x 0时,y 0
l 由对称条件: x 时,y 0 2
梁的转角方程和挠曲线方程分别为:
最大转角和最大挠度分别为:
11qa max A 1 x1 0 6 EI 19qa 4 ymax y2 x2 2 a 8EI
3
例5:图示变截面梁悬臂梁,试用积分法
求A端的挠度 P
I
2I
l
fA 解: AC段 0 x l
B
P 3 2 EIy x C2 x D2 6
由边界条件: x l时,y=0, =0
得:
C2
1 1 Pl 2 , D2 Pl 3 2 3
l x 时,yC左 =yC右 , C左 = C右 由连续条件: 2
5 3 2 C1 Pl , D1 Pl 3 16 16
由连续条件: x1 x2 a时, y1 y2 , y1 y2
由边界条件: x1 0时, y1 0
0 x 2 a 时 , y 由对称条件: 2 2
得 D1 0
C1 C2 得 D1 D2
11 3 得 C2 qa 6
qa 1 (11a 2 3 x12 ) 0 x1 a 6 EI q 2 [3ax2 2 ( x2 a)3 11a 3 a x2 2a 6 EI qa y1 (11a 2 x1 x13 ) 0 x1 a 6 EI q y2 [4ax23 ( x2 a) 4 44a 3 x2 ] a x2 2a 24 EI

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)
5 / 41
圣才电子书

ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移

实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。

梁位移计算公式

梁位移计算公式

梁位移计算公式梁的位移计算公式基于梁的受力平衡和材料力学的基本原理。

在这里,我们将讨论一维梁的位移计算方法,即假设梁只在一个平面内受力,并且假设梁的截面尺寸和材料性质均为均匀的。

我们需要确定梁的边界条件。

常见的边界条件有两种:固定边界条件和自由边界条件。

在固定边界条件下,梁的两端被固定,不允许有任何位移和旋转;而在自由边界条件下,梁的两端可以自由位移。

接下来,我们需要确定梁的受力情况。

通常,梁在两端受到外部荷载作用,这些荷载可以是集中力、均布力或者集中力和均布力的组合。

此外,梁还可能受到自重的影响。

在计算位移时,我们需要将这些荷载转化为梁上的内力分布。

针对不同的受力情况,我们可以使用不同的位移计算方法。

在本文中,我们将重点介绍三种常见的位移计算方法:拉梁法、剪梁法和挠梁法。

拉梁法是一种基于受力平衡的位移计算方法。

它假设梁的变形是由拉伸和压缩引起的,而不考虑剪切变形。

根据拉梁法,我们可以通过梁上任意一点的变形位移和受力来计算梁的位移。

剪梁法是一种基于受力平衡和材料切变变形的位移计算方法。

它假设梁的变形是由剪切引起的,并考虑了横截面的形状和材料的性质。

根据剪梁法,我们可以通过梁上任意一点的切变位移和受力来计算梁的位移。

挠梁法是一种基于弯曲变形的位移计算方法。

它假设梁的变形是由弯曲引起的,并考虑了横截面的形状和材料的性质。

根据挠梁法,我们可以通过梁上任意一点的弯曲位移和受力来计算梁的位移。

在实际应用中,我们可以将以上三种方法结合起来,综合考虑拉伸、压缩、剪切和弯曲等因素,来计算梁的位移。

此外,我们还可以使用计算机辅助工具,如有限元分析软件,来进行更精确和复杂的梁位移计算。

需要注意的是,梁的位移计算是一个复杂的过程,需要综合考虑各种因素和假设。

在实际工程中,我们应该根据具体情况选择适当的位移计算方法,并进行合理的假设和简化,以确保计算结果的准确性和可靠性。

通过以上的讨论,我们可以看到,梁的位移计算是一个重要且复杂的问题。

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移
第五章 梁弯曲时的位移
工程实例
7-1
工程实例
工程实例
5-1 梁的位移——挠度及转角
建立坐标系,oxy为梁对称面,外力作用在对 称面内。所以,挠曲线为o xy面内的平面曲线。
挠度
y 向下为正。
y
x
y
转角
x
挠曲线
挠曲线方程:
7-2
w= f (x)
挠度
略去剪力的影响,则平面假设成立,发
y
5.2 积分法求梁的挠度和转角
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解 1)由梁的整体平衡分析可得:
2)写出x截面的弯矩方程
FAx 0, FAy F (), M A Fl (
)
A
x
l
yB
F B
B
x
M ( x ) F (l x ) F ( x l )
A
FAx 0, FAy
Fb Fa , FBy l l
2)弯矩方程
FAy x1
ymax
x2
FBy
AC 段:
M x1 FAy x1 Fb x1 ,0 x1 a l
y
a
b
CB 段:
Fb M x2 FAy x2 F ( x2 a ) x2 F ( x2 a ), l
目录
a x2 l
5.2 积分法求梁的挠度和转角
A d 2 w1 Fb EI M ( x1 ) x1 2 dx1 l FAy x1 dw1 Fb 2 EI EI ( x1 ) x1 C1 x2 dx1 2l Fb 3 a EIw1 x C1 x1 D1 6l a x2 l CB 段: y d 2 w2 Fb EI M ( x2 ) x2 F ( x2 a) 2 dx2 l dw Fb 2 F EI 2 EI ( x2 ) x 2 ( x2 a ) 2 C 2 dx2 2l 2 Fb 3 F EIw2 x 2 ( x2 a)3 C2 x2 D2 6l 6

第五章 梁弯曲时的位移

第五章  梁弯曲时的位移
利用边界条件确定上面二式中的积分常数C 利用边界条件确定上面二式中的积分常数 1,C2,即可得 梁的挠度方程和转角方程
李田军材料力学课件 10 第五章 梁弯曲时的位移
积分法求解梁位移的思路: 积分法求解梁位移的思路: 建立合适的坐标系; ① 建立合适的坐标系; 求弯矩方程M(x) ; ② 求弯矩方程 ③ 建立近似微分方程: EIw′′ = M ( x ) 建立近似微分方程: 根据本书的规定坐标系,取负号进行分析. 根据本书的规定坐标系,取负号进行分析. ④ 积分求
李田军材料力学课件 9 第五章 梁弯曲时的位移
积分法求梁的变形 对于等刚度梁, 对于等刚度梁,梁挠曲线的二阶微分方程可写为
Ely'' = M(x)
对此方程连续积分两次,可得 对此方程连续积分两次,
Ely' (x) = ∫ M(x)dx + c1 Ely(x) = ∫ M(x)dxdx + c1x + c2
最大转角,显然在支座处
Pab θA =θ (0) = (L + b) 6EIz Pab θB =θ (L) = (L + a) 6EI 6EIz
P a L y
C
b B x
a >b a <b
θmax =θB θmax =θA
A
从A→B, θ + → 中间必经过0
李田军材料力学课件
19
第五章
梁弯曲时的位移
第五章 梁弯曲时的位移
梁的位移——挠度及转角 §5.1 梁的位移 挠度及转角 §5.2 梁的挠曲线近似微分方程及其积分 §5.3 按叠加原理计算梁的挠度和转角 *§5.4 梁挠曲线的初参数方程 § §5.5 梁的刚度校核.提高梁的刚度的措施 §5.6 梁内的弯曲应变能

梁的最大位移计算公式

梁的最大位移计算公式

梁的最大位移计算公式梁的最大位移计算公式是用于计算梁在受力作用下发生的弯曲位移的公式。

梁是指在两个支点之间受力作用的一种结构。

梁的最大位移是指梁在受力作用下最大弯曲的位移值。

梁的位移计算涉及到材料力学和结构力学的知识,其中梁的形状、材料特性、受力情况等都会对最大位移的计算产生影响。

在计算梁的最大位移时,一般可以使用梁的弯曲理论来进行计算。

梁的弯曲理论可以通过假设梁是一根弯曲曲线的理论来进行推导。

根据弯曲理论,可以得到梁的最大位移计算公式。

δmax = (5 * Pl^4) / (384 * E * I)其中,δmax表示梁的最大位移;P表示梁上的受力值;l表示梁的长度;E表示梁所采用的材料的弹性模量;I表示梁的截面惯性矩。

这个公式是根据梁的弯曲理论推导得到的,可以用于计算梁在受力作用下的最大位移。

在使用这个公式进行计算时,需要知道梁的受力情况、几何形状和材料特性。

其中,受力情况包括梁上所受到的力和力的位置;几何形状包括梁的长度和截面形状;材料特性包括梁所采用的材料的弹性模量和截面惯性矩。

需要注意的是,这个公式是基于一些简化假设和梁的边界条件推导得到的,只适用于一些特定的情况。

在实际应用中,可能需要考虑更多的因素,如梁的支点、梁的侧向刚度、梁的动态响应等。

因此,在具体应用中需要根据实际情况,结合可能的简化假设和合适的分析方法进行位移计算。

总之,梁的最大位移计算公式用于计算梁在受力作用下的最大弯曲位移,其中涉及到梁的几何形状、受力情况和所采用的材料特性。

使用这个公式进行计算时,需要根据实际情况进行合理的简化和假设,并结合适当的分析方法来进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、积分应遍及全梁。在梁的弯矩方程或弯曲刚度不连续处,其挠曲线的近似 微分方程应分段列出,并相应地分段积分。
3、积分常数由位移边界条件确定。
积分常数C1、C2由边界条件确定
X
x0 xL
0 0
X
y
x0
0
0
y
例题 5.1
求图所示悬臂梁A端的挠度与转角。
F
x
A A
A
l
M x Fx
B
xddEExຫໍສະໝຸດ IzzddxFx22MEI(CFZx1x) ddxxCC11
§2 梁的挠曲线近似微分方程及积分
1 M (x)
EI Z
1
d 2
dx 2
1
(
d
dx
)2
3
d 2
dx 2
M (x)
1
(
d
dx
)
2
3
EI Z
d 2
dx 2
M (x) EI Z
d 2
M (x)
dx2 EIZ
o
xo
x
M
M
d2y dx2
0
y
d 2 M (x)
dx 2
EI Z
M
M
d2y dx2
F
A
B
a
y
q
EI z
L
Cx
挠曲线方程应分两段AB,BC.
共有四个积分常数
边界条件
xa
xaL
连续条件
B 0 C 0
xa
B1 B2 B1 B2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
挠曲线方程应分两段AB,BC.
xx2 1FFbx
2L
x
aF2 xC2
a
EI z1
Fb 6L
x3
C1x
D1
x 0D1 00 0 x L L 0
EI z2
Fb 6L
x3
1 6
Fx
a3
C2 x
D2
x a 1Da1 D22a 1aC1C22a
6FEELbI2FIzaZLb32Ca1L3C1aCC2F1Lb2 D6FxL1b26FL2FLb3L12b6FLFa16Lb22Fax3bL122aF162aFa3aFaCba22L6L23LC0bC2 22a D2
Fb L2 b2 6EIz L
Fab L b 6EIz L
最大挠度 0 令x=a
B
x
EI z1
Fb 2L
x2
Fb
L2 6L
b2
Fa L
EI z 2
EI z1
Fb 6L
x3
Fb
L2 6L
b2
x
Fb x2 1 Fx a2 Fb L2 b2
2L 2
6L
EIz2
Fb 6L
L2 b2 3
一般认为梁的最大挠度就发生在跨中
转角为零的点在AC段
b1L 2
b0
x0
1 2
L
x0
3 L 0.577L 3
例题 5.4 A
画出挠曲线大致形状。图中C为中间铰。
F
两根梁由中间铰连接,挠曲线在 中间铰处,挠度连续,但转角不 连续。
1 2 1 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
共有四个积分常数
q
边界条件
A
Cx
B
EI z
k
x 0 A 0
l2
l2
xL
C
Fc k
qL 8k
y
连续条件
x L 2
B1 B2 B1 B2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
F
EI z1
aB
L
Me
Cx
共有四个积分常数 边界条件
x 0 A 0
0
y
梁挠曲线近似微分方程
d 2
dx 2
M (x) EI Z
A
C
Bx
C y
d
dx
B
M (x) EI Z
dx
C1
tan d
dx
M ( x) 在小变形情况下,任一截面的转角等于挠曲线 EI Z d在该x截•面d处x的切线C 斜率1。x C2
通过积分求弯曲位移的特征:
1、适用于细长梁在线弹性范围内、小变形情况下的对称弯曲。
y
边界条件
x L B 0 x L B 0
x0
A
FL2 2EI z
CC1 23F2FEELIL3Iz2z
A
FL3 3EI z
EEIIzz FF2x6x2 3dx CC11xxCC22
Fx2 FL2
2EIz 2EIz
Fx3 FL2 x FL3
6EIz 2EIz 3EIz
例题 5.2
C
q
EA
L1
x
B EI Z
L
全梁仅一个挠曲线方程
共有两个积分常数
边界条件
x0
A 0
xL
B
LBC
qLL1 2EA
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
挠曲线方程应分两段AB,BC.
A
EI z
求图所示悬臂梁B端的挠度与转角。
A
x
l
y
边界条件
x0 0
x0 0
xL
B
qL3 6EI z
M x 1 qL x2
B
2
x
EI z
M
x
1 2
q
L
x
2
EI z
EI z
1 6
qL
x3
C1
EI z
1 24
qL
x4
C1x
C2
C1
qL3 6EI z
qL3 C2 24EIz
B
qL4 8EI z
q L x3 L3 6EI z
q L x4 4L3x L4 24 EI z
例题 5.3 求图示简支梁在集中荷载F的作用下(F力在右半跨)的最大挠度。
a A
F b
B
M1x x
Fb L
x
0 xa
C
Fb
l
L
x
y
x
Fa
M 2x
Fb L
x
F x
a
axL
L
AC段
EEIIzz11M2F1Lbxx 2
CF1b L
x
CB段
EI
zz222FMLb2
EIz2
Fb 6L
x3
1 6
Fx
a3
Fb
L2 6L
b2
x
EIz1
Fb 2L
x2
Fb
L2 6L
b2
EIz1
Fb 6L
x3
Fb
L2 6L
b2
x
例题 5.3 求图示简支梁在集中荷载F的作用下(F力在右半跨)的最大挠度。
a A
Fb L
x
F b
C
l
y
x
最大转角 0 M x 0
A
EI z2
x
A
L2
B
L2
C
y
挠曲线方程应分两段AB,BC.
共有四个积分常数 边界条件
x0
连续条件
A 0 A 0
x L 2
B1 B2 B1 B2
例题 5.5
A
y
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
x3
1 6
Fx
a3
Fb
L2 b2 6L
x
x 0 x L
EI z B
2FLbB
L2F1aFbLL aa2
2 6EIz L
Fb
L2 b2 6L
力靠近哪个支座,哪边的转角最大。
EIzC
Fb 2L
a2
Fb
L2 b2 6L
C
Faba b
3L
Fb 2L
x0 2
Fb
L2 6L
b2
0
x0
相关文档
最新文档