一节课微积分入门
零基础微积分入门基本教程

零基础微积分入门基本教程1 前言微积分是数学中的一门重要学科,可以用来研究变化率和极值等问题。
在高等数学中,微积分是必修课程。
然而,对于零基础的学生来说,学习微积分可能会显得困难和枯燥。
因此,本文将提供一个基础的入门教程,以帮助零基础的学生理解微积分的概念和应用。
2 微积分的定义微积分主要分为微分和积分两个部分。
微分可以用来研究函数的变化率,积分可以用来计算曲线下面的面积。
具体来说,微积分可以用以下公式表示:微分:dy/dx=f’(x)积分:∫f(x)dx其中,f’(x)表示函数f(x)在x点的导数,∫f(x)dx表示f(x)在积分区间上的面积或整体。
3 基础概念微积分中有许多基础概念,其中包括:导数:导数表示函数在某一点处的变化率,是微积分中的重要概念之一。
极值:极值是函数的最大值或最小值,可以通过导数的概念来计算。
积分:积分可以用来计算函数在一定区间上的面积,也可以用来计算反常积分和定积分等。
4 应用微积分在实际中有许多应用,其中包括:物理:微积分在物理学中是必不可少的,可以用来研究物体在空间中的运动轨迹。
工程:微积分在工程学中也可以发挥重要的作用,可以用来研究建筑物的结构和稳定性等问题。
经济学:微积分在经济学中也有许多应用,可以用来研究经济数据的变化规律和趋势。
5 结论微积分是一门重要的数学学科,可以用来研究变化率和极值等问题。
然而,对于零基础的学生来说,学习微积分可能会显得困难和枯燥。
因此,建议学生在学习微积分之前,要先掌握一些基础概念和方法,逐步提高自己的学习能力。
同时,学生应该注重理论的学习和实践的应用,通过多方面的学习和实践,来提高自己的微积分水平。
大一微积分基础教程知识点

大一微积分基础教程知识点微积分是数学中的一个重要分支,也是大学数学课程的基础内容之一。
在大一的微积分基础教程中,有一些重要的知识点需要我们掌握和理解。
本文将介绍大一微积分基础教程的几个主要知识点。
一、函数与极限在微积分中,函数是非常重要的概念。
我们通常用符号f(x)表示函数,其中x是自变量,f(x)是因变量。
函数可以有不同的形式,比如多项式函数、三角函数等。
我们需要掌握如何求函数的定义域、值域以及函数的性质。
极限是微积分中的基础概念,它描述了函数在某一点附近的趋势。
我们需要理解极限的定义,并能够计算一些基本的极限值。
同时,还需要了解无穷大与无穷小的概念,以及它们与函数极限之间的关系。
二、导数与微分导数是微积分中的重要概念,它描述了函数在某一点的变化率。
我们需要学习如何计算函数的导数,并可以利用导数来研究函数的性质。
同时,还需要了解导数的几何意义和物理意义,以及导数的基本运算法则。
微分是导数的一个重要应用,它用于描述函数在某一点附近的近似变化情况。
我们需要了解微分的定义,并能够计算一些简单的微分。
同时,还需要掌握微分的几何意义和物理意义,以及微分的基本性质。
三、积分与定积分积分是微积分中的重要概念,它是导数的逆运算。
我们需要学习如何计算函数的积分,并可以利用积分来解决一些实际问题。
同时,还需要了解积分的几何意义和物理意义,以及积分的基本运算法则。
定积分是积分的一种特殊形式,它描述了函数在某一区间上的累积效应。
我们需要了解定积分的定义,并能够计算一些简单的定积分。
同时,还需要掌握定积分的几何意义和物理意义,以及定积分的性质和应用。
四、微分方程微分方程是微积分的一个重要应用领域,它描述了包含导数的方程。
我们需要学习如何解微分方程,并可以利用微分方程来分析和预测一些实际问题。
同时,还需要了解一阶和二阶微分方程的基本解法,并可以应用到具体问题中去。
通过学习以上几个知识点,我们可以建立起微积分的基础框架,为进一步学习和研究微积分的高级内容奠定坚实的基础。
高等数学微积分入门教材

高等数学微积分入门教材微积分是数学的一门重要分支,它是数学分析的基础,也是科学研究、工程技术和社会发展中不可或缺的一部分。
无论是理工科的学生还是热爱数学的人士,学习微积分都是必不可少的。
为了帮助初学者顺利入门微积分,本教材将详细介绍微积分的基本概念、原理和常用方法。
通过系统和逻辑的讲解,旨在帮助读者理解微积分的精髓,掌握其基本技巧和应用。
第一章微分学1.1 极限与导数1.1.1 函数极限的概念1.1.2 极限的性质与运算1.1.3 导数的定义与计算1.1.4 导数的几何意义1.2 微分中值定理与应用1.2.1 极值与最值1.2.2 函数的单调性与曲线的凹凸性1.2.3 微分中值定理与罗尔定理1.2.4 应用:函数图像的分析与优化1.3 高阶导数与微分形式1.3.1 高阶导数的定义与计算1.3.2 微分形式与微分近似1.3.3 泰勒公式及其应用第二章积分学2.1 不定积分与定积分2.1.1 不定积分的定义与性质2.1.2 不定积分的计算方法2.1.3 定积分的概念与性质2.1.4 定积分的计算方法2.2 定积分应用2.2.1 曲线长度与平面曲线的曲率2.2.2 旋转体的体积与曲面积分2.2.3 牛顿-莱布尼茨公式与面积计算2.3 定积分与微分方程2.3.1 微分方程的基本概念2.3.2 可分离变量的微分方程2.3.3 齐次线性微分方程2.3.4 非齐次线性微分方程的特解第三章微积分应用3.1 曲线的绘制与切线3.1.1 曲线的参数方程与极坐标方程3.1.2 曲线的绘制与参数化3.1.3 曲线的切线与法线3.1.4 弧长与曲率的计算3.2 极值问题与最优化3.2.1 函数极值的判定3.2.2 无约束极值问题3.2.3 约束极值问题与拉格朗日乘数法3.2.4 优化问题的应用3.3 微分方程的应用3.3.1 一阶线性微分方程3.3.2 高阶线性微分方程与常系数齐次方程3.3.3 非齐次线性微分方程的解法3.3.4 微分方程的应用领域通过以上三章的学习,读者将对微积分的基本理论、方法和应用有一个全面的了解。
微积分入门(精华)

数是(x)ddxax f(t)dt f(x)
y
证 (x x)a x xf(t)dt
(axb)
( x x ) ( x )
(x)
x x
x
a
f(t)d t f(t)dt a
o
a
x xxb x
30
a xf( t) d t x x xf( t) d a txf( t) dt
0
0
解 令 f(x)exx, x[2,0]
f(x ) 0 , 02(exx)dx 0,
0 exdx
0
xdx,
2
2
于是
2exdx
2
xdx.
0
0
可以直接作出答案
21
性质5的推论:
(1)如 果 在 区 间 [ a , b ] 上 f ( x ) g ( x ) ,
则 a b f( x ) d x a b g ( x ) d .x ( a b )
n
n
n
f (i )xi i2xi xi2xi ,
i1
i1
i 1
14
n
i1
i n
2
1 n
1
n3
n
i2
i 1
n 13n(n1)62 (n1)
161n12n1, x0n
1 x2dx 0
n
lim 0 i1
i2xi
lim 11121 1 . n6 n n 3
15
五、定积分 的性质
16
A if(i) xi
4
曲边梯形面积的近似值为
n
Af(i )xi
i1
当 分 割 无 限 加 细 ,记 小 区 间 的 最 大 长 度 或 者 (x)
微积分第一章第一节课件

微积分作为数学的基础学科,对于理解数学的高级概念和解决复杂问题具有重要意义。同时,它在物理学、工程 学、经济学等多个领域都有广泛的应用。
教学目标
知识与技能
情感态度与价值观
通过本课程的学习,学生应掌握微积 分的基本概念、基本理论和基本方法, 具备运用微积分知识解决实际问题的 能力。
培养学生严谨的数学思维习惯,激发 学生对数学的兴趣和热爱,树立正确 的数学价值观。
广义积分与含参变量积分
广义积分
广义积分是对定积分的扩展,包括无穷 限广义积分和无界函数广义积分两种类 型。广义积分的计算需要借助极限的思 想和方法。
VS
含参变量积分
含参变量积分是一种特殊的定积分,其被 积函数中含有参数。含参变量积分的计算 方法和性质与定积分类似,但需要注意参 数的影响。同时,含参变量积分在实际问 题中有着广泛的应用,如概率论、统计学 等领域。
定积分性质
定积分具有线性性、可加性、保号性、 绝对值不等式、积分中值定理等基本 性质。
不定积分概念及计算法则
不定积分概念
不定积分是微分学的逆运算,其结果是一个函数族。不定积分的定义包括被积函数、积分变量和常数 C等要素。
不定积分计算法则
不定积分的计算法则包括基本积分公式、换元积分法、分部积分法等。其中,基本积分公式是计算不 定积分的基础,换元积分法和分部积分法是常用的计算技巧。
微积分在实际问题中的应用
探讨微积分在物理、经济、工程等领域的实际应 用,如求解最值问题、分析物理现象等。
3
微积分的数值计算方法
研究微积分的数值计算方法,如有限差分法、有 限元法等,为实际应用提供有效的数值求解工具。
课后作业布置
01
02
微积分初步教案

微积分初步教案教学目标:通过本课的学习,学生将能够理解微积分的基本概念和原理,掌握微分和积分的计算方法,并能够应用微积分解决一些实际问题。
教学重点:微积分的基本概念、微分和积分的计算方法。
教学难点:微积分的应用问题。
教学准备:1. PowerPoint演示文稿2. 白板、彩色粉笔3. 教材:《微积分导论》教学过程:一、导入(5分钟)教师可以通过提问和展示相关图片,引起学生对微积分的兴趣,如:“你们是否听说过微积分?”“微积分和数学中的其他分支有什么不同?”等。
二、概念解释(15分钟)1. 定义微积分:微积分是研究变化率和积分的数学分支。
2. 引入导数和微分:导数是用来描述函数变化率的概念,通常表示为f'(x),微分是导数的微小变化量,通常表示为df。
3. 引入积分:积分是导数的逆运算,可以表示曲线下的面积或函数的累积变化量。
三、微分计算(25分钟)1. 导数的计算方法:通过极限的方法或差商的方法来计算导数,掌握常见函数的导数计算规则。
- 基本函数的导数计算- 常数乘以函数的导数- 函数加减法的导数- 乘法法则和除法法则- 复合函数的导数计算2. 微分的计算方法:利用导数计算微分,掌握微分的基本性质。
- 微分的线性性质- 微分的乘法性质- 微分的除法性质四、积分计算(30分钟)1. 不定积分:掌握基本函数的不定积分计算方法。
- 幂函数的不定积分- 三角函数的不定积分- 指数函数和对数函数的不定积分- 一些特殊函数的不定积分2. 定积分:掌握定积分计算的方法和性质。
- 利用定积分计算曲线下的面积- 定积分的线性性质- 定积分的换元法和分部积分法五、应用问题(20分钟)1. 利用微积分解决实际问题:- 长度、面积和体积的计算- 静态和动态问题的模型建立与求解- 最值和优化问题的求解2. 简单案例分析和解决方法讲解。
六、课堂练习与总结(20分钟)1. 请学生完成一些微积分的计算题目,巩固所学知识。
微积分的入门指南

微积分的入门指南微积分,作为数学中的一个重要分支,是研究变化和积累过程的数学工具。
它在物理学、工程学、经济学等领域都有广泛的应用。
对于初学者来说,掌握微积分的基本概念和技巧是非常重要的。
本文将为您提供微积分的入门指南。
一、微积分的基本概念微积分的核心概念包括导数和积分。
导数描述了函数在某一点上的变化率,可以用来求解函数的切线和极值,是微积分的基础。
积分则是导数的逆运算,表示变化率在一段区间上的累积结果,常用于计算曲线下的面积和求解定积分。
二、导数的计算求解导数时,可以使用求导法则和求导公式。
常见的求导法则包括常数法则、幂法则、和差法则、乘法法则和除法法则。
求导公式则是通过对特定函数进行求导得到的结果,如指数函数、对数函数、三角函数等。
掌握这些法则和公式,可以帮助我们更轻松地计算导数。
三、导数的应用导数在物理学和工程学中有着广泛的应用。
例如,通过对物体的位移函数求导,可以得到物体的速度函数;再对速度函数求导,可以得到物体的加速度函数。
这种通过导数来描述物体运动规律的方法,被称为微分学。
除此之外,导数还可以用于求解函数的最大值和最小值,优化问题等。
四、积分的计算用积分来求解曲线下的面积是积分的一项重要应用。
当我们知道函数在某一区间上的变化率时,可以通过积分来求解函数在该区间上的累积结果。
计算积分时,可以使用不定积分和定积分。
不定积分是对函数求解原函数的过程,而定积分则是在指定区间上计算函数与坐标轴所围成的面积。
五、微积分的基本定理微积分的基本定理包括牛顿-莱布尼茨公式和微分方程的求解。
牛顿-莱布尼茨公式描述了定积分和不定积分的关系,将积分与导数联系在了一起。
微分方程则是描述函数和它的导数之间关系的方程,是自然科学和工程学中广泛应用的数学工具。
六、数列和级数微积分还涉及到数列和级数的概念。
数列是由一系列有序的数按一定规律排列而成的集合,级数则是数列的和。
掌握数列和级数的性质和求解方法,可以帮助我们研究数学序列的趋势以及数学序列的收敛性质。
《微积分入门》课件

隐函数求导法与全微分与微分近
2
掌握它们在数学和物理中的应用。
似
了解隐函数求导法、全微分和微分近似
的方法,能够应用于解决多元函数问题。
3
多元函数的积分及其应用
研究多元函数的积分和应用,掌握多元
函数积分的求解技巧。
麦克劳林展开与泰勒展开
4
深入了解麦克劳林展开和泰勒展开,了 解它们在数学和物理中的应用。
结语:微积分的学习方法与技 巧
线性化与近似计算
学习线性化与近似计算的方法,能够利用导数进 行近似计算。
导数的运算法则
掌握导数的运算法则,能够求解各种导数问题。
高阶导数及其应用
研究高阶导数的性质和应用,掌握高阶导数在数 学和物理中的重要性。
积分与微积分基本定理
积分的概念
了解积分的概念和意义,学习积分在微积分中的应 用。
不定积分与基本积分公式
学习微积分是一项具有挑战的任务,需要加强理论学习,并运用到实际问题 中。掌握好学习方法和技巧,能够事半功倍地掌握微积分知识。
微积分的应用前景与展望
微积分的应用范围广泛,几乎涉及到所有科学和工程领域。未来,微积分将继续发展,推动科技进步,改变我 们的生活。 **谢谢收听!**
极限的运算法则
2
积分中的重要性。
掌握极限运算法则,能够灵活应用于解
决各种数学问题。
3
连续的概念与判定方法
研究连续函数的概念和判定方法,了解
中值定理及其应用
4
连续性在数学中的意义。
深入了解中值定理的原理和应用,掌握 使用中值定理解决实际问题的方法。
导数与微分
导数的定义与性质
学习导数的定义与性质,理解导数在几何和物理 中的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一节课微积分入门
“一节课微积分入门”原本是笔者制作的一个教学视频,在酷6网上点击率一
度突破12万(可惜现在删了,但土豆网上还有),而大学教授的同类视频,点击率最高才2千多。
笔者身边好几个学不懂微积分的人都在里面受益。
这是笔者独创的一套最简捷,清晰,易懂的教学方法,从零开始,在短短的
40分钟内,让大家理解:微积分最基本的原理,牛莱公式的本质含义和基本求导方法。
希望能在微积分教学的历史长河中留下一朵小小的浪花。
考虑到很多朋友不喜欢看教学视频,而更喜欢阅读文档,笔者把最基本的教
学思路整理下来,供大家学习和参考,(看不懂的可以网上搜视频做为辅助学习)
目录:
1巧妙的叠加方法
2问题的提出:求y=x2曲线围成的面积
3切割法求出近似面积
4寻找“远房表叔”来帮忙
5对“远房表叔”进行切割和叠加
6“表叔”和“表侄”的一一对应。
7一一对应关系式的提出
8一一对应关系式的进一步表达:牛莱公式
9一一对应关系式的变形:导函数的定义
10求导的2个例题
11导函数的意义
1巧妙的叠加方法
方法一非常麻烦,要测1千次,再加1千次,方法二就简单多了,因为反正不需要知道每个小棍子的长度,只测一次就够了。
这就是“叠加法”,在后面的微积分学习中,我们会非常巧妙的用到“叠加法”。
2 问题的提出:求y=x2曲线围成的面积
这种曲线围成的面积,显然用初等数学无法解决,这就需要我们巧妙构思,另辟蹊径了。
3 切割法求出近似面积
我们把横坐标切成1000份,然后切割出999个小长方形,每个小长方形的宽都是1/1000,小长方形的长则是该点对应的函数值,这样每个小长方形的面积都可以求出来了。
阴影部分面积≈999个小长方形面积的总和。
但这种方法,要计算近1千次,再相加近1千次,太麻烦了,而且还只能得到近似值,显然我们不是我们想要的方法。
我们想到了例题中“叠加法”,可是怎么用“叠加法”呢?
4寻找“远房表叔”来帮忙
这时,我们要请一位“大神”登场了,自己解决不了,请“远房表叔”来帮忙。
我们为什么说y=1/3 x3 是y=x2的远房表叔呢?这位表叔又能帮什么忙呢?我们拭目以待。
为了区别,原来的“表侄“标记为P(x)= x2,,”表叔“标记为
Q(x)= 1/3 x3
5对“远房表叔”进行切割和叠加
在这里,为了和“表侄”一一对应,“表叔”同样把横坐标切成1000份,但不再切割成小长方形,而是像上楼梯一样,切成1000根红色的小木棍。
其中第一根小木棍因为太短而忽略掉,余下的999根小木棍(L1至L999),放到右边去叠加,首尾相连构成一条直线(即前面的例题中的“叠加法”),正好是当x=1时,Q(x)= 1/3 x3的函数值。
所以,L 总长度≈1/3,
6 “表叔”和“表侄”的一一对应
现在我们进一步分析这个图形,先来计算一个例子:第700根小木
棍的长度。
最后得到的三项中,第一项是,第二项是
比第一项要小近千倍,第三项比第一项要小近百万倍,所以都可以忽略,只保留第一项。
而第一项恰恰就是“表侄”的第700个小长方形的面积。
原来他们果然有关联,是亲戚关系。
这里要强调的是,只有Q(x)= 1/3 x3才能和P(x)= x2进行一一对应。
别的函数即使切成1000份,也无法和P(x)= x2进行一一对应,不信大家自己可以去计算,所以“表叔”是不能乱认的。
因为存在着一一对应关系, 999个小长方形的求和,就可以转化为999根小木棍的求和了。
而999根小木棍的求和,我们刚才已经用“叠加法”算出来了,是1/3。
除了切成1000份外,表叔和表侄,还可以同时切成10万份,同时切成10亿份,那么前面的忽略项更加可以忽略了,表叔和表侄更加实现了一一对应。
当切割成无数份后,表叔和表侄完全的一一对应,我们可以得到
确定的答案:
这个曲线围成的面积问题彻底解决。
7 一一对应关系式的提出
现在,我们把这个例子理论化和公式化,以寻找普遍的规律。
在上题中,第700个小长方形和第700根小木棍一一对应,用x替代x700,用△x代替1/1000,我们就可以得到一一对应关系式了。
△x表示微小增量,趋近于零。
两个函数之间,如果存在一一对应关系式,那么就构成表叔表侄
的亲戚关系,前者称做导函数,后者称为原函数。
(看不懂的话,可以参考教学视频)
8一一对应关系式的进一步表达:牛莱公式
将一一对应关系式,换种写法,用dx来替代△x,改写成
,再引入积分符号(表示叠加),即为牛莱公式。
可以初步理解为“小面积的叠加”,转化为“小线段的叠加”,再转化为“一次性算出”。
9一一对应关系式的变形:导函数的定义
将一一对应关系式中的△x移到方程的右边,即可初步得到导函数的定义式。
根据导函数的定义式,就可以求出一些简单的导函数了。
12 求导函数的2个例题
从这个例题,更加可以清晰的看到,为什么Q(x)= 1/3 x3能和P(x)= x2进行一一对应,不用再做复杂的切割图形了。
在这个例题中,可以看到求导时,遇到求不下去的情况,需要一些技巧和方法。
这里就利用了一个极限。
X很小时,SinX≈X
13 导函数的意义
1, 导函数可以理解为原函数点切线的斜率。
这个大家自己分析。
2 重点:导函数可以理解为原函数随自变量(x)的变化率。
为了理解这一点,我们以非常熟悉的速度定义式为例。
可以看到,速度定义式和导函数定义式其实是一样的,所以,速度是位移对时间的导函数。
3 同样是一秒,速度慢的车能走10米位移,快点的车能走 20米位移,更快的能走30米位移,可见速度(导函数)反应了位移(原函数)随时间(自变量)的变化率。