已知实际距离和比例尺求图上距离

合集下载

求比例尺的步骤

求比例尺的步骤

求比例尺的步骤
求比例尺的步骤如下:
1.确定实际距离:首先了解图上的距离和实际距离之间的关系。

例如,图上的距离为2cm,实际距离为6km。

2.确定比例关系:根据实际距离和图上距离的关系,判断比例尺。

例如,图上距离为2cm,实际距离为6km,那么比例尺为1:300000。

3.设定比例尺:根据比例关系,设定比例尺。

例如,比例尺为1:300000。

4.标注比例尺:在图纸上标注比例尺,以便于其他人了解图纸上距离与实际距离的关系。

5.验证比例尺:通过实际测量或已知的实际距离与图上距离的比较,验证比例尺的正确性。

需要注意的是,在求解比例尺时,要确保分母不为零,并根据实际应用场景选择合适的比例尺。

在解比例方程时,可以采用将比例式化简为一般式的方法,先同化分母,后约分,最后求解。

在不等式的情况下,要注意约分的正负值要相应调整大于小于号。

比例尺的应用(必考类型题强化练习)含答案

比例尺的应用(必考类型题强化练习)含答案

比例尺的应用(必考类型题强化练习)一、单选题(共12题;共24分)第一类:给出图上距离和实际距离,求比例尺原则:单位统一化成厘米,然后用图上距离:实际距离1.(2分)篮球场长30米,画在图纸上是6厘米,选用了()的比例尺。

A.1:5000B.1:500C.1:50D.1:52.(2分)一个零件长5mm,画在一幅图纸上长是10cm。

这幅图纸的比例尺是()。

A.2:1B.20:1C.1:2D.1:203.(2分)一种长5毫米的零件,画在图纸上长10厘米,这幅图的比例尺是()。

A.1:2B.2:1C.1:20D.20:14.(2分)一个精密零件4毫米,画在图纸上是12厘米,这幅图纸的比例尺是()A.1:30B.1:3C.30:1D.3:15.(2分)一种长10毫米的手表零件,画在图纸上长20厘米,这幅图的比例尺是()。

A.1:2B.1:20C.20:1D.2:16.(2分)一幅图中,图上5厘米表示实际200km。

这幅图的比例尺是()。

A.1:400B.1:40000C.1:400000D.1:4000000第二类:给出比例尺和实际距离,求图上距离原则:数字很小,单位统一化成厘米;数字很大,就化成米或者千米如果给出比例尺1:100,就能知道图上1cm代表实际100厘米,然后用实际距离除以100,得到的就是对应的图上距离;7.(2分)一种微型零件长4mm,按80:1的比例尺画在图纸上,长度是()cm。

A.0.32B.3.2C.32D.3208.(2分)一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()。

A.8分米B.8毫米C.8厘米D.0.8厘米9.两个城市间的距离是1020km,在比例尺为1∶34000000的地图上,这两个城市间的图上距离是()cm。

A.1B.2C.3D.4第三类:给出比例尺和图上距离,求实际距离10.(2分)在一个比例尺是200∶1的图纸上,量得一个零件的长是2厘米,这个零件实际长()。

实际距离=比例尺图上距离实际距离=比例尺宽

实际距离=比例尺图上距离实际距离=比例尺宽
认识比例尺
我校新建一块长方形草坪,长50米,宽30米。 把这块草坪按一定的比例缩小,画出的平 面图 长5厘米,宽3厘米。
写出草坪长的图上距离和实际距离的比。

5厘米
3厘米 比例尺 1﹕1000
图上距离﹕实际距离 = 比例尺
图上距离 实际距离 =
比例尺
学校草坪平面图 1﹕1000
比例尺1﹕1000 表示
1
图上距离是实际距离的( 1000 )。
实际距离是图上距离的( 1000 )倍。
图上1厘米的距离表示实际距离(1000厘米 )。
10米
说出下面比例尺的意义。
图上1厘米等于 实际22千米
图上1厘米等于 实际22米
荷花村到杏树村的实际距离是10千米。量出
这两个村的图上距离,并算出这幅图的比例
尺。
0 ( 4 ) ( 8 ) (12) (16)千米
一、选择:根据提示选择合适的比例尺
①1︰500000
② 1︰5000
③1︰50000000
④ 1︰5000000
图上距离是实际距离的五百万分之一。 (④ )
图上1厘米表示实际距离5000米。 ( ① ) 实际距离是图上距离的5000倍。 ( ② )
三、判断
(1)比例尺就是图上距离与实际距离的比。√ ( )
按照国家规定的标准、图示和
比例尺绘制的地图叫做国家基本比 例尺地图。我国的国家基本比例尺 地图的比例尺有以下几种: 1:500、1:1000、1:2000、1:5000、 1 :10000、1:25000、1:50000、 1:100000、1:200000、1:500000、 1:1000000
(2) 0 400 800 1200 1600米

比例的应用(含答案)

比例的应用(含答案)

比例的应用一、单选题(共5题;共10分)1.一个直角三角形,两直角边长度之和是14分米,它们的比是3:4,这个直角三角形的斜边是10分米,那么斜边上的高为()分米.A. 7B. 8C. 10D. 4.82.要建一个长40米、宽20米的厂房,在比例尺是1:500的图纸上,长要画()厘米。

A. 5B. 8C. 7D. 63.某煤厂有一堆煤,运出,又运进11吨,这时厂里的煤与原来存煤的比恰好是1∶8,原存煤()A. 624吨B. 426吨C. 246吨D. 264吨4.有一根粗细均匀刻有刻度的竹竿,在左边的刻度3的塑料袋里放入4个棋子,在右边的刻度2的塑料袋里应放入()个棋子才能保证竹竿的平衡.A. 4B. 5C. 65.地质考察员发现一种锡矿石每100千克含锡65千克,则这种锡矿石5000千克含锡()千克.A. 3250B. 3210C. 3520D. 6120二、判断题(共5题;共10分)6.实际距离一定比图上距离大。

7 建筑工地运来水泥、黄沙、石子各5吨,按2∶3∶5拌制一种混凝土,如果要把黄沙全部用完,石子还少吨.8.图上的面积与实际面积的比是比例尺。

9.(2015•深圳)一根木棒截成3段需要6分钟,则截成6段需要12分钟10.由两个比组成的式子叫做比例.三、填空题(共10题;共17分)11.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离________千米。

也就是图上距离是实际距离的1/________,实际距离是图上距离的________倍。

12.甲乙两堆化肥重量比是5∶3,乙堆化肥重9.6吨,甲堆化肥重________吨.13.________和________的比叫做比例尺。

比例尺=________:________。

14.一个长方形操场,长160米,宽120米。

如果把它画在比例尺是1:4000的地图上,长________ 厘米,宽________ 厘米15.已知3、4、9、12可以组成比例。

比例尺求实际距离的三种方法

比例尺求实际距离的三种方法

比例尺求实际距离的三种方法
嘿,朋友们!今天咱来聊聊比例尺求实际距离的三种超棒方法呀!
第一种,那就是直接用图上距离除以比例尺啦!就比如啊,你有张地图,图上两地之间是 5 厘米,比例尺是 1:10000,那实际距离不就是
5÷(1/10000)=50000 厘米,也就是 500 米嘛!
第二种呢,用比例关系来解决!就好像你做个数学题,知道图上距离和比例尺的比例,那实际距离不也就水到渠成能算出来啦!打个比方,地图上量得是 3 厘米,比例尺是 1:5000,那不就是设实际距离为 x 厘米,
3:x=1:5000,x 不就等于 15000 厘米,即 150 米嘛!
第三种,嘿嘿,那就是利用等量代换的思想哦!这就好比你玩拼图,换到对的位置就恍然大悟啦!好比有个图形,通过一些已知条件推出图上距离和比例尺的关系,那实际距离不就能轻松找到啦!比如说,已知一些相关信息推出图上距离是 4 厘米,比例尺是 1:8000,那实际距离自然就是
4÷(1/8000)=32000 厘米,也就是 320 米呀!
哇塞,这三种方法是不是超赞的呀!大家可一定要学会哦,这样以后遇到比例尺求实际距离就再也不怕啦!。

初一地理地图计距离方法

初一地理地图计距离方法

初一地理地图计距离方法地理是关于地球的研究科学,而地图则是地理学中常用的工具。

通过地图,我们可以更好地理解和分析地球上的各种现象和关系。

而在地理学习的过程中,计算距离是一项非常重要的技巧。

本文将介绍初一地理学习中常用的几种计算距离的方法。

一、比例尺计算比例尺是地图上显示距离与实际距离之间的比例关系。

在地图上通常有一个比例尺尺度的指示,如1:10000。

这意味着地图上的1cm实际上相当于10000cm(或100m)的实际距离。

通过比例尺,我们可以简单地计算地图上两点之间的距离。

例如,如果地图上两点的距离为5cm,而比例尺为1:10000,则实际距离为5cm × 10000 = 50000cm = 500m。

因此,两点之间的实际距离是500m。

二、使用经纬度计算经纬度是地球表面上一个点的坐标。

经度表示东西方向的位置,以子午线为基准,最大值为180度,分别用E表示东经和W表示西经。

纬度表示南北方向的位置,以赤道为基准,最大值为90度,分别用N 表示北纬和S表示南纬。

通过经纬度,我们可以计算两个点之间的距离。

这种方法通常适用于全球范围内的距离计算。

常用的经纬度计算距离的公式有球面三角法和海卡公式。

通过这些公式,我们可以准确地计算两点之间的球面距离。

三、使用方位角和距离计算方位角和距离计算适用于地图上的直线距离。

方位角是从一个点指向另一个点的方向角度,通常以北为参考。

通过方位角和距离,我们可以计算直线距离。

首先,确定两点之间的方位角。

然后,使用三角关系计算直线距离。

这种方法适用于地图上近距离的两点计算。

四、使用网格计算网格是地图上的方格,用于帮助确定位置和测量距离。

通过网格计算,我们可以估算两点之间的距离。

首先,确定两点所在的方格。

然后,通过计算两点在方格中的行数和列数之差,以及每个方格的大小,可以估算出两点之间的距离。

总结:初一地理学习中,我们可以通过比例尺计算、使用经纬度计算、方位角和距离计算以及网格计算等方法来计算距离。

数学中的比例与比例尺认识比例和比例尺的计算方法

数学中的比例与比例尺认识比例和比例尺的计算方法

数学中的比例与比例尺认识比例和比例尺的计算方法在数学中,比例和比例尺是重要的概念,它们在实际生活和学科中有着广泛的应用。

了解比例和比例尺的计算方法对于解决实际问题和理解数学原理至关重要。

一、比例的概念比例是指两个或多个量之间的相对大小关系。

它用来表示数量之间的比较和比较结果。

比例的表达方式常用 ":" 或 "∶" 表示,如 2:5 或2∶5。

在比例中,第一个数量称为“前项”,第二个数量称为“后项”,比例中的两个数量之间的关系可以是相等的,也可以是成比例的。

比例的表示时,可以使用分数、小数或百分数来表达。

当两个量成比例时,我们可以通过交叉相乘的方法来判断它们是否满足比例关系。

二、比例的计算方法1. 已知比例关系及一个数量,求另一个数量当已知比例关系和其中一个数量时,可以通过如下计算方法求解另一个数量。

首先,将已知比例关系转化为等式。

例如,对于2∶5 的比例关系,我们可以写成 2/5 = x/10,其中 x 表示我们要求解的数量。

然后,通过求解该等式,可以得到 x 的值。

将已知的比例关系与求解得到的结果进行比较,就可以得出两个数量之间的具体关系。

2. 已知两个比例关系,求其中一个比例关系的部分当已知两个比例关系和其中一个比例关系的部分时,可以通过比例的性质来求解另一个比例关系的部分。

首先,将已知比例关系转化为等式,并假设其中一个比例关系的部分为 x。

例如,对于 2∶5 和 3∶8 的两个比例关系,我们可以写成 2/5 = x/8。

然后,通过求解该等式,可以得到 x 的值。

将求解得到的 x 带入另一个比例关系,就可以得到另一个比例关系的部分。

三、比例尺的概念比例尺是指地图或图纸上距离与实际距离之间的比例关系。

它用来表示地图或图纸上的长度与实际长度之间的比较和比较结果。

比例尺的表示方式有三种:数值比例尺、直线比例尺和文字比例尺。

数值比例尺是用数字表示地图或图纸上的长度与实际长度之间的比例关系。

图上距离和实际距离的比

图上距离和实际距离的比
息缩小或放大到地图上。
地图制作者需要根据实际需求选 择合适的比例尺,以满足不同用 户对地图精度和详细程度的需求。
导航系统
导航系统是现代生活中不可或缺的一 部分,它可以帮助我们找到目的地并 规划最佳路线。
通过使用图上距离和实际距离的比,导航系 统可以提供准确的路线规划和行驶距离估算 ,帮助用户快速、准确地到达目的地。
01
02
03
04
军事
比例尺在军事上有着广泛的应 用,如作战计划、地形分析等

地理研究
地理学家使用比例尺来研究地 形、地貌和地球表面的其他特
征。
城市规划
城市规划师使用比例尺来规划 城市和地区的发展。
地图制作
地图制作者使用比例尺来制作 各种类型的地图,如交通图、
旅游图等。
计算图上距离和实际距离的比的步骤
在地理学、地图学、测量和军事等领域中,比例尺都是不可或缺的概念,对于空间 数据的表示、分析和应用具有重要意义。
02 图上距离和实际距离的定 义
图上距离的定义
图上距离
在地图或图纸上,两点之间的直线距 离。
测量方法
使用测量工具,如直尺、量角器等, 直接测量两点间的直线长度。
实际距离的定义
实际距离
在实际环境中,两点之间经过地形、地貌、建筑物等障碍物的实际行走或行驶 距离。
使用激光测距仪
激光测距仪具有高精度和高速度的优点,能够快速准确地测量实际距离。
选用高分辨率的GPS设备
高分辨率的GPS设备能够提供更精确的位置信息,从而减小测量误差。
优化地图制作流程
采集更多数据点
在地图制作过程中,增加更多的数据 点可以提高地图的精度,进而提高图 上距离和实际距离的比的精度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金人 曾经有个小国到中国来,进贡了三个一模一样的金人,金壁 辉煌,把皇帝高兴坏了。可是这小国不厚道,同时出一道题目: 这三个金人哪个最有价值?皇帝想了许多的办法,请来珠宝匠检 查,称重量,看做工,都是一模一样的。怎么办?使者还等着回 去汇报呢。泱泱大国,不会连这个小事都不懂吧?最后,有一位 退位的老大臣说他有办法。皇帝将使者请到大殿,老臣胸有成竹 地拿着三根稻草,插入第一个金人的耳朵里,这稻草从另一边耳 朵出来了。第二个金人的稻草从嘴巴里直接掉出来,而第三个金 人,稻草进去后掉进了肚子,什么响动也没有。老臣说:第三个 金人最有价值!使者默默无语,答案正确。 这个故事告诉我们,最有价值的人,不一定是最能说的人。老天 给我们两只耳朵一个嘴巴,本来就是让我们多听少说的。善于倾 听,才是成熟的人最基本的素质。
1
10、一块长方形草地长20米,宽15米。把它画在比例尺是500 的图纸上, 长和宽各应画多少厘米?
知识回顾 Knowledge Review
祝您成功!
花坛直径实际长度:157÷π≈50(米)
比例尺:1:250
50米=5000厘米
花坛直径图上长度:5000×
1 250
=20(厘米)
巩固练习
明明量得公园的一个圆形花坛的周长是157米,他想 把它画在平面图上,请你帮忙画一画。(比例尺根据纸 张的大小和圆规的大小确定。)
花坛直径实际长度:157÷π≈50(米)
花坛直径实际长度:157÷π≈50(米)
如果在一张A4纸(长29.7厘米, 宽21厘米)上画,比例尺该定 成多大合适呢?
从以下比例尺中选择一个, 计算出直径的图上距离。
1:250 1:500 1:1000
巩固练习
明明量得公园的一个圆形花坛的周长是157米,他想 把它画在平面图上,请你帮忙画一画。(比例尺根据纸 张的大小和圆规的大小确定。)
4、 在一幅比例尺是1:300的平面 图上,一个圆形花坛的半 径是2厘米,这个花坛的实际面积是多少平方米? 5、 在比例尺是1 :2000000的地图上,量得甲乙两地的距离 是3.6厘米。如果汽车以每小时30千米的速度于上午8时整从甲 地开出,走完这段路程,到达乙地时是什么时间?
6、从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图 上应画多少厘米? 7、一种精密零件只有5毫米长,要把它画在比例尺为20 ︰1的平面图上, 应画多少厘米? 8、某小学的校园长200米,画在平面图上是20厘米,量得校园宽是150 米,在这张图纸上应画多少厘米? 9、在比例尺是1∶40000的地图上,两地相距5厘米,如果在比例尺是 1∶25000的地图上,两地间的距离是多少厘米?
比例尺:1:500
50米=5000厘米
花坛直径图上长度:500测
1、 在比例尺是 1:500000 的中国地图上,量得北京到广州的 距离是50厘米,北京到广州的实际距离是多少千米? 2、 在一幅比例尺是30 :1的图纸上,一个零件的图上长度是 12厘米,它的实际长度是多少毫米? 3、 在学校绿化规划图中,量得一个平行四边形花坛的底为10 厘米,高为5厘米。如果这张规划图的比例尺是1:200,则这 个花坛的实际面积有多大?
( 图上距离 ) =比例尺 ( 实际距离 ) (图上距离)÷(比例尺 )=实际距离 (实际距离)×( 比例尺 )=图上距离
复习
比例尺 1:6000000
图上距离 15cm
实际距离 900km
一张地图的比例尺是1︰200000,从甲地到乙地 的距离是60千米,求图上距离是多少厘米?
把一个长80m、宽60m的长方形操场画在比例 尺是1:1000的图纸上。长和宽各应画多少cm?
4、小明家在学校正西方向,距学校200米,小亮家在小 明家正东方向,距小明家400米,小红家在学校正北方向,距 学校250米。在下图中画出他们三家和学校的位置平面图。

学校
0 50 100
5、篮球场长28米,宽15米。用1:500的比例尺在下面画出它的 平面图(只画出边界)
巩固练习
明明量得公园的一个圆形花坛的周长是157米,他想把它画在平面 图上,请你帮忙画一画。(比例尺根据纸张的大小和圆规的大小确定。)
相关文档
最新文档