平面直角坐标系教材分析
《平面直角坐标系》说课稿

《平面直角坐标系》说课稿《平面直角坐标系》说课稿1一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。
因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。
如果没有透彻理解这部分知识,就很难学好整个一章内容。
二、教学目标1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置。
4、理解各个象限内的点的坐标的符号特点以及坐标轴上的点的坐标特点。
1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。
恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。
因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育。
三、重点难点1、教学重点能在平面直角坐标系中,由点求坐标,由坐标描点。
2、教学难点:⑴平面直角坐标系产生的过程及其必要性;⑵教材中概念多,较为琐碎。
如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。
四、教法学法本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
平面直角坐标系教案15篇

平面直角坐标系教案平面直角坐标系教案15篇在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。
我们应该怎么写教案呢?以下是小编帮大家整理的平面直角坐标系教案,欢迎阅读,希望大家能够喜欢。
平面直角坐标系教案1一教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。
数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿2

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿2一. 教材分析《北师大版八年级数学上册》第三单元《平面直角坐标系》是学生在学习了坐标轴、坐标点的基础上,对平面直角坐标系进行深入研究的课程。
本节课的内容包括坐标系的定义、坐标轴、坐标点的特征等,旨在让学生理解和掌握平面直角坐标系的基本概念和性质,能够熟练地在平面直角坐标系中确定点的坐标,为后续的函数、几何等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了坐标轴、坐标点的基本概念,对平面直角坐标系有了一定的认识。
但是,对于坐标系的性质、坐标的确定方法等,还需要进一步的引导和讲解。
此外,学生对于实际问题中平面直角坐标系的应用,还需要通过实例进行引导和培养。
三. 说教学目标1.知识与技能目标:让学生理解平面直角坐标系的定义,掌握坐标轴、坐标点的特征,能够熟练地在平面直角坐标系中确定点的坐标。
2.过程与方法目标:通过实例分析,让学生理解坐标系在实际问题中的应用,培养学生的解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的抽象思维能力,让学生感受数学的美。
四. 说教学重难点1.教学重点:平面直角坐标系的定义,坐标轴、坐标点的特征,点的坐标确定方法。
2.教学难点:坐标系在实际问题中的应用,点的坐标的确定方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、黑板、粉笔等,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习坐标轴、坐标点的基本概念,引出平面直角坐标系的定义,激发学生的学习兴趣。
2.讲解新课:讲解坐标轴、坐标点的特征,通过实例分析,让学生理解坐标系在实际问题中的应用。
3.巩固新课:通过练习题,让学生掌握点的坐标确定方法,巩固所学知识。
4.拓展延伸:通过思考题,引导学生思考坐标系在实际问题中的更广泛应用,培养学生的抽象思维能力。
第七章平面直角坐标系教材分析ppt课件

祝老师们: 身体健康 家庭幸福!
二、教学目标
(二)过程与方法
1.从实际生活中的定位现象入手,引导学生发现有序数对的 作用及其概念; 2.由直线上的点可用一个坐标定位,结合有序数对的作用, 发现平面上的点的定位方法,从而引入平面直角坐标系及其 相关概念; 3.学生通过画图、观察、发现、归纳点的坐标特性、平移变 换中点的坐标变化规律; 4.辅助以多媒体,使学生的感受更直观、印象更深刻。
三、教学重难点
教学难点:
1.平面上的点的坐标的性质; 2.建立恰当的坐标系表示地理位置或刻画简单的几何图形; 3.用坐标表示平移变换的规律; 4.平面直角坐标系中不规则图形求面积问题。
四、突破难点的方法
1.从生活实际出发,探究平面上的点的定位方法; 2.学生动手建系、描点、观察,探索出点与坐标之间蕴含的 规律、平移变换中点的坐标的变化规律; 3.探究不规则图形面积问题时,学生经历多种不同的分割或 割补方式,从而积累解决求不规则图形面积问题的多种经验。
注意整套教科书对“平移”的编排,本章用坐标刻画平 移,从数的角度进一步认识平移,为后续学习利用平移探索 几何性质以及综合运用几种变换(平移、旋转、轴对称、相 似等)进行图案设计等打下基础。
九、教学建议
(三)注意留给学生思考的时间
教学中,注意留给学生足够的时间,使学生充 分活动起来,通过探究发现并总结规律。同时不要 让学生死记硬背规律,而是在坐标系中结合图形理 解结论。
5.点的坐标的几何意义
点P(x ,y)到横轴的距离为 y ,
到纵轴的距离为 x 。
八、点的坐标特征
6.关于坐标轴或原点对称的点
①关于x轴对称的点横坐标相等,纵坐标互为相反数; ②关于y轴对称的点纵坐标相等,横坐标互为相反数; ③关于原点对称的点横、纵坐标分别互为相反数.
浙教版数学八年级上册《4.2 平面直角坐标系》教案1

浙教版数学八年级上册《4.2 平面直角坐标系》教案1一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握平面直角坐标系的定义、各象限内点的坐标的符号特征,以及坐标轴上点的坐标特点。
通过本节课的学习,为学生后续学习函数、几何等知识打下基础。
二. 学情分析学生在七年级已经学习了平面图形的坐标表示,对坐标的概念有一定的了解。
但他们对平面直角坐标系的理解还不够深入,对于坐标系中各象限内点的坐标符号特征以及坐标轴上点的坐标特点还需要进一步巩固。
三. 教学目标1.知识与技能:使学生掌握平面直角坐标系的定义,理解各象限内点的坐标符号特征,以及坐标轴上点的坐标特点。
2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标符号特征。
2.难点:坐标轴上点的坐标特点,以及坐标系在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与,提高他们的学习兴趣和动手能力。
六. 教学准备1.教具:黑板、粉笔、多媒体课件。
2.学具:练习本、尺子、圆规。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的坐标系图片,如地图、股市走势图等,引导学生关注坐标系在实际生活中的应用。
提问:这些图片中的点是如何用坐标表示的?引发学生对坐标系的思考。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及各象限内点的坐标符号特征。
通过示例,让学生直观地理解坐标轴上点的坐标特点。
3.操练(10分钟)让学生分组讨论,用坐标表示给定的点,并判断这些点位于哪个象限。
每组选出一个代表进行汇报,师生共同评价、纠正。
4.巩固(10分钟)出示一些坐标系题目,让学生独立完成,检查他们对平面直角坐标系的理解。
七年级数学人教版第六章平面直角坐标系教材分析

七年级数学人教版第六章《平面直角坐标系》教材分析一.教科书内容和课程学习目标(一)本章知识结构图及课时分配建议(略,见教师教学用书)(二)内容安排:略(三)课程学习目标:略二.本章编写特点(一)注意加强知识间的相互联系编写时注意突出平面直角坐标系与数轴联系.对于平面直角坐标系的引入.(二)突出数形结合的思想体现平面直角坐标系的作用,无论是在数学还是在其他领域,平面直角坐标系都有着非常广泛的应用.用几何的方法研究代数问题,又可以用代数的方法研究几何问题.(三)注重学生的认知规律本章编写时,改变了原教科书从数学的角度引出坐标系的做法,而是将本章内容的编写仅仅围绕着确定物体的位置展开,从实际生活中确定物体的位置出发引出坐标系,也就是从实际需要引出坐标系这个数学问题.(四)内容编写生动生动活泼本章编写时,注意结合本章内容的特点,将枯燥的数学问题赋予有趣的实际背景,使内容更符合学生的年龄特点,激发学生学习数学的兴趣.例如教科书习题6.2的第1题三架飞机P、Q、R保持编队飞行,实际上是三角形平移的问题.三.几个值得关注的问题(一)密切联系实际本章内容的编写仅仅围绕着确定物体的位置展开.教科书首先从建国50周年庆典中的背景图案、确定电影院中座位的位置以及确定教室中学生座位的位置等实际出发,引出有序数对,进而引入平面直角坐标系.(二)准确把握教学要求对于某些重要的概念和方法,采用了螺旋上升的编排方式.例如,对于平移变换,教课书首先在上一章相交线与平行线中安排了一节平移,探讨得出对应点的连线平行且相等等平移变换的基本性质;在本章又安排了一小节用坐标表示平移的内容,用坐标刻画了平移变换,从数的角度进一步认识平移变换;对平移变换以后还要继续学习,例如在本册书第10章实数进一步安排了在实数范围内研究平移的内容,对于平面直角坐标系,本章只要求学生会在方格纸中建立直角坐标系,能根据坐标描出点的位置.以一个动态的、发展的观点看待教学要求.(三)注意留给学生思考的空间本章编写时,注意结合本章内容特点,利用一些探究思考归纳等栏目,给学生留出了较大的思考空间.例如,在第6.2.2小节中,教科书首先设置一个探究栏目,让学生探究将几个已知坐标的点上、下、左、右的平移后得到新的点.四.了解小学相关知识的教学例1.课标第一学段有关叙述:会用上下左右前后描述物体相对位置;会辨认东南西北等八个方位;课标第二学段有关叙述:能根据方向和距离确定物体的位置;在具体情境中,能用数对来表示位置,并能在方格上用数对确定位置.例2.【课标第二学段例5 】假设大门在教室的正南方向50米处,图书馆在教室北偏东60°方向的100米处,试画出示意图.例3.【课标第二学段例7 】小青坐在教室的第3行第4列,用(4,3)表示,小明坐在教室的第1行第3列应当怎样表示?五.本章要点归纳1. 平面直角坐标系的概念是建立在数轴基础上的,在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,通常两条数轴分别置于水平位置与铅直位置,水平的数轴向右为正叫做x 轴(横轴),铅直的数轴向上为正叫做y 轴(纵轴).x 轴和y 轴统称坐标轴,它们的公共原点O 称为直角坐标系的原点,建立了直角坐标系的平面叫做坐标平面.2. 坐标平面由两条坐标轴和四个象限构成,如图1,可以看成坐标平面的六个区域;x 轴,y 轴,第一象限,第二象限,第三象限,第四象限.注意:坐标轴上的点不属于任何一个象限.3. 平面内的点的位置由它的坐标确定.对于平面内任意一点P ,过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a 、b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标.(1)平面内点的坐标是有序实数对,即表示点的坐标的两个实数是有顺序的,横坐标在前,纵坐标在后,位置不能颠倒,如图2中P 点的坐标只能写成(a ,b ),而不能写成(b ,a );(2)坐标平面内的点与有序实数对一一对应,即对于坐标平面内的任意一点P 都有惟一的有序实数对(a ,b )与它对应;对于任意一对有序实数(a ,b )在坐标平面内都能找到惟一的点P 与它对应;(3)点P (a ,b )到x 轴的距离为|b |,到y 轴的距离为|a |.4. 特殊位置的点的坐标的特征:(1)坐标轴上的点:①点P 的坐标为(a ,0)⇔点P 在x 轴上;②点P 的坐标为(0,b )⇔点P 在y 轴上;(2)各象限内的点:①点P (a,b )在第一象限⇔a 0,b 0>>;②点P (a ,b )在第二象限⇔a 0,b 0<>;③点P (a ,b )在第三象限⇔a 0,b 0<<;④点P (a ,b )在第四象限⇔a 0,b 0><;5. 具有特殊位置关系的两点之间的坐标关系;(1)关于坐标轴或原点对称的两点,根据对称的性质,如图4,有①点P (a ,b )关于x 轴对称点坐标为1P (a,b )-;②点P (a ,b )关于y 轴对称点坐标为2P (a,b )-;③点P (a ,b )关于原点对称点坐标为3P (a,b --).(2)连线平行于坐标轴的两点,连线平行于x 轴的两点的纵坐标相同,连线平行于y 轴的两点的横坐标相同.6. 在平面直角坐标系中,其中,a 0,b 0>>.(1)将点(x,y )向右(或左)平移a 个单位长度,可以得到对应点(x a,y )+(或(x a,y )-);(2)将点(x,y )向上(或下)平移b 个单位长度,可以得到对应点(x,y b )((x,y b ))+-或.7. 图形平移与坐标变化(注:注意对比华东版教材相关内容)(1 )图形上各点的纵坐标不变,横坐标分别加a(a>0),则图形沿水平方向向右平移,减a(a>0),则图形沿水平方向向左平移a个单位,形状、大小不变.(2 )图形上各点的横坐标不变,纵坐标分别加a(a>0),则图形沿铅直方向上平移,纵坐标分别减a(a>0),则图形沿铅直方向下平移a个单位,形状、大小不变.六.中考试题举例例1. (20XX年韶关)在图5的直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来.(1)(2,0)、(4,0)、(6,2)、(6,6)、(5,8)、(4,6)、(2,6)、(1,8)、(0,6)、(0,2)、(2,0);(2)(l,3)、(2,2)、(4,2)、(5,3);(3)(1,4)、(2,4)、(2,5)、(1,5)、(1,4)(4)(4,4)、(5,4)、(5,5)、(4,5)、(4,4)(5)(3,3).观察所得的图形,你觉得它像什么?分析:本题主要是考查学生正确的在平面直角坐标系中标出点的位置,再将各组内的点用线段依次连结起来.解:如图5,像猫脸(注:有趣,但学生作点正确,不一定看出“猫脸”)例2. (20XX年辽宁)某市有A、B、C、D四个大型超市,分别位于一条东西走向的平安大路两侧,如图6所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.分析:建立适当的坐标系,再写出各点的坐标.解:平安大道所在的直线所在的直线为x轴,过D点垂直于平安大道所在的直线为y轴建立直角坐标系,A(10,4)、B(6,-4)、C(-2,2.5)、D(0,-3)例3. 如图,图7 ②至图7 ④中的图形均由图7①中的图形变换而得:(1)请写出图7 ①中点A、B、M、N的坐标;(2)请写出图7 ②至图7④中与点A、B、M、N对应的点A'、B'、M'、N'的坐标;(3)与图7 ①对比,你能说出图7 ②至图7 ④中的图形发生了什么变化吗?分析:正确的写出图7 ①中A、B、M、N各点的坐标以及图7 ②至图7 ④中A'、B'、M'、N'的坐标是探索图形变化后点的变化的关键.解:(1)7 ①中A、B、M、N各点坐标依次为:(2,4)、(4,0)、(1,2)、(3,2);(2)图7 ②中A'、B'、M'、N'各点依次为:(5,4)、(7,0)、(4,2)、(6,2).图7 ③中A'、B'、M'、N'各点依次为:(2,-4)、(4,0)、(1,-2)、(3,-2).图7 ④中A '、B '、M '、N '各点的依次为:(4,8)、(8,0)、(2,4)、(6,4);(3)图7 ①到图7 ②向右平移3个单位,横坐标加3,纵坐标不变;图7 ①到图7 ③沿x 轴对折,横坐标不变,纵坐标变为相反数;图7 ①到图 7 ④是以0为位似中心作出的位似图形,且相似比为2:1,纵、横坐标都变为其2倍.例4. (20XX 年南通通州暨20XX 年济源)如图8,在直角坐标系中,第一次将OAB ∆变换成11OA B ∆,第二次将11OA B ∆变换成22OA B ∆,第三次将22OA B ∆变换成33OA B ∆…已知:A (1,3)、1A (2,3)、2A (4,3)、3A (8,3);B (2,0)、1B (4,0)、2B (8,0)、3B (16,0)观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形5A 的坐标是_____,5B 的坐标是_______.分析:本题主要考查图形变换与坐标变化的规律,沿x 轴向右平移后,纵坐标都没有改变,横坐标改变.因此,A 点的纵坐标不变,横坐标012=,依次变为是1232242822===⋯、、、、,B 的纵坐标是0,横坐标是122=,依次变为是234n 142821622+===⋯、、、、.解:5516232,2264+===,55A (32,3)B (64,0)∴,例5. (20XX 年成都)如图9,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC ∆是格点三角形.在建立平面直角坐标系后,点B 的坐标为(-1,-1).(1)把ABC ∆向左平移8格后得到111A B C ∆,画出111A B C ∆的图形并写出点1B 的坐标;(2)、(3)略分析:图形向左平移,图形上各点的纵坐标不变,横坐标分别减8其形状、大小不变.解:B 的坐标为(1,1--),向左平移8格后得到1B (9,1)--七.典型错误分析例1.对有序实数对理解不透,认为(2,3)和(3,2)表示同一个点 例2.已知点A (2,1)的关于x 轴对称点是B ,求点B 的坐标.误解:因作图错误,得出关于y 轴对称点例3.在平面直角坐标系中,若点P (x -2,x )在第二象限,求x 的取值范围.误解:因对象限符号记忆错误,得不等式x 20x 0-<⎧⎨<⎩八.教学设计片断举例 例1 九.课件介绍 例1。
第七章平面直角坐标系教材分析

【教学建议】
3.和《相交线与平行线》中的平移进行对 比:认识到图形的平移变换就是点的平移.
例3 如图,将平行四边形ABCD先沿x轴向左平 移4个单位长度,再沿y轴向下平移1个单位长 度,写出平移后四个顶点的坐标,并画出相应 Y 的图形. C (7,4) D (3,4)
4 2 1 -3 -2 -1 O -1 -2 -3 1 A (2,1) 2 3 4 B (6,1) 5 6 7 X 3
第七章【学习目标】
1. 通过实例认识有序数对,感受它在确定点的位置中 的作用. 2.认识平面直角坐标系,了解点与坐标的对应关系; 在给定的直角坐标系中,能根据坐标描出点的位置, 能由点的位置写出点的坐标. 3.对给定的正方形,会选择合适的直角坐标系,写出 它的顶点坐标,体会可以用坐标刻画一个简单的图形; 4.建立适当的平面直角坐标系描述物体的位置,体会 平面直角坐标系在解决实际问题中的作用;在平面内, 能用方位角和距离刻画两个物体的相对位置. 5.在平面直角坐标系中,能用坐标表示平移.通过研 究平移与坐标的关系,体会数形结合的思想.
【学习重点】
1.掌握由点定坐标、由坐标定点的方法. 2.认识一些特殊位置的点的坐标特征,理解 点的坐标的意义. 3.建立适当的平面直角坐标系表示地理位置. 4.掌握点的平移与点的坐标的变化规律及直 角坐标系下图形的平移规律.
【学习难点】
1.探究特殊点的坐标特征,在坐标系中求图 形面积的方法. 2.建立适当的平面直角坐标系表示地理位置.
将平移变换从数和形两 方面统一起来,使学生 对平移变换有更深刻的 了解,为今后使用平移 变换发现几何结论,研 究几何问题打下基础。
综合应用平移、轴对称、 旋转进行图案设计 (九上第二十三章)
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。
教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。
他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。
因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。
三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。
2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。
2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。
2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。
2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。
3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。
4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。
5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。
七. 说板书设计板书设计要简洁明了,突出重点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章平面直角坐标系教材分析大连市37中包金荣 2011年3月5日1.内容和内容解析内容:直角坐标系是(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第六章的内容。
主要内容包括平面直角坐标系的有关概念,点与坐标的对应关系(坐标为整数)用坐标表示地理位置及坐标平移等。
2、内容解析“平面直角坐标系”是“数轴”的发展,它的建立使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。
因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具,体现数形结合思想。
正因为如此,在中学数学中引入直角坐标系对理解函数的两个变量对应的核心概念有着至关重要作用,也是今后研究一些具体函数,如:画函数图象、观察图象的性质、探究函数与方程及不等式之间的关系、解有关复杂的方程组(例如二元一次方程组的图像解法)以及高中数学中函数研究如对数函数、指数函数即解析几何的研究都是以直角坐标系为重要的工具的。
本章为了用直角坐标系突出对应的思想还对直角坐标系的两个重要应用,即用坐标表示地理位置和平移进行了研究。
如用坐标表示地理位置时用经纬度表示地球上一个地点的地理位置,是坐标与点一一对应思想的表现.从而建立坐标系用坐标表示地理位置的问题,也使学生体会了坐标思想在解决实际问题中的作用。
用坐标刻画了平移变换,从数的角度进一步认识平移变换这些基本性质进行论证,以一个动态的、发展的观点,研究在平面直角坐标系中平移变换的坐标特点。
也为后续学习利用平移变换探索几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础.本章重点:平面直角坐标系的相关概念及应用2、目标和目标解析;1.通过实例认识有序数对,感受它在确定点的位置中的作用;2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数);3.能建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用;4、在同一坐标系中,能用坐标表示平移变换,通过研究平移与坐标的关系看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换。
让学生探究将几个已知坐标的点上、下、左、右的平移后得到新的点,通过探究发现并总结各对应点之间的坐标有怎样的变化规律。
使学生经历一个由特殊到一般的归纳过程。
并让学生在坐标系中结合图形的变换理解这些结论(而不是死记硬背),从而教会学生学会学习。
5、通过将数学问题加上一个有趣的背景,例如关于点与坐标对应关系的问题,“三架飞机P、Q、R保持编队飞行,30秒后,飞机P 飞到P位置,用坐标表示动画制作过程中小鸭子的位置变化等。
更符合学生的年龄特点,激发学生学习数学的兴趣,充分体现情与知的交融。
3、教学问题诊断分析怎样引入直角坐标系是本章的难点:为突破此难点我是这样做的:(1)从实际出发,让学生经历由实际问题抽象出数学问题,经历了一个由实践—理论—实践的认识过程,这样比较符合学生的认知规律。
如教学中可以就本章编写的首先从建国50周年庆典中的背景图案、确定电影院中座位的位置以及确定教室中学生座位的位置等实际出发,引出有序数对,进而引入平面直角坐标系.不仅让学生充分感受平面直角坐标系与实际问题的联系。
还可以结合班级实际让学生参与根据学生在教室的座位报数,从而提高学生的学习兴趣和参与的积极性。
(2)运用类比法突出知识间的相互联系,使学生对知识有全面的感知。
对于平面直角坐标系的引入,教科书首先从学生熟悉的数轴出发,给出点在数轴上的坐标的定义,建立点与坐标的对应关系,在此基础上,类比数轴,探讨在平面内确定点的位置的方法,引出平面直角坐标系,给出平面直角坐标系的有关概念.这样通过加强平面直角坐标系与数轴的联系,可以帮助学生更好地理解点与坐标的对应关系,顺利地实现由一维到二维的过渡,从而突破难点。
4.教学支持条件分析(根据需要设置)为了有效实现教学目标,根据教学内容的特点以及学生学习的需要,本节课应合理有效的利用组合教学媒体,使深奥的知识变得浅显易懂。
平面直角坐标系(第一课时)教学设计大连市37中包金荣 2011年3月5日一、内容和内容解析内容:直角坐标系(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第六章第一节第一课时)。
内容解析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。
因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章学习的基础,也对以后理解函数的概念,明确对应的核心思想有着至关重要作用,同时也是研究一些具体函数图象的性质,画函数图象的重要工具。
因此在中学数学中直角坐标系也是研究函数的重要基础。
例如:高中数学都要借助直角坐标系画出图象,如对数函数、指数函数。
因此也是研究解析几何的基础。
教材教法及学法:教法:新课程标准指出:“展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.”遵循新课标的这一理念,我在围绕了本节课教学目标的基础上主要分为四个阶段:1、学生观察思考:对实际问题:从通过背景图案的组成生活中的实际例子引出有序实数对、理解有序实数对,让学生的独立思考中体会实际问题抽象成数学问题的方法。
2、学生讨论:类比数轴——尝试建系,一个点可以用一个坐标来表示,而坐标可以在数轴上找到点,正如新课标指出:数学教学活动必须建立在学生认知发展水平和已有的知识经验基础上。
通过实际问题位置的探究引入用直角坐标系感念使学生真正成为学习的主体,从“被动学会”变成“主动会学”3、学生动手操作,在介绍概念时通过亲自画、动手实践中体会直角坐标系的有关概念。
如:不同的点用不同的有序实数对表示,点的变化会引起数的变化,反过来数的变化可以引起形的变化。
这种形与数对应渗透了着数形结合思想和对应的思想。
4、反馈后给学生增加3个数学活动体验,鼓励学生积极参与。
在体验中进一步理解点与有序实数对的意义及它们的对应关系,提高学生对坐标系的实际应用重要性认识。
二、目标和目标解析目标1、使学生了解平面直角坐标系的产生过程;理解直角坐标系的相关概念。
2、会正确画出平面直角坐标系;使学生会在平面直角坐标系中,由点求坐标,由坐标描点。
目标解析:1、知识目标认识平面直角坐标系,知道到点的坐标及象限的含义。
能在平面直角坐标系中,根据点的坐标描出点的位置,能将点用一对有序实数来表示。
发展学生的数形结合意识、培养学生细致认真的学习习惯。
2、能力目标通过探究、类比、归纳、理解坐标系平面中的点的表示,掌握平面直角坐标系有关知识,培养学生观察、归纳总结的能力.3、情感目标通过探索活动,让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验将实际问题数学化的过程与方法。
通过介绍数学家的故事,渗透理想和情感的教育。
教学重点和难点平面直角坐标系的有关概念,根据点的位置写出点的坐标,由点的坐标描出点的位置,既是本节的重点又是本节的难点。
三、教学问题诊断分析引入直角坐标系概念时很容易出现障碍。
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,学生只要理解有序实数对才会对点与坐标的对应有更深的理解。
因此我认为:(1)有序实数对的概念引入——从实际问题开始;(2)不同的有序实数对可以代表不同的坐标、不同的点——可以让学生座位举例(3)由于直角坐标系是互相垂直的,因此有点找坐标、就要通过做垂直坐标轴来找。
相关的上位概念主要是数轴、坐标等概念。
(4)直角坐标系的建立是与数轴类比得到的。
在学习直角坐标系之前,学生接触过数轴,并会由数描点、由点找数。
在此基础上直角坐标系中的描点,使学生的思维经历了一个飞跃的过程,符合建构主义认识论,也使学生的知识是在螺旋式上升。
难点:⑴平面直角坐标系产生的过程的引入。
⑵教材中概念多,较为琐碎。
如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。
教学知识条件分析:为了提高课堂教学的效益,本节课将借助于多媒体课件与实物投影仪进行教学。
四、教学过程设计1.创设情境,导入新课引言:现在我找找6名学生排成一排,问其中一位同学,你排在第几,你是怎么确定的。
学生回答出一个数(第几)(设计意图:将数轴上点的坐标的概念学习置于具体的问题情境中。
)师:把你看成一个点,只要与这个数对应就可以找到你啦。
说明一条直线上的点可以用一个数来表示。
这和我们学过数轴道理一样,数轴上的点可以用一个数来表示,反过来一个数可以在数轴上找到点。
也就是说如果我们画一条数轴,这样数轴上的点的位置与坐标之间就建立了对应关系.(设计意图:学生可以以其中的一人为基准进行描述,其目的是为数轴上的点的坐标的确定做准备,感受数形结合)。
2.探索新知,尝试发现问题1、学生回到座位后教师继续问怎么来说明你在教师的位置。
你认为需要几个数能确定一个位置。
学生讨论:学生说:在教室的5牌3列,问题2:如果把你当做一个点,由5和3就可以决定你的位置了,这就是有序实数对。
那么3排5列的同学是谁那?请站起来同学们发现,都是由3和5两个数组成,由于顺序不同他们的位置也不同,就是说平面上的点由唯一对有序实数对决定的。
问题3、以上位置能否用图形形象表示(教师画一个矩形表示教室,用小方框代替学生,画出自己的位置)学生讨论动笔比画出来,互相评价)设计意图:通过身边熟悉的例子,引导学生讨论,发现一对数才能确定平面上的点。
反过来平面上的点可以有一对数决定,又通过作图又为后续直角坐标系的引入奠定了基础。
说明:部分学生在回答问题3时可能会出现认知障碍,教师可以借助多媒体启发学生由特殊到一般寻找规律。
对于学生回答不完整、表述不准确的地方,教师及时予以补充和纠正。
(1)请学生们说出生活中应用有序数对确定位置的例子. 简单举例(如棋盘、电影院等). (感受位置确定就在自己身边,体会数学源于生活.)问题4:学生讨论,现在如果你站在一个长方形的操场上,请用画图方法找到你的位置。
(:设计意图:两个问题的安排有一定的层次性,受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准.为步引出平面直角坐标系作铺垫)。