浙江省近五年(-)高考数学 最新分类汇编10 排列、组合 理
浙江近五年高考理科数学试题及参考答案

2007年普通高等学校招生全国统一考试(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分不必要条件D.既不充分也不必要条件(2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则( ) A .126ωϕπ==, B .123ωϕπ==, C .26ωϕπ==,D .23ωϕπ==,(3)直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-= B.210x y +-= C.230x y +-=D.230x y +-=(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( ) A.3B.4C.5D.6(5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( ) A .0.16 B .0.32 C .0.68D ,0.84(6)若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面 (7)若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(8)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是( ) A.2B.3C.2D.3(10)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分. (11)已知复数11i z =-,121i z z =+,则复数2z = . (12)已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是 . (13)不等式211x x --<的解集是 .(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答). (15)随机变量ξ的分布列如下:ξ 1-0 1Pabc其中a b c ,,成等差数列,若13E ξ=,则D ξ的值是 . (16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=.若对于β内异于y x O y x O y x O yxO A . B . C . D.O 的任意一点Q ,都有45POQ ∠≥,则二面角AB αβ--的大小是.(17)设m 为实数,若{}22250()30()250x y x y x x y x y mx y ⎧⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. (18)(本题14分)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.(20)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.(21)(本题15分)已知数列{}n a 中的相邻两项212k ka a -,是关于x 的方程2(32)320k kx k x k -++=的两个根,且212(123)k k a a k -=≤,,,.(I )求1a ,2a ,3a ,7a ; (II )求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()32sin nf n n ⎛⎫=+⎪⎝⎭, EDCMA(第19题)BAyxO B(第20题)(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤. (22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.(1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725-(13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I )由题意及正弦定理,得21AB BC AC ++=+,2BC AC AB +=,两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD .FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥.设EA a =,2BD BC AC a ===,在直角梯形ABDE 中,22AB a =,M 是AB 的中点, 所以3DE a =,3EM a =,6MD a =,得EMD △是直角三角形,其中90EMD =∠, 所以2EM MDMF a DE==.在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设EA a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,. (I )证明:因为()EM a a a =--,,,(0)CM a a =,,,所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥n ,CD ⊥n ,EDC MABE H即0CE =n ,0CD =n .因为(20)CE a a =,,,(022)CD a a =,,,所以02y =,02x =-, 即(122)=-,,n ,2cos 2CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM 夹角的余角, 所以45θ=,因此直线CM 与平面CDE 所成的角是45.(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得21221x b =±-,, 所以1212S b x x =- 221b b =-2211b b +-=≤.当且仅当22b =时,S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,EDCMAByzx211||1||AB k x x =+-2222411214k b kk -+=+=+. ②设O 到AB 的距离为d ,则21||Sd AB ==, 又因为2||1b d k=+,所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0∆>,故直线AB 的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分.(I )解:方程2(32)320k kx k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=. 当3n ≥时,(1)3456212111(1)6f n n n n T a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++⎪⎝⎭≥2311111662622n⎛⎫+-++⎪⎝⎭≥ 1116626n=+>, 同时,(1)5678212511(1)24f n n n n T a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++⎪⎝⎭≤31511112492922n ⎛⎫-+++⎪⎝⎭≤ 515249224n =-<. 综上,当n ∈N*时,15624n T ≤≤. 22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+.由240y x '=-=,得2x =±.因为当(2)x ∈-∞-,时,y '>0, 当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>,故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,. (II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13()x x ∈+∞,时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-,由()0h t '=,得3t x =. 当30t x <<时,()0h t '>. 当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立.(ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立.即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性: 当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =,所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立. 故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立. 方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥, 即200(2)(4)0x x -+≤,①又因为00x >,不等式①成立的充分必要条件是02x =,所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( ) A .1B .1-C .2D .2-2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()UUA B BA =( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0 B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n-- C .32(14)3n -- D .32(12)3n --7.若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A .3B .5C .3D .58.若cos 2sin 5αα+=-,则tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2C .2D .2210.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线2008年普通高等学校招生全国统一考试数 学(理科)第Ⅱ卷(共100分)注意事项:A B P α(第10题)1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = . 12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.在ABC △中,角A B C ,,所对的边分别为a b c ,,.若(3)cos cos b c A a C -=,则cos A = .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = . 16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,3AD =,2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,ABCD (第14题)D A BEF C(第18题)(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图).(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a 是实数,函数()()f x x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值. (ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N .记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.AB OQyxlM (第20题)求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.12+ 12.8 13.33 14. 9π215.1 16.40 17.1 三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH .D A B EFCHG由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在Rt EFG △中,因为3EG AD ==,2EF =,所以60CFE ∠=,1FG =. 又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是33sin 2BH BE BEH =∠=.因为tan AB BH AHB =∠,所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,则(000)C ,,,(30)A a ,,,(300)B ,,,(30)E b ,,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(300)CB =,,,(00)BE b =,,,所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(30)EF c b =--,,,(30)CE b =,,, 所以0EF CE =,||2EF =,从而23()03()2b c b c b -+-=⎧⎪⎨+-=⎪⎩,,解得34b c ==,.所以(330)E ,,,(040)F ,,. 设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,DA BEFCyz x解得33(13)n a=,,. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以2||331|cos |2||||427BA n a n BA BA n a a <>===+,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60. 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分.(Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19xC P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ 0 1 2 3P112 512 512 112ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551y P B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C 上的点,则2213||28NP x y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,N 到直线58y =-的距离为58y +.由题设得22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=.AB OQ y xl M解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:函数的定义域为[0)+∞,,3()22x a x af x x x x--'=+=(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,. (Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f ==.AB OQ yxl M Hl 1若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增, 所以2()333a a a g a f ⎛⎫==-⎪⎝⎭. 若6a ≥,()f x 在[02],上单调递减, 所以()(2)2(2)g a f a ==-.综上所述,002()06332(2)6a a ag a a a a ⎧⎪⎪=-<<⎨⎪⎪-⎩,≤,,,,≥. (ii )令6()2g a --≤≤. 若0a ≤,无解.若06a <<,解得36a <≤. 若6a ≥,解得6232a +≤≤. 故a 的取值范围为3232a +≤≤.22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.满分14分.(Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+-2121()(1)k k k k a a a a ++++=-++, 所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥), 得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得111(2313)12k k ka k n n a a ++=-+≤,,,,≥所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥,于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<, 所以3n T <.绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
近5年浙江理科数学考题分析(二项式计数原理)

浙江省新课程(2020-2021)高考数学试题的考查内容 (二项式、计数原理)年份 考查 内容2009年2010年2011年2012年排列、组合、概率与统计二项式特定项系数4,排列组合16,概率、期望19错排问题17,二项式定理14,概率、期望19 古典概型的概率9、数学期望,相互独立事件的概率15分类加法计数原理、组合6,二项式特定项系数14,期望192021-6.假设从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有 种 种 种 种 D解析:第一种:奇奇偶偶 2254C C第二种:奇奇奇奇44C 第三种:偶偶偶偶45C2020-(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.假设将其随机的并排摆放到书架的同一层上,那么同一科目的书都不相邻的概率 (A )15 (B )25 (C )35 D 45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 2020--(17)有4位同窗在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同窗上、下午各测试一个项目,且不重复. 假设上午意外“握力”项目,下午意外“台阶”项目,其余项目上、下午都各测试一人. 那么不同的安排方式共 有______________种(用数字作答).解析:此题要紧考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题2642020-16.甲、乙、丙3人站到共有7级的台阶上,假设每级台阶最多站2人,同一级台阶上的人不区分站的位置,那么不同的站法种数是(用数字作答). 答案:336【解析】关于7个台阶上每一个只站一人,那么有37A 种;假设有一个台阶有2人,另一个是1人,那么共有1237C A 种,因此共有不同的站法种数是336种.2020--(16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,如此的六位数的个数是____40 ______(用数字作答)。
浙江省高考数学试题(理)分类解析汇编-排列组合二项式定理算法框图

浙江省高考数学试题(理)分类解析汇编 专题7:排列组合、二项式定理、算法框图一、选择题1. (全国 理5分)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有【 】 (A )8种 (B )12种 (C )16种 (D )20种 【答案】B 。
【考点】排列、组合的实际应用。
【分析】使用间接法,首先分析从6个面中选取3个面,共36C 20=种不同的取法,而其中有2个面相邻,即8个角上3个相邻平面,选法有8种,则选法共有20-8=12种。
故选B 。
2.(全国 理5分)已知方程()()22220x x m x x n -+-+=的四个根组成一个首项为14的的等差数列,则 =-||n m 【 】(A )1 (B )43 (C )21 (D )83【答案】C 。
【考点】等差数列的性质,一元二次方程根与系数的关系。
【分析】设4个根分别为x 1、x 2、x 3、x 4,则x 1+x 2=2,x 3+x 4=2由四个根组成一个首项为14的的等差数列,设x 1为第一项,x 2必为第4项,可得数列为1357, , , 4444。
又∵m =x 1·x 2=716,n =x 3·x 4=1516,∴7151||16162m n -=-=。
故选C 。
3.(全国 理5分)()22222341111234nn nC C C C limn C C C C→∞++++=++++【 】(A )3 (B )31 (C )61(D )6 【答案】B 。
【考点】组合及组合数公式,极限及其运算。
【分析】利用组合数的性质对原式进行等价转化,再求极限:∵111k k km m m C C C ---=+,∴()()2222322232343341116n n n n n n C C C C C C C C C ++-++++=++++===又∵()()()()()1111234212122n n n n n n n C C C C n +-+-++++=⋅=,∴()()()()()222223411112341111162123312n n n n nn n n C C C C nlim lim limn n nn C C C C n →∞→∞→∞+-+++++===+-⎛⎫+++++ ⎪⎝⎭。
专题十 排列组合 2004-2018浙江高考真题分类汇编(学生版)

专题十排列组合近五年考查率:60% 考查要点:分类、分步计数原理;排列组合中的常用方法一、知识梳理1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.4.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n =n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.5.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n +1=____________+____________.知识梳理答案:1.m 1+m 2+…+m n2.m 1×m 2×…×m n3.(1)不重不漏 (2)步骤完整 相互独立4.(1)一定的顺序 (2)所有不同排列 A m n (3)n (n -1)(n -2)…(n -m +1) m ≤n(4)排列 n ! n !(n -m )!1 5.(1)合成一组 (2)所有不同组合 C m n(3)n (n -1)(n -2)…(n -m +1)m ! n !m !(n -m )!(4)①C n -m n ②C m n C m -1n二、历年真题1.(2005•浙江,14)从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).2.(2007•浙江,14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张有10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是_____________(用数字作答)3.(2008•浙江,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)4.(2009•浙江,16)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).5.(2010•浙江,17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复,若上午不测“握力”项目,下午不测“台阶,其余项目上、下午都各测试一人,则不同的安排方式共有种 (用数字作答)。
五年2018-2022高考数学真题按知识点分类汇编10-等差数列(含解析)

五年2018-2022高考数学真题按知识点分类汇编10-等差数列(含解析)一、单选题1.(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.92.(2022·北京·统考高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2021·北京·统考高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( )A .9B .10C .11D .124.(2021·北京·统考高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64B .96C .128D .1605.(2020·全国·统考高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块6.(2020·浙江·统考高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =7.(2019·全国·高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =- C .228n S n n =-D .2122n S n n =-8.(2018·全国·高考真题)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题9.(2022·全国·统考高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.10.(2020·全国·统考高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.11.(2020·海南·高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________.12.(2019·全国·统考高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S =___________. 13.(2019·全国·高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.三、解答题14.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列. (1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 15.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.16.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.17.(2022·浙江·统考高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.18.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.19.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.20.(2021·全国·统考高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.21.(2021·全国·统考高考真题)设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 22.(2021·全国·统考高考真题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立. ①数列{}n a 是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分.23.(2021·全国·统考高考真题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.24.(2021·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.25.(2021·天津·统考高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列; (ii)证明)*nk n N =∈ 26.(2020·天津·统考高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.27.(2020·山东·统考高考真题)某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.(2018·全国·高考真题)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.29.(2019·全国·高考真题)已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式.30.(2019·全国·高考真题)记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围.31.(2019·全国·高考真题)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.参考答案:1.D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 2.C【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C. 3.C【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值.【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C . 4.C【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解.【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C. 5.C【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题. 6.D【分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确. 故选:D.【点睛】本题主要考查等差数列的性质应用,属于基础题. 7.A【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断. 8.B【详解】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果. 9.2【分析】转化条件为()112+226a d a d =++,即可得解.【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2. 10.25【分析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题. 11.232n n -【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目. 12.4.【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 13.100【分析】根据题意可求出首项和公差,进而求得结果.【详解】317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键. 14.(1)()12n n n a +=(2)见解析【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23nn n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. 【详解】(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦15.(1)证明见解析; (2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得. 【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.16.(1)证明见解析; (2)9.【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得22k m -=,即可解出.【详解】(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证. (2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k =,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.17.(1)235(N )2n n nS n *-=∈(2)12d <≤【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S ; (2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围. 【详解】(1)因为42312601S a a a -+==-,, 所以()()46211260d d d -+--+-++=, 所以230d d -=,又1d >, 所以3d =, 所以34n a n =-, 所以()213522n na a n n n S +-==,(2)因为n n a c +,14n n a c ++,215n n a c ++成等比数列, 所以()()()212415n n n n n n a c a c a c +++=++,()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d ∆=-+-≥,所以()()168812880d nd d nd -+-+≥对于任意的n *∈N 恒成立,所以()()212320n d n d ----≥⎡⎤⎡⎤⎣⎦⎣⎦对于任意的n *∈N 恒成立,当1n =时,()()()()21232120n d n d d d ----=++≥⎡⎤⎡⎤⎣⎦⎣⎦, 当2n =时,由()()2214320d d d d ----≥,可得2≤d 当3n ≥时,()()21232(3)(25)0n d n d n n ---->--≥⎡⎤⎡⎤⎣⎦⎣⎦, 又1d > 所以12d <≤18.(1)121,2n n n a n b -=-= (2)证明见解析 (3)1(62)489n n +-+【分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解; (2)由等比数列的性质及通项与前n 项和的关系结合分析法即可得证;(3)先求得212221212122(1)(1)k k k k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦,进而由并项求和可得114nk n k T k +==⋅∑,再结合错位相减法可得解.【详解】(1)设{}n a 公差为d ,{}n b 公比为q ,则11(1),n n n a n d b q -=+-=,由22331a b a b -=-=可得2112121d q d q d q +-=⎧⇒==⎨+-=⎩(0d q ==舍去), 所以121,2n n n a n b -=-=;(2)证明:因为120,n n b b +=≠所以要证1111()n n n n n n n S a b S b S b +++++=-, 即证111()2n n n n n n n S a b S b S b ++++=⋅-,即证1112n n n n S a S S ++++=-, 即证11n n n a S S ++=-,而11n n n a S S ++=-显然成立,所以1111()n n n n n n n S a b S b S b +++++=⋅-⋅;(3)因为212221212122(1)(1)k kk k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦2221(4143)2[41(41)]224k k k k k k k k --=-+-⨯++--⨯=⋅,所以211(1)n k k k k k a a b +=⎡⎤--⎣⎦∑2122212121221[((1))((1))]nk kk k k k k k k a a b a a b ---+==--+--∑124nk k k ==⋅∑,设124nk n k T k ==⋅∑所以2324446424nn T n =⨯+⨯+⨯+⋅⋅⋅+⨯,则2341244446424n n n T +⨯+⨯+⨯+⋅⋅⋅+⨯=,作差得()2341124(14)3244444242414n nn n n T n n ++⨯--=++++⋅⋅⋅+-⋅=-⨯-()126483n n +--=, 所以1(62)489n n n T +-+=,所以211(1)nkk k k k a a b +=⎡⎤--=⎣⎦∑1(62)489n n +-+. 19.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【分析】(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n nb b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]: 由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n n S b+=,得22=-nn nS b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n nS b+=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】(1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;20.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用. 21.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 22.证明过程见解析【分析】选①②作条件证明③,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②选②③作条件证明①an b +,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③: [方法一]:待定系数法+n a 与n S 关系式(0)an b a +>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+==,)1n +所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a为等差数列; 当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a ===也为等差数列,所以公差1d()11n d -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d 12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数1d的通项公式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.23.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法; 方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择. 24.证明见解析.【分析】的公差d ,进一步写出的通项,从而求出{}n a 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d(n -=()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.25.(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证; (ii )放缩得21222422n n n n na n c a c +<-⋅,进而可得112n n k k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n n n n nn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k-==, 设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑, 则123112322222n nn T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--,所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫=-<⎪⎭【点睛】关键点点睛:最后一问考查数列不等式的证明,因为nk =错位相减法即可得证. 26.(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk kn n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫-⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题. 27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同, 所以该男子这9天中每天走的路程数构成等差数列, 设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d , 则91260S =,147390a a a ++=. 因为1(1)2n n n S na d -=+,1(1)n a a n d =+-, 所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=, 所以该男子第5天走140里.28.(1)29n a n =-;(2)2=8n S n n -,最小值为–16.【分析】(1)方法一:根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式即得结果;(2)方法二:根据等差数列前n 项和公式得n S ,根据二次函数的性质即可求出. 【详解】(1)[方法一]:【通性通法】【最优解】 公式法 设等差数列{}n a 的公差为d ,由315S =-得,()3237152d ⨯⨯-+=-,解得:=2d ,所以29n a n =-.[方法二]:函数+待定系数法设等差数列{}n a 通项公式为=+n a kn b ,易得+=7k b -,由315S =-,即2315a =-,即25k b +=-,解得:=2,=9k b -,所以29n a n =-.(2)[方法1]:邻项变号法 由1(1)=+2n n n d S na -可得2=8n S n n -.当0n a <,即29<0n -,解得14n ≤≤,所以n S 的最小值为41=4+6=16S a d -, 所以n S 的最小值为16-. [方法2]:函数法 由题意知2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,即2=8n S n n -()2416n =--, 所以n S 的最小值为24=44?8=16S --,所以n S 的最小值为16-.【整体点评】(1)方法一:直接根据基本量的计算,利用等差数列前n 项和公式求出公差,即可得到通项公式,是该题的通性通法,也是最优解;方法二:根据等差数列的通项公式的函数形式特征,以及等差数列前n 项和的性质,用待定系数法解方程组求解;(2)方法一:利用等差数列前n 项和公式求n S ,再利用邻项变号法求最值; 方法二:利用等差数列前n 项和公式求n S ,再根据二次函数性质求最值. 29.(1)见解析;(2)1122nna n,1122nnb n.【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;。
浙江省排列组合历年高中高考题包括答案 .docx

排 列 组 合1. 【 2009年. 浙江卷. 理16】甲、乙、丙3 人站到共有7 的台 上,若每 台 最多站2 人,同一 台上的人不区分站的位置, 不同的站法种数是(用数字作答) .2. 【 2008 年 . 浙江卷 . 理 16】用 1, 2,3, 4, 5, 6 成六位数(没有重复数字) ,要求任何相 两个数字的奇偶性不同,且 1 和 2 相 , 的六位数的个数是 (用数字作答 ).3. 【 2007 年 . 浙江卷 . 理 14】某 店有 11 种 志, 2 元 1 本的 8 种, 1 元 1 本的 3 种,小 有 10 元志(每种至多 一本, 10 元 好用完) , 不同 法的种数是 __________(用数字作答)4. 【 2005 年 . 浙江卷 . 理 9】 从集合 { O , P ,Q , R , S } 与 {0 , 1, 2, 3,4, 5,6, 7,8, 9} 中各任取 2 个元素排成一排 ( 字母和数字均不能重复 ) .每排中字母 O , Q 和数字 0 至多只能出 一个的不同排法种数是_________. ( 用数字作答 ) .5.【 2017 年. 浙江卷 .16 】从 6 男 2 女共 8 名学生中 出 1 人,副1 人,普通2 人 成 4 人服 ,要求服 中至少有1 名女生,共有 ______种不同的 法.(用数字作答)6.【 2018 年 . 浙江卷 .16 】从 1, 3, 5,7, 9 中任取 2 个数字,从 0, 2, 4,6 中任取 2 个数字,一共可以 成___________个没有重复数字的四位数 .( 用数字作答 )7. 【 2014 年 . 浙江卷 . 理 14】在 8 券中有一、二、三等 各 1 ,其余5 无 . 将 8 券分配 4个人,每人2 ,不同的 情况有_____种(用数字作答) .8. 【 2013 年 . 浙江卷 . 理 14】将 A , B , C ,D , E ,F 六个字母排成一排,且 A ,B 均在 C 的同 , 不同的排法共有 __________ 种( 用数字作答 ) .9. 【 2012 年 . 浙江卷 . 理 6】若从 1,2,3 ,⋯, 9 9 个整数中同 取 4 个不同的数,其和 偶数, 不同的取法共有 ()A . 60 种B . 63 种C . 65 种D . 66 种10. 【 2010 年 . 浙江卷 . 理 17】有 4 位同学在同一天的上、 下午参加 “身高与体重” 、“立定跳 ” 、“肺活量”、“握力”、“台 ”五个 目的 ,每位同学上、下午各 一个 目,且不重复 . 若上午不 “握力”目,下午不 “台 ” 目,其余 目上、下午都各 一人 . 不同的安排方式共有______________种(用数字作答) .11. 【 2011 年 . 浙江卷 . 理 9】有 5 本不同的 ,其中 文 2 本,数学 2 本,物理1 本. 若将其随机的并排 放到 架的同一 上, 同一科目的 都不相 的概率(A )1( B )2( C )3D455 55答案:33640 266 【答案】 8424660 126060 480 D264 48/120=2/5。
浙江新高考数学文科一轮复习创新方案热点题型10.2排列与组合(含答案详析)

第二节摆列与组合考点一摆列问题[例 1] 3 名男生, 4 名女生,依据不一样的要求排队,求不一样的排队方案的方法种数:(1)选此中 5 人排成一排;(2)排成前后两排,前排 3 人,后排 4 人;(3)全体站成一排,男、女各站在一同;(4)全体站成一排,男生不可以站在一同;(5)全体站成一排,甲不站排头也不站排尾.[自主解答 ] (1)问题即为从 7 个元素中选出 5 个全摆列,有A75= 2 520 种排法.(2)前排 3 人,后排 4 人,相当于排成一排,共有 A 77= 5 040 种排法.(3)相邻问题 (捆绑法 ) :男生一定站在一同,是男生的全摆列,有A 33种排法;女生一定站在一同,是女生的全摆列,有 A 44种排法;全体男生、女生各视为一个元素,有 A 22种排法,依据分步乘法计数原理,共有 A 33·A44·A 22= 288 种排法.(4)不相邻问题 (插空法 ):先安排女生共有 A 44种排法,男生在 4 个女生隔成的 5 个空中安排共有 A 53种排法,故共有 A 44·A 53=1 440 种排法.(5)先安排甲,从除掉排头和排尾的 5 个位中安排甲,有 A 51= 5 种排法;再安排其余人,有 A 66= 720 种排法.所以共有A15·A 66= 3 600 种排法.【互动研究】本例中若全体站成一排,男生一定站在一同,有多少种排法?解:(捆绑法 )即把全部男生视为一个元素,与 4 名女生构成 5 个元素全摆列,故有 A 33·A 55= 720 种排法.【方法例律】1.解决摆列问题的主要方法直接法把切合条件的摆列数直接列式计算捆绑法相邻问题捆绑办理,即能够把相邻元素当作一个整体参加其余元素摆列,同时注意捆绑元素的内部摆列插空法不相邻问题插空办理,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中除法法定序问题除法办理的方法,可先不考虑次序限制,摆列后再除以定序元素的全摆列2.解决摆列类应用题的策略(1)特别元素 ( 或地点 )优先安排的方法,即先排特别元素或特别地点.(2)分排问题直排法办理.(3)“小公司”摆列问题中先集中后局部的办理方法.1. (2012 ·宁高考辽 )一排 9 个座位坐了3 个三口之家,若每家人坐在一同,则不一样的坐法种数为()A. 3× 3! B .3× (3! )3C. (3! )4D. 9!分析:选C把一家三口当作一个摆列,而后再摆列这 3 家,所以知足题意的坐法种数为 A 33(A 33) 3= (3! )4.2. (2014 南·充模拟 )将 5名实习教师分派到高一年级的 3 个班实习,每班起码 1 名,最多 2 名,则不一样的分派方案有()A.30 种B.90 种C. 180 种D. 270 种2222分析:选B选分组,再摆列.分组方法共有C5 C3,所以共有C5C3322·A 3= 90.A 2 A 2考点二组合问题[例 2] (1)若从 1,2,3,, , 9 这 9 个整数中同时取 4 个不一样的数,其和为偶数,则不同的取法的种数是()A. 60B. 63C. 65(2)(2013 重·庆高考 )从 3 名骨科、 4 名脑外科和灾医疗小组,则骨科、脑外科和内科医生都起码有D. 665 名内科医生中选派 5 人构成一个抗震救1 人的选派方法种数是________(用数字作答 ).[自主解答](1)由于从1,2,3, ,,9 中共有 4 个不一样的偶数和5 个不一样的奇数,要使和为偶数,则 4 个数全为奇数,或全为偶数,或 2 个奇数和 2 个偶数,故有C45+ C44+ C25C24=66种不一样的取法.(2)按每科选派人数分为3,1,1 和 2,2,1 两类.入选派人数为3,1,1 时,有 3 类,共有 C33C41C51+ C31C43C51+ C31C41C53= 200 种选派方法.入选派人数为2,2,1 时,有 3 类,共有 C32C42C51+ C32C41C52+ C31C42C52= 390 种选派方法.故共有 590 种选派方法.[答案 ] (1)D(2)590【方法例律】1.解决组合应用题的一般思路第一整体分类,要注意分类时,不重复不遗漏,用到分类加法计数原理;而后局部分步,用到分步乘法计数原理.2.组合问题的常有题型及解题思路常有题型有选派问题,抽样问题,图形问题,会合问题,分组问题.解答组合应用题时,要在认真审题的基础上,分清问题能否为组合问题,对较复杂的组合问题,要搞清是“ 分类” 仍是“ 分步” 解决,将复杂问题经过两个原理化归为简单问题.3.含有附带条件的组合问题的常用方法往常用直接法或间接法,应注意“ 起码”“ 最多”“ 恰巧”等词的含义的理解,关于波及“ 起码”“ 至多”等词的组合问题,既可考虑反面情况即间接求解,也能够分类研究进行直接求解.1.某校开设 A 类选修课 3 门, B 类选修课 4 门,一位同学从中选 3 门.若要求两类课程中各起码选一门,则不一样的选法的种数为()A. 30 B .35C. 42D. 48分析:选 A法一:分两种状况:(1)2 门 A,1 门 B,有 C32C41= 12种选法; (2)1门 A,2门B,有 C31C42= 3×6= 18 种选法.所以共有12+ 18= 30 种选法.法二:清除法: A 类 3 门, B 类 4 门,共 7 门,选 3 门, A,B 各起码选 1 门,有 C73-C33- C43=35- 1- 4= 30 种选法.2.两人进行乒乓球竞赛,先赢3 局者获胜,决出输赢为止,则全部可能出现的情况(各人胜败局次的不一样视为不一样情况)种数为 ()A. 10B. 15C.20D.30分析:选 C分三种状况:恰巧打 3 局,有 2 种情况;恰巧打 4 局 (一人前 3局中赢 2局,输 1 局,第 4 局赢 ),共有 2C32= 6 种情况;恰巧打 5 局 (一人前 4 局中赢 2 局,输 2 局,第 5 局赢 ),共有 2C42= 12 种情况.全部可能出现的情况种数为2+ 6+12= 20.高频考点考点三摆列与组合的综合应用1.摆列与组合是高中数学中的重要内容,也是高考命题的一个热门,多以选择题或填空题的形式体现,试题难度不大,多为简单题或中档题.2.高考对摆列与组合综合应用题的考察主要有以下几个命题角度:(1)相邻问题;(2)相间问题;(3)特别元素 ( 地点 )问题;(4)多元问题等.[例 3](1)(2013烟·台模拟)有 4 张分别标有数字1,2,3,4的红色卡片和 4 张分别标有数字1,2,3,4的蓝色卡片,从这8 张卡片中拿出 4 张卡片排成一行,假如拿出的 4 张卡片所标的数______种 (用数字作答).字之和等于10,则不一样的排法共有(2)(2014西·安模拟)某地奥运火炬接力传达路线共分 6 段,传达活动分别由 6 名火炬手达成.假如第一棒火炬手只好从甲、乙、丙三人中产生,最后一棒火炬手只好从甲、乙两人________种 (用数字作答).中产生,则不一样的传达方法共有[自主解答](1)拿出的 4 张卡片所标数字之和等于10,共有三种状况:1144,2233,1234.所取卡片是1144 的共有 A 44种排法.所取卡片是2233 的共有 A 44种排法.所取卡片是1234,则此中卡片颜色可为无红色, 1 张红色, 2 张红色, 3 张红色,全部是红色,共有 A 44+C14A 44+ C24A 44+ C34A 44+ A 44= 16A44种排法,所以共有 18A 44= 18× 4× 3× 2× 1= 432 种排法.(2)甲传第一棒,乙传最后一棒,共有 A 44种方法.乙传第一棒,甲传最后一棒,共有 A 44种方法.丙传第一棒,共有C12·A44种方法.由分类加法计数原理得,共有 A 44+ A 44+C21·A 44= 96 种方法.[答案 ] (1)432 (2)96摆列与组合综合问题的常有种类及解题策略(1)相邻问题捆绑法.在特定条件下,将几个有关元素视为一个元向来考虑,待整个问题排好以后,再考虑它们“ 内部” 的摆列.(2)相间问题插空法.先把一般元素排好,而后把特定元素插在它们之间或两头的空当中,它与捆绑法有同样作用.(3)特别元素 ( 地点 )优先安排法.优先考虑问题中的特别元素或地点,而后再摆列其余一般元素或地点.(4)多元问题分类法.将切合条件的摆列分为几类,而每一类的摆列数较易求出,而后依据分类计数原理求出摆列总数.1. 8 名学生和 2 位老师站成一排合影, 2 位老师不相邻的排法种数为()82828282A. A C A D.A CA分析:选A相间问题用插空法,8 名学生先排,有 A 88种排法,产生9 个空, 2 位老师插空,有 A 92种排法,所以最后有 A 88A 92种排法.2.3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数为()A. 360B. 288C.216D. 96分析:选 B先保证 3 位女生中有且只有两位女生相邻,则有C32·A22·A 33·A 42种排法,再从中清除甲站两头的排法,所以所求排法种数为22322222-C3·A 2·A 3·A4- 2C3·A 2·A2·A 3= 6× (6× 1224)= 288.3.将 4 名大学生疏派到 3 个乡镇去当村官,每个乡镇起码一名,则不一样的分派方案有________ 种(用数字作答 ) .分析:选出两人当作一个整体,再全摆列.共有C42·A33= 36 种分派方案.答案: 36———————————[讲堂概括——通法意会 ]———————————1 个辨别——摆列问题与组合问题的辨别方法辨别方法若互换某两个元素的地点对结果产生影响,则是摆列问题,即摆列问题与选用元素摆列次序有关若互换某两个元素的地点对结果没有影响,则是组合问题,即组合问题与选用元素组合次序没关3 个注意点——求解摆列与组合问题的三个注意点(1)解摆列与组合综合题一般是先选后排,或充足利用元素的性质进行分类、分步,再利用两个原理作最后办理.(2)解受条件限制的组合题,往常用直接法(合理分类 )和间接法 (清除法 )来解决.分类标准应一致,防止出现重复或遗漏.(3)关于选择题要慎重办理,注意等价答案的不一样形式,办理这种选择题可采纳清除法剖析选项,错误的答案都有重复或遗漏的问题.易误警告 (十二 )摆列与组合中的易错问题[典例 ]将6名教师分到 3 所中学任教,一所 1 名,一所 2 名,一所 3 名,则有 ________种不一样的分法.[解题指导 ]将6名教师分到 3 所中学,相当于将 6 名教师分红 3 组,相当于 3 个不一样元素.[分析 ]将6名教师分组,分三步达成:第 1 步,在 6 名教师中任取 1 名作为一组,有 C16种取法;第 2 步,在余下的 5 名教师中任取 2 名作为一组,有 C25种取法;第 3 步,余下的 3 名教师作为一组,有C33种取法.依据分步乘法计数原理,共有123C6C5C3= 60 种取法.再将这 3 组教师分派到 3 所中学,有 A 33= 6 种分法,故共有 60× 6=360 种不一样的分法.[答案 ] 360[名师评论 ] 1.假如审题不认真,极易以为有 C61C52C33= 60 种分法.由于此题中并无明确指出哪一所学校1名、2名、3名.2.解决摆列与组合应用题应要点注意以下几点:(1)第一要分清楚是摆列问题仍是组合问题,不可以将二者混杂.(2)在解决问题时,必定要注意方法的明确性,不可以造成重复计数.(3)分类议论时,要注意分类标准确实定,应做到不重不漏.牙语在小语种提早招生考试中,某学校获取5 个介绍名额,此中俄语 1 名,而且日语和俄语都要求一定有男生参加.学校经过选拔定下2 名,日语 2 名,西班3男2女共 5个介绍对象,则不一样的介绍方法的种数为()A. 20B. 22C. 24D. 36分析:选 C 3 个男生每个语种各介绍 1 个,共有 A 33A22种介绍方法;将 3 个男生疏为两2 2 23 2 2 2 2组,此中一组 2 个人,则共有 C3A 2A 2种介绍方法.所以共有 A 3A 2+ C3A 2A 2=24 种不一样的介绍方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2013届高三最新理科数学(精选试题17套+2008-2012五年浙江高考
理科试题)分类汇编10:排列、组合
一、选择题
1 .(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有___种. ( )
A .15
B .16
C .19
D .20
【答案】C
解析: 以丙、丁教师是否开课来讨论:(1)若丙、丁教师均不开课,情况有1种,(2)若丙、丁教师中恰有
一人开课,情况有8C 121212=C C 种,(3)若丙、
丁教师均开课,则①若丙、丁教师在相同节次开课,情况有2C 1
2=种,②若丙、丁教师在不同节次开课,情况有
8)(C C 121
2=+22A 种,综上,一共有1+8+2+8=19种,故选C
2 .(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )三个相同红球和一个白球放入4个不同盒子中(存放数量不限)的不同放法种数是 ( )
A .16
B .64
C .80
D .150
【答案】C
3 .(浙江省金华十校2013届高三4月模拟考试数学(理)试题)从1,2,3,9这9个整数中任意取3个不同的数作为二次函数2()f x ax bx c =++的系数,则满足
(1)2f Z ∈的函数()f x 共有 ( )
A .263个
B .264个
C .265个
D .266个 【答案】B 4 .(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的公益宣传广告,要
求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方
式有 ( )
A .18种
B .36种
C .48种
D .120种
【答案】B
5 .(2012年高考(浙江理))若从1,2,2,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( )
A .60种
B .63种
C .65种
D .66种
【答案】 【答案】D
【解析】1,2,2,,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种;4个都是奇数:455C =种.∴不同的取法共有66种. 6 .(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A 到B 的最短线路有( )条
( )
A .100
B .400
C .200
D .250
【答案】C
7 .(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)现需编制一个八位的序号,规定如下:
序号由4个数字和2个x 、1个y 、1个z 组成;2个x 不能连续出现,且y 在z 的前面;数字在0、1、2、、9之间任选,可重复,且四个数字之积为8.则符合条件的不同的序号种数有 ( )
A .12600
B .6300
C .5040
D .2520
【答案】B
8 .(浙江省建人高复2013届高三第五次月考数学(理)试题)用1、2、3、4、5、6组成一个无重复数字
的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为 ( )
A .18
B .108
C .216
D .432
【答案】D
二、填空题
9 .(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)有两排座位,前排11个座位,
后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?______(用数字作答).
【答案】346
10.(浙江省嘉兴市2013届高三4月教学测试数学(理)试卷及参考答案 (1))从点A 到点B 的路径如图
所示,则不同的最短路径共有____条.
【答案】22;
11.(2009年普通高等学校招生全国统一考试(浙江理))甲、乙、丙3人站到共有7级的台阶上,若每级
台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).
【答案】提示:对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,
则共有1237C A 种,因此共有不同的站法种数是336种.
12.(浙江省杭州高中2013届高三第六次月考数学(理)试题)前12个正整数组成一个集合{}1,2,3,,12⋅⋅⋅,
此集合的符合如下条件的子集的数目为m :子集均含有4个元素,且这4个元素至少有两个是连续的.则m 等于_______ .
【答案】369
B
A
B
13.(2008年高考(浙江理))用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)
【答案】40
14.(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word版))甲、乙、丙三位学生在学校开设的三门选修课中自主选课,其中甲和乙各选修其中的两门,丙选修其中的一门,且每门选修课这三位学生中至少有一位选修,则不同的选法共有______种.
【答案】21
15.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word版) )将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有____种不同的放法.(用数
字作答)
【答案】112
16.(2010年高考(浙江理))有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有_______种(用数字作答).
【答案】答案:264
解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题
17.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)从6名候选人中选派出3人参加A、B、C三项活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方法有__________种.
【答案】100。