第30课时 图形运动专题(四边形类)
三角形、四边形中动点问题

§1. 三角形、四边形中的动点问题【解题思路与方法】1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;2.化动为静 (由一般到特殊),以静制动;3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);5.注重分类讨论,通过分别画图与分离图形使问题简单化;6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).◆典例解析一、三角形中的动点问题例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),(1)如图1,当t 为何值时,△PBC 是直角三角形?(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?BCPA QDBCPAQDBCPA已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。
例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图(1)△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 。
四边形中的动点问题讲义

题型切片(两个)对应题目题型目标由动点产生的特殊图形例1,例2,例3,练习1,练习2,练习3;由动点产生的函数关系例4,例5,例6,例7,练习4,练习5.我们常见的四边形中的动点问题可以总结为单动点问题与双动点问题.解决问题的主要策略为以静制动,分类讨论,寻找临界点.题型切片知识互联网思路导航四边形中的动点问题题型一:由动点产生的特殊图形【例1】 已知如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为(100)A ,、(04)C ,,点D 是OA 的中点,点P 在BC 边上运动,当ODP △是腰长为5的等腰三角形时,点P 的坐标为 .【例2】 在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若E 、F 是AC 上两动点,分别从A 、C 两点以相同的速度1cm/s 向C 、A 运动. ⑴四边形DEBF 是平行四边形吗?请说明理由.⑵若BD =12cm ,AC =16cm ,当运动时间t 为何值时,四边形DEBF 是矩形?【例3】 如图所示,在直角坐标系中,四边形OABC 为直角梯形,OA ∥BC ,BC =14cm ,A 点坐标为(16,0),C 点坐标为(0,2).点P 、Q 分别从C 、A 同时出发,点P 以2cm/s 的速度由C 向B 运动,点Q 以4cm/s 的速度由A 向O 运动,当点Q 停止运动时,点P也停止运动,设运动时间为t s ()04t ≤≤.⑴ 求当t 为多少时,四边形PQAB 为平行四边形? ⑵ 求当t 为多少时,PQ 所在直线将梯形OABC 分成左右两部分,其中左部分的面积为右部分面积的一半,求出此时直线PQ 的函数关系式.典题精练ACO BP xQyP D xy BA C OQ PR M N图 1 图2 4 9y x O【例4】 ⑴如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于的函数图象如图2 所示,则当9x 时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处⑵如图,在矩形ABCD 中,AB=2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀 速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是( )【例5】 正方形ABCD 的边长为2厘米,点E 从点A 开始沿AB 边移动到点B ,点F 从点B 开始沿BC 边移动到点C ,点G 从点C 开始沿CD 边移动到点D ,点H 从点D 开始沿DA 边移动到点A 、它们同时开始移动,且速度均为0.5厘米/秒.设运动的时间为t (秒) ⑴求证:△HAE ≌△EBF ;D C P BAO3 1 1 3 S x A .O11 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2 典题精练题型二:由动点产生的函数关系HFD CA ⑵设四边形EFGH 的面积为S (平方厘米),求S 与t 之间的函数关系式,并写出自变 量t 的取值范围;【例6】 如图,已知正方形ABCD 与正方形EFGH的边长分别是它们的中心12O O ,都在直线l 上,AD l ∥,EG 在直线l 上,l 与DC 相交于点M,7ME =-方形EFGH 沿直线 l 以每秒1个单位的速度向左平移时,正方形ABCD 也绕1O 以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.(1)在开始运动前,12O O = ;(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD 停止旋转,这时AE = ,12O O = ;(3)当正方形ABCD 停止旋转后,正方形EFGH 继续向左平移的时间为x 秒,两正方形重叠部分的面积为y ,求y 与x 之间的函数表达式.x AB CDO y O F G H E C B Ay x【例7】 将一矩形纸片OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴上, 点C 在y 轴上,OA =10,OC =8.⑴ 如图1在OC 边上取一点D ,将△BCD 沿BD 折叠,使点C 恰好落在OA 边上,记 作E 点;① 求点E 的坐标及折痕DB 的长;② 在x 轴上取两点M 、N (点M 在点N 的左侧),且54.MN =,求使四边形BDMN 的周长最短的点M 、点N 的坐标.⑵ 如图2,在OC 、CB 边上选取适当的点F 、G ,将△FCG 沿FG 折叠,使点C 落在OA 上,记为H 点,设OH =x ,四边形OHGC 的面积为S .求:S 与x 之间的函数关系式,并指出变量x 的取值范围.题型一 由动点产生的特殊图形 巩固练习【练习1】 如图,在矩形OABC 中,已知A 、C 两点的坐标分别为()()4,00,2A C 、,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).⑴ 试证明:无论点P 运动到何处,PC 总与PD 相等;⑵ 当点P 运动到与点B 的距离最小时,求P 的坐标; ⑶ 已知E (1,-1),当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;真题赏析复习巩固y x P ODCBAx【练习2】 平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(3,0),(3,4).动点M .N 分别从O 、B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥BC ,交AC 于P ,连接MP .已知动点运动了x 秒.请你探索:若P 点坐标为(3-x ,43x )当x 为何值时,△MP A 是一个等腰三角形?有几种情况?写出研究成果并证明.【练习3】 如图,在直角梯形COAB 中,OC //AB ,以O 为原点建立平面直角坐标系,A 、B 、C三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. ⑴求直线BC 的解析式;⑵若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面 积的27.题型二 由动点产生的函数关系 巩固练习【练习4】 如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(s )随时间(t )变化的图象大致是( )A .。
四边形动点问题解题技巧

四边形动点问题解题技巧引言四边形动点问题是数学中常见的一个问题,也称为四边形运动几何问题。
它涉及到一个四边形,其中三个顶点是固定不动的,而第四个顶点在运动当中。
本文将介绍四边形动点问题的基本概念和解题技巧,以帮助读者更好地理解和解决这类问题。
基本概念在开始讨论四边形动点问题之前,我们先来了解一些基本概念:1.四边形:四边形是由四个线段连接在一起形成的几何图形。
它有四个顶点和四条边。
2.动点:动点是指在一定时间内位置发生改变的点。
在四边形动点问题中,通常涉及到一个顶点作为动点,其位置会随着时间的变化而变化。
解题技巧解决四边形动点问题的关键是要能够分析和利用几何图形的性质。
以下是一些常用的解题技巧:折线法折线法是解决四边形动点问题的常用方法之一。
具体步骤如下:1.根据题目所给条件,确定四边形的固定顶点和动点。
2.假设动点在某一时刻位于四边形的某个位置,通过分析几何性质,确定其他顶点和边的位置。
3.根据动点随时间的变化,得出四边形其他顶点和边的变化规律。
4.利用求解几何图形的方法,求出动点的运动轨迹。
5.根据题目要求,确定动点的最终位置或特性。
共线关系在解决四边形动点问题时,有时可以利用共线关系来简化求解过程。
当四边形的三个固定顶点及其对应的边共线时,可以利用相似三角形的性质来求解动点的位置。
各种特殊情况的考虑在解决四边形动点问题时,有时需要考虑一些特殊情况,如四边形退化为三角形的情况、四边形退化为直线的情况等。
针对不同的特殊情况,需要采取相应的分析方法和解题技巧。
解题示例下面通过一个具体的例子来演示如何应用解题技巧解决四边形动点问题。
例题:一个矩形的两个对角线交于点O,其中一个顶点A固定不动,另一个顶点B在矩形的一侧边上以一定速度向下移动。
求矩形的另外两个顶点C和D的运动轨迹。
解答: 1. 设矩形的高为h,宽为w,动点B的初始位置为(0, h)。
2.假设动点B的坐标为(x, y),根据矩形的性质,可以确定顶点C和D的坐标:–顶点C的坐标为(x+w, y);–顶点D的坐标为(x+w, y-h)。
动点问题(四边形动点专题)

动态几何问题--------动点问题(四边形动点专题)【动态几何问题的特点】动态几何是以几何知识和几何图形为背景,渗透运动变化观点的一类试题;用运动的观点研究几何图形中图形的位置、角与角、线段与线段之间的位置及大小关系。
几何图形按一定的条件进行运动,有的几何量是随之而有规律地变化的,形成了轨迹和极值;而有的量是始终保持不变,也就是我们常说的定值。
动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的 “变”与“不变”性;动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力,是近几年中命题的热点。
【动态几何问题的解决方法】解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”。
动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论。
解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。
解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.【动态几何问题的分类】动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题。
有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等。
根据其运动的特点,又可分为:(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题。
【典型例题】例1.如图,在梯形中,ABCD 动点从点出发沿线段3545AD BC AD DC AB B ====︒∥,,,,∠.M B 以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段BC C N C 以每秒1个单位长度的速度向终点运动.设运动的时间为秒.CD D t (1)求的长;BC (2)当时,求的值;MN AB ∥t (3)试探究:为何值时,t MNC △CB例2. 已知:等边三角形的边长为4厘米,长为1厘米的线段在ABC MN 的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点ABC △AB AB B 与点重合,点到达点时运动终止),过点分别作边的垂线,M A N B M N 、AB 与的其它边交于两点,线段运动的时间为秒.ABC △P Q 、MN t (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出MN t MNQP 该矩形的面积;(2)线段在运动的过程中,四边形的面积为,运动的时间MN MNQP S 为.求四边形的面积随运动时间变化的函数关系式,并写出自变量t MNQP S t 的取值范围.t 例3.如图,在等腰梯形中,∥,,AB =12 ABCD AB DC cm BC AD 5==cm,CD =6cm , 点从开始沿边向以每秒3cm 的速度移动,点从开P A AB B Q C 始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
四边形中的动态问题(动点)

四边形中的动态问题图形中的点、线的运动,构成了数学中的一个新问题——动态几何。
它通常分为三种类型:动点问题、动线问题、动形问题。
在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。
例1、Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上。
令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动,直到C点与N点重合为止。
设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,求y与x之间的函数关系式?例练、菱形OABC的边长为4cm,∠AOC=600,动点P从O出发,以每秒1cm的速度沿O-A-B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1cm的速度运动,在AB上以每秒2cm的速度沿O-A--B运动,过P、Q两点分别作对角线AC的平行线,设P点运动的时间为x秒,这两条平行线在菱形上截出的图形的周长为ycm,问当x为多少时,周长y可能为一个定值,定值为多少?四边形动点问题(一)1.(1)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.2.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?3. 如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.4. 如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t=时,四边形MNCD是平行四边形.(2)当t=时,四边形MNCD是等腰梯形6.如图,在ΔABC中,D是BC的中点,BC=10㎝,AD=7㎝,从点A沿着A→D的方向运动,速度是每秒2㎝,连结CE,BE,过点B作BF∥CE,交射线AD于点F,设运动时间为t秒(0<t<3.5)(1)求证:ΔBDF≌ΔCDE(2)当t为何值时,四边形BFCE是矩形,说明理由(3)若四边形BFCE是矩形,当AB和CA满足什么条件时,四边形BFCE是正方形。
中考数学一轮总复习 第30课时 图形的相似(一)(无答案) 苏科版

1第30课时:图形的相似(一)【知识梳理】1、比例的基本性质,线段的比、成比例线段,黄金分割.2、认识图形的相似,相似多边形的对应角相等,对应边成比例,面积比等于对应边比的平方.3、两个三角形相似的条件. 【课前预习】1、在比例尺是1:6000000的地图上,量得南京到北京的距离是15cm ,这两地的实际距离 是 .2、已知A :B =3:2,且A +B =10,则B = .3、2与2的比例中项是 .4、如图所示,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有 对相似三角形.5、如图,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =AB BC;④2AC AD AB = .其中单独能够判定△ABC ∽△ACD 的条件个数为 .【例题讲解】例1如图,在△ABC 和△ADE 中,∠BAD =∠CAE ,∠ABC =∠ADE . (1)写出图中两对相似三角形(不得添加辅助线); (2)请分别说明两对三角形相似的理由.例2如图,点E 、F 、G 分别在AD 、AB 、AC 上,且AF AG AE FB GC ED==,试说明:△EFG ∽△DBCD E例3 如图,在已建立直角坐标系的4×4正方形方格纸中,画格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P ,A ,B 为顶点的三角形与△ABC 相似(全等除外),则格点P 的坐标是_______.拓展变式 在Rt △ABC 中,斜边AC 上有一动点D (不与点A ,C 重合),过D 点作直线截△ABC ,使截得的三角形与△ABC 相似,则满足这样条件的直线共有______条.2例4 如图,梯形ABCD 中,AB ∥DC ,∠B =90°,E 为BC 上一点,且AE ⊥ED . (1)求证△AEB ∽△ACE ;(2)若E 为BC 中点,其他条件不变,那么图中还有其他的三角形相似吗?例5 如图,梯形ABCD 中,AB ∥CD ,E 为DC 中点,直线BE 交AC 于F ,交AD 的延长线于G ;请说明:EF ·BG =BF ·EGA【课堂练习】1、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的等腰直角三角形都相似;④所有的直角三角形都相似,其中正确的序号为 .2、如图所示,∠1=∠2,添加一个条件使得△ADE ∽△ACB ,此条件是 .3、下列各组线段中,成比例线段的是( ).(A ) 1、2、3、4 (B ) 1、2、2、4 (C ) 3、5、9、13 (D ) 1、2、2、3 44个三角形中,与△ABC 相似的是( ).(A ) (B ) (C ) (D )5、如图所示,以DE 为对称轴,折叠等边三角形ABC ,使顶点A 恰好落在BC 边上的点F 处,求证△DBF∽△FCE . 6、如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上.(1)判断△ABC 和△DEF 是否相似,并说明理由;(2)P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个点,请AF3在这7格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似.【课后作业】 班级 姓名 一、必做题:1、以下列长度(同一单位)为长的四条线段中,不成比例的是( ) (A )2,5,10,25 (B )4,7,4,7 (C )2,0.5,0.5,4 (D )2,5,52,252、两地的距离是500米,地图上的距离为10厘米,则这张地图的比例尺为( ) (A )1∶50(B )1∶500 (C )1∶5000 (D )1∶500003、下列各组图形不一定相似的是( )(A )两个等边三角形 (B )各有一个角是100°的两个等腰三角形 (C )两个正方形 (D )各有一个角是45°的两个等腰三角形4、△ABC 的三边之比为 3∶4∶5,若 △ABC ∽△A 'B 'C ' ,且△A 'B 'C ' 的最短边长为 6,则△A 'B 'C '的周长为 ( )(A )36 (B )24 (C )18 (D )125、如图,D 是BC 上的点,∠ADC =∠BAC ,则下列结论正确的是( ) (A )△ABC ∽△DAC(B )△ABC ∽△DAB(C )△ABD ∽△ACD (D )以上都不对 6、如图,△ABC 中,AB 、AC 边上的高CE 、BD 相交于P 点,图中所有的相似三角形共有( ) (A )2 个 (B )3 个 (C )4 个 (D )5 个7、如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) (A )AD BC DF CE = (B )BC DF CE AD = (C )CD BC EF BE = (D )CD ADEF AF=8、如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB = . 其中单独能够判定ABC ACD △∽△的个数为( )(A ) 1 (B ) 2 (C ) 3(D ) 49、若3a =5b ,则ab= . 10、若线段A 、B 、C 、D 成比例且A =3CM ,B =6CM ,C =5CM ,则D = CM . 11、已知,线段AB =15,点C 在AB 上,且AC ∶BC =3∶2,则BC = .12、甲、乙两地的实际距离20千米,则在比例尺为 1∶1000000 的地图上两地间的距离应为 厘米.13、已知△ABC ∽△A 'B 'C ',AB =21,A 'B '=18,则△ABC 与△A 'B 'C '的相似比k = . 14、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,则图中有 对相似三角形. 15、如图,△ABC 中,DE ∥BC ,已知AE EC =65,则DEBCB B A B DC E F ACD B4= .16、如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.17、如图,⊙O 中,弦AB CD 、相交于AB 的中点E ,连接AD 并延长至点F ,使DF AD =,连接BC 、BF . (1)求证:CBE AFB △∽△; (2)当58BE FB =时,求CB AD的值.二、选做题:18、点E 是ABCD 的边BC 延长线上的一点,AE 与CD 相交于点G ,则图中相似三角形共有 对.19、过△ABC 的边AB 上一点D 作一条直线与直线AC 相交,截得的小三角形与△ABC 相似,这样的直线有几条?请把他们一一做出来.BBB20、如图,A 、B 、D 、E 四点在⊙O 上,AE ,BD 的延长线相交于点C ,AE =8,OC =12,∠EDC =∠BAO .(1)求证CD CEAC CB=; (2)计算CD ·CB 的值,并指出CB 的取值范围.21、如图所示,在平面直角坐标系中,已知A (0,3),B (4,0),设P 、Q 分别是线段AB 、OB 上的动点,它们同时出发,点P 以3个单位/秒的速度从A 向B 运动,点Q 以1个单位/秒的速度从B 向O 运动.设运动时间为T 秒.(1)用含t 的代数式表示P 的坐标;(2)当t 为何值时,△OPQ 为直角三角形?FBCx。
北师版八年级数学上册图形的平移与旋转及四边形性质知识点汇总

第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.图像上每点都沿同一方向移动相同的距离,这个距离是指对应点之间线段的长度;3.平移前后两图形是全等的。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由旋转中心,旋转角度和旋转方向所决定的;3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)第四章四边形性质的探索1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。
平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。
两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(2)菱形:一组邻边相等的平行四边形叫做菱形。
菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。
四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。
菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1*L2/2)。
四边形的分类ppt课件

01
一组对边平行且相等。
02
两组对边分别平行。
03
对角线互相平分。
04
两组对角分别相等。
03 梯形
定义和性质
定义
梯形是一组对边平行,另一组对 边不平行的四边形。
性质
梯形有一组对边平行,两腰不等 长,有一个角为直角。
等腰梯形和直角梯形
等腰梯形
两腰相等的梯形。
直角梯形
有一个角为直角的梯形。
梯形的判定
四边形可以分为凸四 边形和凹四边形。
根据边的性质,四边 形的对角线将其分为 两个三角形。
四边形的分类依据
01
02
03
根据边的性质
可以分为平行四边形、梯 形、不规则四边形等。
根据角的性质
可以分为凸四边形和凹四 边形。
根据对角线的性质
可以分为等腰梯形、直角 梯形等。
02 平行四边形
定义和性质
定义
两组相对边平行。
四边形包装盒和运输托盘是常见的物 品,便于堆放和搬运。
家具设计
家具的框架和结构常常采用四边形, 如桌子、椅子、床等。
在数学和其他领域中的应用
代数方程
四边形可以用代数方程来表示, 用于解决数学问题。
解析几何
在解析几何中,四边形可以作为 研究对象,探究其性质和特征。
计算机图形学
在计算机图形学中,四边形是构 成二维图形的基本单元,广泛应 用于游戏开发、动画制作等领域
两组对边分别相等:菱 形。
两组对角分别相等:矩 形。
一组对边平行且相等: 等腰梯形。
任意四边形的面积计算
面积公式
01
面积 = (底 × 高) / 2。
注意事项
02
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第30课时 图形运动专题(四边形类)
【课标要求】
动点题是近年来中考的的一个热点问题,解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
一般方法是抓住变化中的“不变
量”,以不变应万变,首先根据题意理清题目中两个变量X 、Y 的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。
第三,确定自变量的取值范围,画出相应的图象。
【知识要点】
动态几何问题是近年来中考数学试题的热点题型之一,常以压轴题型出现。
这类问题主要是集中代数、几何、三角、函数知识于一体,综合性较强。
常用到的解题工具有方程的有关理论,三角函数的知识和几何的有关定理。
本节主要说明与四边形有关的运动问题。
【典型例题】
【例1】如图:□ABCD 的对角线AC 、BD 相交于点O ,BD=12cm ,AC=6cm ,点E 在线段BO 上从点B 以1cm/s 的速度运动,点F 在线段OD 上从点O 以2cm/s 的速度运动.⑴若点E 、F 同时运动,设运动时间为t 秒,当t 为何值时,四边形AECF 是平行四边形.⑵在⑴的条件下,①当AB 为何值时,四边形AECF 是菱形;②四边形AECF 可以是矩形吗?为什么?
【例2】如图,矩形ABCD 中,AB =4cm ,BC =8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动.
(1)若动点M 、N 同时出发,经过几秒钟两点相遇?
(2)若点E 在线段BC 上,且BE =3cm ,若动点M 、N 同时出发,相遇时停止运动,经过几秒钟,点A 、E 、M 、N 组成平行四边形?
【课堂检测】
1.如图所示,把菱形ABCD 沿着对角线AC 的方向移动到菱形A′B′C′D′的位置
,它们的重
叠部分(图中阴影部分)的面积是菱形ABCD 的
面积的
12
,若AC=, 则菱形移动的距离AA′
是 (
) A.
12
2
C.1 -1
2.(本题共10分)如图,E 是矩形ABCD 边BC 的中点,P 是AD 边上一动点,PF⊥AE,PH⊥DE,垂足分别为F ,H .(1)当矩形ABCD
的长与宽满足什么
D
条件时,四边形PHEF 是矩形?请予以证明.(2)在(1)中,动点P 运动到什么位置时,矩形PHEF 变为正方形?为什么? 3.
如
图,
在矩形A B C D 中,
6
,12A
B c m B
C c m ==
,点P 从点A 沿边A B 向
点B 以1/cm s 的速度移动;同时,点Q 从点B 沿边B C 向点C 以2/cm s 的速度移动。
问:⑴几秒钟后PBQ ∆的面积等于28cm ?⑵几秒钟后PQ ⊥DQ ?⑶是否存在这样的时刻,使2
8PDQ S cm ∆=,试说明理由?
4.两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:
(1) 如图11(1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四
边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图11(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
C
E
B
A
【课后作业】
5.如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC=5,AD=6,BC=12,动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动。
两点同时出发,当P 点到达C 点时,Q 点随之停止运动。
(1)梯形ABCD 的面积等于 ;
(2)当PQ ∥AB 时,P 点离开D 点的时间等于 ;
(3)当P 、Q 、C 三点构成直角三角形时,P 点离开D 点多少时间?
6.(本题满分8分)如图,在△ABC 中,∠C=90°,
AC=8,BC=6.P 是AB 边上的一个动点(异于A 、B 两点),过点P 分别作AC 、BC 边的垂线,垂足为M 、N .设AP=x . (1)在△ABC 中,AB= ▲ ;
(2)当x= ▲ 时,矩形PMCN 的周长是14;
(3)是否存在x 的值,使得△
PAM 的面积、△PBN 的面积与矩形PMCN 的面积同时相等?
请说出你的判断,并加以说明.
7.如图9,A B C △中,点P 是边A C 上的一个动点,过P 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE=PF ;
(2)当点P 在边A C 上运动时,四边形BCFE 可能是菱形吗?说明理由;
(3)若在AC 边上存在点P ,使四边形AECF 是正方形,且2
3
BC
AP .求此时∠A 的大小.
8.(2010·汕头)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;
(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?
(3)问当x 为何值时,线段MN 最短?求此时MN 的值.。