大学物理:12-4理想气体分子的平均平动动能与温度的关系
气体分子的总平动动能公式

气体分子的总平动动能公式1.理论推导根据经典力学的动能公式,一个物体的动能等于其质量乘以速度的平方的一半。
对于气体分子而言,其动能公式为K = 1/2 mv^2 ,其中K表示平动动能,m表示分子的质量,v表示分子的速度。
考虑到大量气体分子之间的碰撞,根据最小理论,分子速度趋于均匀分布,即符合麦克斯韦尔-波尔兹曼速度分布定律。
因此,气体分子的平动动能公式可以进一步表示为:K=3/2kT其中k表示玻尔兹曼常数,T表示气体的温度。
这个公式表明气体分子的平动动能和温度成正比,并且与分子的质量无关。
2.实验验证实验上,可以通过测量气体热容来验证气体分子的平动动能公式。
按照热力学理论,热容是容器中的气体在温度上升1度时所吸收或释放的热量。
根据理论推导,气体分子的平动动能与温度成正比。
因此,当气体温度升高1度时,其内能增加,从而吸收热量。
通过测量气体的热容,可以计算出气体分子的平动动能与温度之间的关系。
3.应用(1)理解气体的物理性质:气体分子的平动动能公式可以帮助我们理解气体的热力学性质。
例如,当温度升高时,气体分子的平动动能也会增加,导致气体的压强增大。
(2)研究气体扩散和扩散速率:气体分子的平动动能决定了其在空间中的扩散速率。
通过研究气体分子的平动动能公式,可以预测和解释气体在空气中的扩散行为。
(3)研究气体反应动力学:在化学反应中,气体分子的碰撞引起反应的发生。
气体分子的平动动能公式可以帮助我们理解气体反应的速率和动力学过程。
(4)热力学计算:在工程和化学领域,平动动能公式可以用于热力学计算和设计。
例如,在工业生产中,通过控制气体温度和压力,可以调节和优化气体的能量传输和转化。
总结来说,气体分子的平动动能公式是K=3/2kT,其中K表示平动动能,k表示玻尔兹曼常数,T表示气体的温度。
这个公式揭示了气体分子平动动能和温度之间的关系,在理论推导、实验验证和应用等方面都有广泛的应用。
第十二章气体动理论题库

第十二章气体动理论第十二章气体动理论 (1)12.1平衡态理想气体物态方程热力学第零定律 (3)判断题 (3)难题(1题)中题(1题)易题(1题)选择题 (4)难题(1题)中题(1题)易题(1题)填空题 (5)难题(1题)中题(1题)易题(2题)计算题 (7)难题(1题)中题(2题)易题(2题)12.2物质的微观模型统计规律性 (13)判断题 (13)难题(0题)中题(0题)易题(0题)选择题 (14)难题(1题)中题(1题)易题(1题)填空题 (16)难题(0题)中题(1题)易题(1题)计算题 (17)难题(0题)中题(0题)易题(0题)12.3理想气体的压强公式 (19)判断题 (19)难题(0题)中题(0题)易题(2题)选择题 (20)难题(3题)中题(4题)易题(1题)填空题 (22)难题(0题)中题(4题)易题(3题)计算题 (24)难题(1题)中题(3题)易题(2题)12.4理想气体分子的平均平动动能与温度的关系 (28)判断题 (28)难题(0题)中题(0题)易题(3题)选择题 (29)难题(1题)中题(6题)易题(1题)填空题 (31)难题(5题)中题(6题)易题(3题)计算题 (36)难题(2题)中题(5题)易题(3题)12.5能量均分定理理想气体内能 (42)判断题 (42)难题(0题)中题(0题)易题(3题)选择题 (43)难题(0题)中题(2题)易题(1题)填空题 (44)难题(0题)中题(0题)易题(3题)计算题 (46)难题(1题)中题(1题)易题(1题)12.6麦克斯韦气体分子速率分布率 (49)判断题 (49)难题(0题)中题(1题)易题(2题)选择题 (50)难题(1题)中题(9题)易题(5题)填空题 (56)难题(2题)中题(5题)易题(7题)计算题 (60)难题(2题)中题(8题)易题(4题)12.8分子平均碰撞次数和平均自由程 (68)判断题 (68)难题(0题)中题(1题)易题(1题)选择题 (69)难题(1题)中题(4题)易题(2题)填空题 (71)难题(0题)中题(3题)易题(0题)计算题 (73)难题(1题)中题(1题)易题(3题)第十二章气体动理论12.1平衡态理想气体物态方程热力学第零定律判断题判断(对错)题每个小题2分;难题1201AAA001、如果容器中的气体与外界之间没有能量和物质的传递,则这种状态叫做平衡态………………………………………………………………………………………………()解:○1考查的知识点:对平衡态概念的理解○2试题的难易度:难○3试题的综合性:12-1 平衡态○4分析:如果容器中的气体与外界之间没有能量和物质的传递,气体的能量也没有转化为其他形式的能量,气体的组成及其质量均不随时间变化,则气体的物态参量不随时间的变化这种状态叫做平衡态正确答案:(错误)中题1201AAB001、两系统达到热平衡时,两系统具有一个共同的宏观性质——温度………()解:○1考查的知识点:对平衡态概念的理解○2试题的难易度:中○3试题的综合性:12-1--平衡态○4分析:平衡态的概念正确答案:(正确)易题1201AAC001、平衡态是一种动态平衡态…………………………………………………()解:○1考查的知识点:对平衡态概念的理解○2试题的难易度:易○3试题的综合性:12-1--平衡态○4分析:平衡态的概念正确答案:(正确)选择题难题1201ABA001、处于平衡态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则他们()(A)温度、压强均不相同(B)温度、压强都相同(C)温度相同、但氦气压强小鱼氮气的压强(D)温度相同、但氮气压强小鱼氦气的压强解:○1考查的知识点:理想气体物态方程○2试题的难易度:难○3试题的综合性:综合运用了32kkTε=和p nkT=○4分析:理想分子气体的平均平动动能为32kkTε=仅与温度有关因此当分子的平均平动动能相同时,温度也相同,又由于理想气体物态方程p nkT=,分子数密度相同,所以气体的压强也相同正确答案:(C)中题1201ABB001、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:()(A)pV / m;(B)pV /(kT);(C)pV /(RT);(D)pV / (mT).解:○1考查的知识点:理想气体物态方程○2试题的难易度:中○3试题的综合性:12-1理想气体物态方程的公式pV NkT=○4分析:理想气体物态方程的公式pV NkT=;式中N是体积V中的气体分子数,k 为玻尔兹曼常量,此题容易和另一个公式p nkT=混用,导致出错。
理想气体分子的平均平动动能与温度的关系

§12-4 理想气体分子的平均平动动能 与温度的关系
§12-4
理想气体分子的平均平动动能与温度的关系
一、气体温度和平均平动动能的关系
根据理想气体状态方程,可得:
PV vRT
2 P n nkT 3
2019年3月20日星期三
vRT vN A kT P nkT V V
3 kT 2
2019年3月20日星期三
理学院 物理系
2019年3月20日星期三
理学院 物理系
大学物理
§12-4
理想气体分子的平均平动动能与温度的关系来自三、气体分子的方均根速率
3 1 2 kT m v 2 2
3kT 3 RT v m
2
00C时气体分子的方均根速率 气体种类 方均根速率(m/s) O2 4.61×102 N2 4.93×102 H2 1.84×103 CO2 3.93×102 H2O 6.15×102
理学院 物理系
大学物理
§12-4
理想气体分子的平均平动动能与温度的关系
3 二、 2 kT
的物理意义
1.平均平动动能只与温度有关。 2.温度具有统计的意义,只能用于大量分子,对单个 分子谈温度是无意义的。 3.当两种气体具有相同的温度时,它们相应的平均平 动动能相等。 若使这两种气相接触,两种气体间将没有宏观的能量 传递,它们各自处于热平衡状态。即温度是表征气体 处于热平衡状态的物理量。这也就是热力学第零定 律的微观解释。
第十二章 气体动理论

1 2 v = v 3
2 x
1 ε k = mv2 2
理想气体压强公式: 第十二章:气体动理论
2 p = nε k 3
压强的物理意义
统计关系式 宏观可观测量
2 p = nε k 3
微观量的统计平均值
理想气体的压强公式是力学原理和统计方法相结合得出 的统计规律。
第十二章:气体动理论
理想气体分子平均平动动能与温度的关系
T = 273.15 + t
此外还包含:气体的质量,密度等
表示大量分子集体特征的物理量,可直接测量! 第十二章:气体动理论
微观角度: 研究气体分子的热运动
质量 m 坐标 (x, y, z) 气体分子 的: 精确求解所有分子的运动方程? 不可能! 分子数目太大! 相互作用复杂! 不能直接观测!
v 速度 v
1 3 2 ε k = m v = kT 2 2
i ε = kT 2
分子的平均能量:
i 1 mol 理想气体的内能: E = N Aε = RT 2
第十二章:气体动理论
εk ∝ T
第十二章:气体动理论
方均根速率
1 3 2 ε k = m v = kT 2 2
vrms
3kT 3RT = v = = m M
2
气体分子的方均根速率和质量的平方根成反比
第十二章:气体动理论
注意
热运动与宏观运动的区别: 温度所反映的是分子的无规则运动,它和物体的整体 运动无关,物体的整体运动是其中所有分子的一种有 规则运动的表现. 当温度 T = 0 时,气体的平均平动动能为零,这时气 体分子的热运动将停止。然而,事实上绝对零度是不 可能达到的,因而分子的热运动是永不停息的。
单个分子遵循力学规律:
《大学物理》第8章气体动理论练习题及答案

《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
大学物理 部分公式

1.理想气体物态方程:pV=NkT 变形1:Pv=νRT (R=N A k)变形2:P=nkT (n=N/V为分子数密度)2.理想气体压强公式:P=(1/3)nmv^2 变形:P=2/3nεk (εk分子平均平动动能)3理想气体平均平动动能与温度关系:1/2mv^2=εk=3/2kT4方均根速率: Vrms=(3kT/m)^(1/2)= (3Rt/M)^(1/2)5自由度:单i=3 双刚=5 双非=7 三以上刚=6 ε =i1/2kT6理想气体内能:E=N A i1/2kT =i/2RT7三种统计速率:1)最概然速率V p=(2kT/m)^(1/2)= (2RT/M)^(1/2) 2)平均速率v =(8kT/πm)^(1/2) 3)4 8分子平均碰撞次数:Z,分子连续两次碰撞间的路程均值叫做平均自由程λλ=v/ Z Z =1.41πd ^2 vn 9准静态过程中体积变化做功:ΔW=PΔV=(Sv1v2)pdV10.摩尔定体热容:C v,m=dQ/dT dE=:C v,m* dT11热机效率:η=W/Q1 =(Q1-Q2)/Q1 =1-Q1/Q2 (Q1为吸热量 Q2为热源吸收量)12等体过程中V为常量,即dW=0 dQ=dE 吸收热量全部转化为内能13转动定理:M=Jα常见转动惯量1)中心轴细棒:ml^2 /12 2)圆柱体:mR^2 / 2 3)薄圆环J=mR24)端点轴细棒:J=ml2/14平行轴定理:J=J C+md215电容器电能:W=1/2 QU=1/2 CU216 电场能量密度:w=1/2εΕ217.磁场能量:W=1/2 LI2 密度w=W/V=B2/2μ19.毕奥撒法尔定律:dB=(μ0/4π)*(Idlsinθ/r^2)= (μ0/4π)*(Idl e r/r^2)20.运动电荷磁场:B=(μ0/4π)*(qvr/r^3)21.无限长直导线B=μ0I/2πr022.库伦定律 F=(1/4πε0)(q1q2/r^2)e r23圆形载流导线轴线上一点 B=(μ0/2)(R2I/(R2+x2)3/2) x>>R B=μ0IR2/2x3A-B 等温膨胀内能不变对外做功W1=从T1高温处吸热Q1W1=Q1=vRTT1ln(V2/V1)B-C 绝热膨胀对外做功等于气体减少的内能W2=vCv,m(T1-T2)C-D 等温压缩:外界对气体做功等于气体给低温热源的热量W3=Q2= vRTT2ln(V4/V3)。
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?解:由式nkT p =,有3202352/1068.15731038.1760/10013.1100.1m kT p n 个⨯≈⨯⨯⨯⨯⨯==-- 因而器壁原来吸附的气体分子数为个183201068.110101068.1⨯=⨯⨯⨯==∆-nV N12-2 一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间等距排列)分析:在题中压强和温度的条件下,氧气可视为理想气体。
因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。
又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。
解:(l )单位体积分子数325m 1044.2-⨯==kT p n(2)氧气的密度3m kg 30.1-⋅===RT pM V m ρ(3)氧气分子的平均平动动能J 1021.62321k -⨯==kT ε(4)氧气分子的平均距离m1045.3193-⨯==n d12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。
试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。
分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。
因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-⋅⨯=v 应是对应于氢气分子的最概然速率。
大学物理(一)教学大纲

《大学物理(一)》课程教学大纲一、课程名称1.中文名称大学物理(一)2.英文名称 University Physics (I)3.课程号 WL310011二、学时总学时54学时其中:授课54学时实验0学时三、考核方式考试四、适用专业应用型非物理各专业五、课程简介(200字以内)本课程系统地阐述了物理学中“力学”和“热学”的基本概念、基本理论和基本方法。
“力学”包括质点运动学、牛顿定律、动量守恒定律和能量守恒定律、刚体转动、振动、波动、相对论等;“热学”包括气体动理论和热力学基础等。
六、本门课程在教学计划中的地位、作用和任务物理学是探讨人类直接接触世界、时间、空间、以及时空中的物质结构和物质运动规律的科学,物理学着重研究世界中最普遍、最基本的运动形式及规律。
因此,它是自然科学和工程技术的基础,也是人类思想方法、世界观建立的基础。
在高等工科院校中,物理是一门重要的必修基础课,是一门建立正确的科学思想和科学方法论的基础课。
它的教学目的和任务是: 使学生对物理学的基本概念、基本原理和基本规律有较全面系统的认识,了解各种运动形式之间的联系,以及物理学的近现代发展和成就。
使学生在运算能力、抽象思维能力和对世界的认识能力等方面受到初步的训练;熟悉研究物理学的基本思想和基本方法;培养学生分析问题和解决问题的能力。
使学生在学习物理学知识的同时,逐步建立正确的思想方法和研究方法,充分发挥本课程在培养学生辩证唯物主义世界观方面的作用,进行科学素质教育。
大学物理课的教学宗旨不仅是为后续专业课打好基础,而且也是使学生建立正确的科学思想和方法论的一门基础课。
作为处在当今科学、社会高速发展阶段的大学生,应了解科学的进展,具备科学的思想和方法。
学生通过物理学的学习可以培养自己判断、推理、归纳的逻辑思维能力;细致、敏锐、准确的观察能力、想象创造力和运用其他学科知识处理、解决实际问题的能力等。
这些能力正是人们在自然界和社会中生存与发展必不可少的基本素质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V
m
第十二章 气体动理论
4
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
2 理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常 量,R 为摩尔气体常量,则该理想气体的分 子数为:
(A) pV m (B) pV (kT )
(C) pV (RT ) (D) pV (mT )
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
理想气体压强公式
p
2 3
n k
理想气体物态方程 p nkT
分子平均平动动能:
k
1 2ห้องสมุดไป่ตู้
mv2
3 2
kT
微观量的统计平均 宏观可测量量
第十二章 气体动理论
1
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
温度 T 的物理意义
k
1 mv2 2
解 p nkT
N nV pV kT
第十二章 气体动理论
5
物物理理学学
第第五五版版
选择进入下一节:
本章目录
12-3 理想气体的压强公式
12-4 理想气体分子的平均平动动能 与温度的关系
12-5 能量均分定理 理想气体内能 12-6 麦克斯韦气体分子速率分布律
*12-7 玻耳兹曼能量分布律 等温气压公式
3 kT 2
(1)温度是分子平均平动动能的量度.
k T
(2)温度是大量分子的集体表现.
(3)在同一温度下各种气体分子平均平 动动能均相等.
第十二章 气体动理论
2
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
注意
热运动与宏观运动的区别:温度所 反映的是分子的无规则运动,它和物体 的整体运动无关,物体的整体运动是其 中所有分子的一种有规则运动的表现.
第十二章 气体动理论
6
第十二章 气体动理论
3
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
讨论
1 一瓶氦气和一瓶氮气密度相同,分子平均 平动动能相同,而且都处于平衡状态,则:
(A)温度相同、压强相同.
(B)温度、压强都不同.
(C)温度相同,氦气压强大于氮气压强.
(D)温度相同,氦气压强小于氮气压强.
解 p nkT N kT k T