理论力学讲义课件-动量定 理
动量和动量定理 课件

即球的动量变化大小为0.600 kg·m/s,方向与球飞来的方 向相反.
(2)羽毛球的初速度:v=25 m/s, 羽毛球的末速度:v′=-95 m/s, 所以Δv=v′-v=-120 m/s.
羽毛球的初动能: Ek=12mv2=1.56 J, 羽毛球的末动能: Ek′=12mv′2=22.56 J. 所以ΔEk=Ek′-Ek=21 J. 【答案】 (1)0.600 kg·m/s,方向与球飞来的方向相反 (2)120 m/s,方向与初速度方向相反 21 J
6.动量与动能的区别与联系 (1)区别:动量是矢量,动能是标量;动能从能量的角度 描述物体的状态,动量从物体运动的作用效果方面描述物体的 状态. (2)联系:动量和动能都是描述物体运动状态的物理量, 大小关系为Ek=2pm2 或p= 2mEk.
二、冲量及冲量的计算方法 1.对冲量的理解 (1)冲量是过程量,冲量描述的是力的作用对时间的积累 效应,取决于力和时间这个因素,所以求冲量时一定要明确所 求的是哪一个力在哪一段时间内的冲量.
【答案】 (1)5.4×104 N (2)1.8×103 N
三、对动量定理的理解及应用 1.对动量定理的理解 (1)适用对象:在中学物理中,动量定理的研究对象通常 为单个物体. (2)适用范围:动量定理不仅适用于宏观物体的低速运 动,也适用于微观物体的高速运动.不论是变力还是恒力,不 论几个力作用时间是同时还是不同时,不论物体的运动轨迹是 直线还是曲线,动量定理都适用.
二、有关冲量的理解和计算 【例2】 下面有关冲量的说法中正确的是( ) A.放置在水平桌面的物体静止一段时间,由于物体速度 不变,所以物体受到重力的冲量为零 B.力对物体的冲量越大,物体受到力一定越大 C.力对物体的冲量越大,力的作用时间一定越长 D.物体受到的冲量越大,它的动量变化越大
理论力学课件-动量定理

vA
A D
C
p=
p +p
2 x
2 y
ω O
vE
φ E
1 = (5 1 +4m )lω m 2 2
方向余弦为为
vD
x
px c s( p x) = o , , p
co p y) = s( ,
py p
22
解法二: 解法二 整个机构的动量等于曲柄OA、规尺 、 整个机构的动量等于曲柄 、规尺BD、 滑块B 的动量的矢量和, 滑块 和D的动量的矢量和,即 的动量的矢量和
y vB B
vA
A D x
p = pOA + pBD + pB + pD
其中曲柄OA的动量 OA=m1vE ,大小是 其中曲柄 的动量p 的动量 大小是
ω O
vE
φ E
vD
y
pOA = m1vE = m1lω/2
其方向与v 一致,即垂直于OA并顺着 并顺着ω的转 其方向与 E一致,即垂直于 并顺着 的转 向(图 b) 图
31
质点系动量定理
p = ∑ mi vi
d(mvi ) d p i =∑ = d t d t
n
∑ma =∑F
i i i
n n d (mi vi ) = ∑ Fi (e ) + ∑ Fi (i ) ∑ dt i =1 i =1 i =1
∑F =0 i
(i)
dp (e) =∑ i F dt
质点系动量对时间的导数, 质点系动量对时间的导数,等于作用于它 上所有外力的矢量和,称为动量定理 动量定理。 上所有外力的矢量和,称为动量定理。
?
14
9.1 动量与冲量
《理论力学》课件 第十一章

第十一章动量定理动量定理、动量矩定理和动能定理统称为动力学普遍定理.§11--1 动量与冲量1、动量的概念:产生的相互作用力⑴定义:质点的质量与速度的乘积称为质点的动量,-----记为mv。
质点的动量是矢量,它的方向与质点速度的方向一致。
kgms/单位)i p v 质点系的动量()i i i i c im r m r r m m ∑∑==∑质心公式:⑵、质点系内各质点动量的矢量和称为质点系的动量。
)idr p v dt ()i i dm r dt∑注意:质量m i是不变的如何进一步简化?参考重心、形心公式。
李禄昌()i i i i c im r m r r m m ∑∑==∑) p r r cm v =质点系的动量等于质心速度与其全部质量的乘积。
求质点系的动量问题转化为求刚体质心问题。
cωv C =0v Ccωcov C2.冲量的概念:tF IF I d d IF d 物体在力的作用下引起的运动变化,不仅与力的大小和方向有关,还与力作用时间的长短有关。
用力与作用时间的乘积来衡量力在这段时间内积累的作用。
冲量是矢量,方向与常力的方向一致。
冲量的单位是N.S 。
§11-2 动量定理—-确定动量与冲量的关系由牛顿第二定律:F v m )F v m d )称为质点动量定理的微分形式,即质点动量的增量v v ~ ⎰==-21d 12t t It F v m v m称为质点动量定理的积分形式,即在某一时间间隔⎰==-21d 12t t It F v m v m 2、质点系的动量定理(F (F外力:,内力:(F (F M FF F v tF F v i i d )(∑+)()(d d d e ie i It F p ∑=∑=)(d d e i F tp ∑=称为质点系动量定理的微分形式,即质点系动量的质点系动量对时间的导数等于作用于质点系的外力的矢量和(主矢)动力学与静力学联系。
)(112e ini Ip p =∑=-p p ~ 称为质点系动量定理的积分形式,即在某一时间)(d d e xx F tp ∑=)(d d e yy Ftp ∑=)(d d e z z F tp ∑=动量定理微分形式的投影式:动量定理积分形式的投影式:)(12e xx x Ip p ∑=-)(12e yy y Ip p ∑=-)(12e zz z Ip p ∑=-动量定理是矢量式,在应用时应取投影形式。
理论力学-动量定理讲解

(a)
第三章 动 量 定 理
例题 3-1
§3-1
动量与冲量
例 题3-1
已知: 曲柄OA长 l ,质量是 m1,并以角速度ω绕定轴 O 转动。
规尺BD长2l ,质量是 2m1 ,两滑块的质量都是 m2 。
解法一: 整个机构的动量等于曲柄OA、规尺BD、 滑块B 和D的动量的矢量和,即
动 力 学
动量定理
西北工业大学
支希哲 朱西平
第三章 动 量 定 理
侯美丽
动量定理
动 力 学
第 三 章
动 量 定 理
§3-1 动量与冲量
§3-2 动量定理和冲量定理 §3-3 质心运动定理
第三章 动 量 定 理
目录
第三章 动 量 定 理
几个实际问题
蹲在磅秤上的人站起来时磅秤指 示数会不会发生的变化
所以,系统的动量大小为
vA
A E D
C
p
p p
2 x
vE
φ
2 y
1 (5m1 4m2 )l 2
vD
x
方向余弦为为
p cos( p, x ) x , p
cos( p, y )
py p
第三章 动 量 定 理
§3-1
解法二:
动量与冲量
y vB B
例 题3-1
整个机构的动量等于曲柄OA、规尺BD、 滑块B 和D的动量的矢量和,即
动量与冲量
y vB B ω O
例 题3-1
因为规尺和两个滑块的公共质心在 点 A,它们的动量表示成 p´= pBD + pB + pD = 2(m1 + m2)vA 由于动量 KOA 的方向也是与 vA 的方向 一致,所以整个椭圆机构的动量方向
理论力学第11章动量定理

总结和应用
动量定理是解释和分析物体运动的重要工具,可以应用于各个领域,帮助我们理解世界的运动规律。
理论力学第11章动量定理
动量定理是研究物体运动的基本定律之一。它包括动量的基本概念、动量守 恒定律、数学表达式、弹性碰撞和非弹性碰撞的动量定理、应用举例、与能 量守恒定律的关系等内容。
动量的概念
动量是描述物体运动状态的物理量,是质量和速度的乘积。它能够帮助我们理解物体如何受力而改变运 动状态。
动量守恒定律
动量定理的应用举例
1
汽车碰撞
动量定理可以帮助我们分析汽车碰撞的力学过程,对交通事故进行研究和安全设计提 供指导。
2
火箭发射
火箭发射过程中动量定理的运用可以帮助我们计算火箭的推力和速度变化,实现太空 探索。
3
球类运动
动量定理可以解释为什么球在击打或投掷时会有反冲,以及如何提高球的射击速度和 力量。
动量定理与能量守恒定律的关系
动量守恒定律指出,在一个封闭体系内,当没有外力作用时,系统的总动量保持不变。这个定律在研究 碰撞和爆炸等过程中非常重要。
动量定理的数学表达式
动量定理的数学表达式为力的作用时间等ቤተ መጻሕፍቲ ባይዱ物体动量变化的量。它可以帮助 我们计算力对物体的作用效果以及物体的运动状态。
弹性碰撞和非弹性碰撞的动量定理
弹性碰撞中,动量守恒定律成立,而非弹性碰撞中,动量守恒定律不完全成立。这两种碰撞过程中动量 定理的应用有所不同。
11 理论力学--动量定理

运动这过程中,在水平方向上,A上有两个冲量作用:
一个是B对它的撞击冲量,设其大小为I,一个是平面对
A块作用的动滑动摩擦力的冲量,其大小为FA t,其中:
FA fs FN A fs mA g
这两个冲量的方向都与运动方向相反,取 x 轴的水平指 向与运动方向相同,于是根据动量定理,有:
0 mAv0 I FA t
11 动量定理
对于质点系,可以逐个质点列出其动力学基本方 程,但是很难联立求解。
动量、动量矩和动能定理从不同的侧面揭示了质 点和质点系总体的运动变化与其受力之间的关系,可 用以求解质点系动力学问题。动量、动量矩和动能定 理统称为动力学普遍定理。本章将阐明及应用动量定 理。
11.1 动量与冲量 11.1.1 动量 物体运动的强弱,不仅与它的速度有关,而且
的乘积。质点系的动量为质点系内各质点动量的矢量
和。因此,可能存在质点的动量大于质点系的动量,
甚至质点系内的质点具有动量,而质点系的动量等于
零。 质点系的运动不仅与作用在质点系上的力与有关,
而且与质量的大小及其分布情况有关。
质心( Center of mass )就是对质点系质量分布特征
的一种描述,它时质点系的质量中心。设一质点系由
(1)
B 块动量变化为零,作用于 B 上水平方向的冲量也有两
个:一个是 A 对 B 撞击时作用的冲量;另一个是滑动摩
擦力的冲量,大小为 :FB t
FB fs FN B fs mB g
0 I FB t
(2)
联解式(1)与式(2)得:
v0
f s mA mB g t
mA
方向如图所示。
px m1 ew cosw t
第十章动量定理PPT课件

va a a1
FN qV r(vb va )
FN
G
b b1
b b1
Fb vb
第27页/共42页
例 水流在等截面直角弯管中作定常流动,流速为v,弯管横截面面积为A, 求管壁对流体的附加动反力。
y v1
v2 x
第28页/共42页
FN qV r(vb va ) qv A1v1 A2v2 Av
第22页/共42页
解: 应用动量定理求解
p m2ew px m2ew coswt py m2ewsinwt
由
dpx dt
Fx
dpy dt
Fy
m1g m2g
得 Fx m2ew 2 sin wt Fy (m1 m2 )g m2ew 2 coswt
第23页/共42页
另解 应用质心运动定理求解
rC
miri m
m m i
z
Mi
ri rC
C
zi
zC
O
yi
xi
y xC
x
yC
xC
mixi m
,
yC
mi m
y
i
,
zC
m iz m
i
在地面附近,质点系的质心与重心相重合。 质心比重心具有更广泛的意义。
第31页/共42页
2、 质心运动定理
rC
miri m
改写为 mrC miri
两边对时间求导
py mvCy myC m1lw coswt
系统动量的大小为:
p
p
2 x
p
2 y
lw
4(m1 m2 )2 sin 2 wt m12 cos2 wt
第9页/共42页
理学第3章动量定理ppt课件

(B)乙先到达。
(C)同时到达。
(D)谁先到达不能确定。
以甲、乙、绳、滑轮为系统
0 m1v1 m2v2 v1 v2
[C]
11
例5.图示一圆锥摆,质量为m的小球在水平面内以角速度匀速转动。在 小球转动一周的过程中,求:
①小球动量增量的大小。
②小球所受重力的冲量大小。
③小球所受绳子拉力的冲量大小。
解: ①小球运动一周动量变化为0。
2 mg ② Img mgT
③由①可知,小球所受重力和拉力的冲量为0,因此,拉力的冲量必然等 于小球重力冲量的负值,即:
2 mg IN mgT
12
§3.2 质点系的动量定理
一、质点系 particle system
[C]
8
例2.质量为 20g 的子弹沿 x 轴正向以500m/s的速度射入一木块后,与 木块一起以50m/s 的速度仍沿 x 轴正向前进,在此过程中木块所受冲量 的大小为
(A) 9N s
(B) 9N s (C) 10Ns (D) 10Ns
0.0250 500 9Ns
[A]
F F i F e N dpi dp
i1 dt dt Fi 0
F
i
i
j
mj
F2e
显然:
F e dp dt
即:质点系的合外力导致总动量的变化。
resultant external force
14
动量守恒定律
§3.3 动量守恒律
The law of conservation of momentum
dt
F
平均冲力 mean impulsion
当变化较快时,力的瞬时值很 难确定,用一平均力代替该过 程中的变力,这一等效力称为 冲击过程的平均冲力。