实数 第一课时 教学设计

合集下载

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。

”他认为宇宙间的一切事物都归为整数或整数的比。

问:整数的比是什么数?答:分数。

问:整数和分数统称为什么数?答:有理数。

〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。

实数教学设计(学案)

实数教学设计(学案)

课题: 第13.3 实数(1) 一、学习目标1.了解无理数和实数的概念,会对实数按照一定标准进行分类,同时体会“集合”的含义.2.在实数范围内,了解相反数和绝对值的意义,会求一个实数的相反数和绝对值.3.了解实数与数轴上的点一一对应的关系。

二、自学导航P82——P85 三、学习过程【课前准备】做一做探究活动一:1.请使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3= -52=847= 32= 9011=911=我的发现是: 2.请使用计算器计算,把下列有理数写成小数的形式,你有什么发现?2=-3=-25=37=我的发现是: 3.上面的两组数都可以写成小数的形式,但写成小数的形式是不同的,他们的不同之处是: 探究活动二:1.直径为1cm 长度的圆从数轴的原点O 出发,沿数轴向右滚动一周,圆上的一点由原点到达点0’,点O ’的坐标是多少?(画图说明)通过实践可知,00’的长就是直径为1cm 的圆 的 是 cm,点O ’的坐标是 ;若此圆从数轴原点沿数轴向左滚动一周,此时O ”的坐标是 .2.你能在数轴上找到表示出2这个点吗,2-呢?由此可知:有理数能不能将数轴排满?【探究新知】通过上面探究活动一,我们把第一类数叫做 ,我们把第二类数叫做 ,我们把这两类数统称为 ,用字母 表示此数集合.类比有理数的分类标准,此数能也能进行分类,你来试一试?探究活动二让我们了解到,像有理数一样,①每一个无理数都可以用数轴上的 表示出来,这就是说数轴上的点有些表示 ,有些表示 .所以,当从有理数扩充到实数以后,实数与数轴上的点就 是 的关系. ②与有理数一样,对于数轴上的任意两个点,右边的点所表示的数总比左边的点表示的数 . ③有理数关于相反数、倒数、绝对值的意义同样适合于 .【巩固提升】1.写出一个比1-大的负有理数是 ;比1-大的负无理数是 .2.32-的相反数是 ,32-= .3.实数b a 、在数轴上的位置如图所示, 化简:2a b a --b a4.比较各组数中两数的大小: (1)2332和(2)34-53-与(3)21-5与1【课堂小结】1.你能完成知识清单吗?2.你还有哪些收获?或困惑?(可记录下来共同交流)【课堂反馈】1.在实数23-,0π) A .1个B .2个C .3个D .4个2. 下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C . 2-和|2-| D .2和213.三个实数0.2-,12-,1( ) A.10.212-<-<B .10.212->->C .10.212->>- D.110.22>->-4. 如图,数轴上A B ,两点表示的数分别为1,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A 1B .1C .2D 25. 已知a 、b 为两个连续整数,且a <7<b ,则b a += .6.的点是 .7. 2与2-的大小关系,并说明理由.。

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。

通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。

同时,实数的分类和性质也需要通过大量的练习来巩固。

三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。

2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。

3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。

四. 教学重难点1.实数的概念和分类。

2.实数的性质。

五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。

通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。

六. 教学准备3.练习题。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。

呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。

2.引导学生通过观察和思考,总结实数的性质。

操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。

2.每组选一名代表进行汇报,其他组进行评价和补充。

巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。

2.教师选取部分学生的作业进行点评,指出错误并进行讲解。

拓展(10分钟)1.让学生思考:实数和数轴之间的关系。

2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。

小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。

2.学生分享学习收获和感受。

家庭作业(5分钟)1.完成课后练习题。

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。

这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。

本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。

2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。

3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。

难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。

二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。

C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。

( ) (2).无理数都是无限不循环小数。

( ) (3).无理数都是无限小数。

( ) (4).带根号的数都是无理数。

( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

《实数》(第一课时)教学设计

《实数》(第一课时)教学设计

实数(第一课时)教学设计
一、教材分析
实数是“数与代数”领域的重要内容。

,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。

本节是是实数的第一节课,主要通过折纸活动,让学生感受无理数产生的实际背景和引入的必要性,进而将数的范围从有理数扩充到实数.并类比有理数的有关性质得出实数的有关性质.
二、学情分析也使学生感受到无理数
学生在前面已学习了平房根、立方根的知识,已经具有发现无理数的的能力,本节课通过教师创设的折纸的问题情境,让学生体会无理数是从现实世界中抽象出来的,是一种不同于有理数的数.
三、教学目标
1.通过实际问题,让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.2.能对实数按要求进行分类,会用所学定义正确判断所给数的属性.
3.理解在实数范围内,相反数、倒数、绝对值的意义.
4.通过对有关无理数的数学史的了解,进一步增强学生对数学的兴趣.
四、重点、难点
重点:1.让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.
2.无理数概念的探索过程及无理数概念的建立
3. 能对实数进行分类,并判断所给数的属性.
难点:1.无理数概念的探索过程. 2.用所学定义正确判断所给数的属性.
五、教学设计
0.81,
8
2、在数轴上的表示:。

七年级数学上册《实数》教案、教学设计

七年级数学上册《实数》教案、教学设计
2.讲解无理数的定义,以及如何判断一个数是否为无理数。通过具体例子,让学生理解无理数的性质和特点。
3.介绍实数的四则运算,特别是乘除运算的化简方法。通过讲解和举例,让学生掌握实数运算的规则。
4.引导学生探究实数在数轴上的表示方法,让学生通过实际操作,体验实数与数轴的关系,培养数形结合的思维方式。
(三)学生小组讨论
8.课后辅导和拓展,针对学生在课堂上遗留的问题,进行个别辅导;同时,提供丰富的拓展资源,满足学有余力学生的需求。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个正方形和一条对角线,提出问题:“同学们,你们知道这个正方形的对角线有多长吗?”引导学生回顾勾股定理,计算出对角线的长度为$\sqrt{2}$。
1.将学生分成小组,讨论以下问题:
a.举例说明无理数在实际生活中的应用。
b.如何判断一个数是否为无理数?
c.实数在数轴上如何表示?
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成。题目包括:
a.判断以下数是否为无理数:$\sqrt{5}$、$\pi$、$\frac{22}{7}$。
在教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过本章节的学习,使学生全面掌握实数的知识与技能,形成良好的学习方法和情感态度,为今后的数学学习打下坚实的基础。
二、学情分析
七年级的学生正处于青春期,思维活跃,好奇心强,但注意力容易分散。在数学学习方面,他们已经掌握了有理数的概念和运算,具备了一定的数学基础。然而,对于实数的认识尚处于模糊阶段,特别是对无理数的理解和运用存在一定难度。因此,在教学过程中,应关注以下几点:
2.提问:“$\sqrt{2}$是一个什么类型的数?”让学生回顾有理数的概念,进而引出无理数的概念,为新课的学习做好铺垫。

苏科版数学八年级上册4.3《实数》教学设计1

苏科版数学八年级上册4.3《实数》教学设计1

苏科版数学八年级上册4.3《实数》教学设计1一. 教材分析苏科版数学八年级上册 4.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的认识和理解。

本节课主要内容包括实数的分类、实数与数轴的关系、实数的运算等。

通过本节课的学习,学生能够更好地理解实数的内涵和外延,为后续的数学学习打下坚实的基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数和无理数有一定的了解。

但是,学生对实数的认识还比较片面,对于实数与数轴的关系、实数的运算等知识点的理解还不够深入。

因此,在教学过程中,需要教师引导学生从实际问题出发,通过观察、思考、操作、交流等活动,深化对实数概念的理解。

三. 教学目标1.理解实数的定义,掌握实数的分类。

2.理解实数与数轴的关系,能正确地在数轴上表示实数。

3.掌握实数的运算方法,能熟练地进行实数的运算。

4.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法1.情境教学法:通过实际问题引导学生思考,激发学生的学习兴趣。

2.数形结合法:利用数轴直观地表示实数,帮助学生理解实数与数轴的关系。

3.合作学习法:引导学生分组讨论,培养学生的团队协作能力。

4.练习法:通过适量练习,巩固所学知识,提高学生的实际操作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.数轴教具:准备数轴教具,方便学生直观地理解实数与数轴的关系。

3.练习题:准备适量练习题,用于课堂练习和课后巩固。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考实数的概念,例如:“小明家距离学校2.5公里,小红家距离学校3公里,小明和小红家分别位于学校的哪个方向?他们两家之间的距离是多少?”2.呈现(10分钟)教师利用课件呈现实数的定义和分类,实数与数轴的关系,实数的运算等知识点,引导学生初步认识实数。

3.操练(10分钟)教师引导学生分组讨论,利用数轴表示实数,并进行实数的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数 第一课时·教学设计
教学目标
1.知识与技能
了解无理数和实数的概念,知道实数和整轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算.
2.过程与方法
注重主动参与与探索,同时注重有理数与实数的对比.
3.情感、态度与价值观
养成主动参与意识与观察分析的能力.
教学重点难点
重点:实数的意义和实数的分类;实数的运算法则及运算律.
难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算. 课时安排
2课时
教与学互动设计
第1课时
(一)创设情境,导入新课
问题1 用什么方法求2其结果如何
用计算器可求得2=1.414 213 562.
问题2 你能利用平方关系验算所得的结果吗?
用计算器计算1.412 135 62的平方,结果是1.999 999 99.
问题3 验证的结果并不是2,而是接近于2,这说明了什么问题?
说明所求得的2的值只是一个近似值.
问题4 那么2到底是怎样的数呢?
(二)合作交流,解读探究
探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3,
53-,847,119,911,95.
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3=3.0,53- =-0.6,847=5.875,119=18.0 ,911=2
.1 ,95=5.0 . 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.
观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数,π=3.141 592 65…也是无理数.
结论 有理数和无理数统称为实数.
试一试 把实数试着来分类.
⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧无限不循环小数无理数数有限小数或无限循环小分数整数有理数实数
像有理数一样,无理数也有正负之分.例如2,33,π是正无理数,2-,33-,
-π是负无理数.由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正无理数正有理数正实数实数0
我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢?
探究 如图10—3—1所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?
观察思考 从图中可以看出,OO ′的长是这个圆的周长π,所以O ′的坐标是π. 这样,无理数π可以用数轴上的点表示出来.
又如,以单位长度为边长画一个正方形(如图10—3—2所示),以原点为圆心,正方形对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点表示-2.(为什么?) 总结 1.事实上,每一个无理数都可以用数轴上的一个点表示出来.这就是说,数轴
上的点有些表示有理数,有些表示无理数.
当数从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
2.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.
讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
思考 1.3的相反数是________.
2.-π的相反数是______.
3.0的相反数是______.
4.2=____,|-π|=______,|0|=________
总结 数a 的相反数是-a ,这里a 表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
(三)应用迁移,巩固提高
例1 把下列各数分别填入相应的集合里:
38,3,-3,141,3π,722,87-,32-,0.101 001 000 1...,1.414,-0.020 202 (7)
{正有理数: }
{负有理数: }
{正无理数: }
{负无理数: }
【评析】 本题考查无理数的定义,解题思路是按无理数的定义判断,本题的易错点是将38,1.414当成无理数,解题关键是透彻理解无理数的定义.
解:{正有理数:38,722
,1.414}
{负有理数:-3.141,87-
,-0.202 020…}
{正无理数:3,3π
,0.101 001 000 1…}
{负无理数:32-,7-}
例2 试估计3+2与π的大小关系,在此基础上比较-(3+2)与-π的大小,并化简|3+2-π|的值.
【评析】 正实数的大小比较和运算,通常可取它们的近似值来进行,在比较两个负数大小时,可根据它们的绝对值的大小来比较
解:用计算器求得:3+2≈3.146 264 37
而π≈3.141 592 654
这样可判断:3+2>π
同样有:-(3+2)<-π
|3+2-π|=3+2-π
【备选例题】 (学案点击中考)(2005年·上海)下列实数中是无理数的为(C )
A .0
B .-3.5
C .2
D .9
【评析】 这是一道基本概念题,关键在于对无理数的理解是无限不循环小数,而不是指带有根号的数,如9=3;应是2.
(四)总结反思,拓展升华
小结 1.什么叫做无理数?
2.什么叫做有理数?
3.有理数和数轴上的点一一对应吗?
4.无理数和数轴上的点一一对应吗?
5.实数与数轴上的点一一对应吗?
拓展 已知m 是30的整数部分,n 是30的小数部分,试计算m -n 的值.
【点拨】 (1)认定25<30<36故m =5
(2)30是由其整数部分和小数部分组成的,即30=m +n
所以n =30-5.
【答案】 m -n =6-13
(五)课堂跟踪反馈
夯实基础
1.下列各数中,是无理数的是(C )
A .-1.732
B .1.414
C .3
D .3.14
2.已知四个命题,正确的有(A )
(1)有理数与无理数之和是无理数
(2)有理数与无理数之积是无理数 (3)无理数与无理数之和是无理数
(4)无理数与无理数之积是无理数 A .1个 B .2个 C .3个 D .4个
3.若实数a 满足a a ||=-1,则(B ) A .a >0 B .a <0
C .a ≥0
D .a ≤0 4.下列说法正确的有(A )
(1)不存在绝对值最小的无理数
(2)不存在绝对值最小的实数
(3)不存在与本身的算术平方根相等的数
(4)比正实数小的数都是负实数
(5)非负实数中最小的数是0
A .2个
B .3个
C .4个
D .5个
5.若|a |=4,2b =3,且|a +b |=-a -b ,则a -b 的值是(B )
A .1或7
B .-1或-7
C .-1或7
D .1或-7
6.(1)3-2的相反数是32-,绝对值是32-;
(2)|-|1310=1013-
(3)2π4π3)-(|+-|=1;
(4)若x 2=(-3)2,则x =3 .
提升能力
7.x x 2442-+-是实数,则x =2.
8.已知实数a 、b 、c 在数轴上的位置如图所示,
化简:|2c -a |+|c -b |-|a +b |-|a -c -b |
【答案】 a -b -4c
开放探究 9.已知a 、b 均为有理数,并且满足等式5-2a =2b +232-a ,求a 、b 的值.
解:∵ 5-2a =2b +232-a
∴ (5+a -2b )+(-a -32
)2=0
又∵ a 、b 均为有理数
∴ 5+a -2b ,-a -32
都是有理数
∴ ⎪⎩⎪⎨⎧,=--,=-+032025a b a 解得⎪
⎪⎩⎪⎪⎨⎧1.=,=-6332b a。

相关文档
最新文档