水轮发电机组轴线调整

合集下载

卧式水轮发电机组轴线调整方案探究

卧式水轮发电机组轴线调整方案探究

卧式水轮发电机组轴线调整方案探究摘要:经济发展愈发蓬勃,人们生活水平也日益提高,能源问题也日益凸显。

水力发电,因其启动过程迅速,实际负荷调整方便,且是可再生能源、清洁能源的一种,因此,备受欢迎。

水电机组依据其大轴布置形式即可分为卧式和立式两种。

本文则特针对卧式发电机组简单易操作的轴线调整方法进行研究,并通过典型案例证明该方法将促使卧式发电机组得以满足相关规程要求。

关键词:卧式水轮发电机组;轴线调整;检修技术;水轮发电机组轴线调整是其检修技术关键之一,将直接影响该机组的正常运行。

一般而言,卧式水轮发电机组的轴线调整方法极为复杂,其计算过程也较为繁琐,因此人员操作较难。

一、卧式水轮发电机组轴线调整目的卧式水轮发电机组轴线调整,是将其水轮机大轴同发电机大轴之间的同心度、倾斜度予以调整,以此促使该水轮发电机大轴的同轴度、同法兰面联结的倾斜度、大轴摆度、推力头正反向的端面振动量足以满足水轮发电机组实际安装技术规范要求,以此也将保证该轴承的油温、瓦温、间隙都能符合满足规定要求[1]。

二、卧式水轮发电机组的轴线调整过程(一)轴线调整前期准备卧式水轮发电机组的转轮需吊入转轮室,以此同水轮机大轴相互连接,其转轮、大轴则向着X轴方方向循序移动12mm,以此方便后期的盘车、安装。

在水轮机大轴、转轮及其转轮室间隙、同主轴所密封的法兰间隙需足够均匀,并适当优化调节该大轴水平于0.03mm/m.在此同时,需将其转轮同大轴予以固定并进行水导轴承的安装,以此方式也将保障该结构同大轴之间接触足够良好。

再次将上述一个水平、两个间隙再次复测,如若尚不满足相关设计要求则需予以重新调整,直至满足设计要求为止。

在此同时,该水轮机大轴法兰极为该后面机组盘车基准,在盘车过程中,也将不发生转动。

发电机部分需将其2各径向轴瓦同发电机大轴之间相互配合,将其研刮整平,将其接触点挑出,保障该轴承座得以一并安装至发电机基础板之上,并利用钢板塞尺及水准仪将其一并调整至发电机基础板所设计高程处。

水轮发电机组轴线偏差调整与应用探讨

水轮发电机组轴线偏差调整与应用探讨

水轮发电机组轴线偏差调整与应用探讨【摘要】水轮发电机组轴线调整俗称“盘车”,是水轮发电机组大修必不可少的环节,但传统的调整方法实施困难,轴线偏差量的计算公式推导繁琐,安装工人不易掌握。

笔者结合自身多年水轮发电机组轴线调整实践经验,介绍一种新的轴线偏差调整思路,并通过具体的应用实例加以阐述,为同类型机组轴线调整提供了借鉴。

【关键词】水轮发电机组;轴线调整;倾斜偏差;中心偏差;应用实例近年来,随着社会用电需求的不断上升,水电事业也得到了一定发展。

水轮发电机是水电站最为关键的设备。

水轮发电机组轴线的调整俗称“盘车”,是机组安装后期最重要的一项工作,机组大修也必须经过盘车检查,机组轴线的好坏综合反应了加工制造和安装检修质量,更会直接影响机组的运行稳定性。

而传统的调整方法实施困难,轴线偏差量的计算公式推导繁琐,安装工人不易掌握,这直接水轮发电机组大修的质量,对发电机组的正常运行造成了严重的影响。

因此,加强对水轮发电机组轴线偏差调整的研究具有重要意义。

1.轴线调整目的水轮发电机组的轴线调整,对于卧轴混流式水轮发电机组是调整水轮机大轴与发电机大轴的同心度、倾斜度,使水轮发大轴同轴度、大轴联结法兰面倾斜度、大轴各部摆度和推力头(含正、反方向)各部端面振动量符合水轮发电机组安装技术规范及制造厂技术要求,从而保证各轴承的间隙、瓦温、油温在规定范围内。

2.轴线调整卧轴混流式水轮发电机组轴线偏差既有中心偏差又有倾斜偏差,在轴线调整过程中应该两者兼顾,同时调整。

2.1轴线倾斜偏差调整发电机组轴线倾斜偏差调整可用传统百分表测量调整,即旋转发电机大轴测量出倾斜偏差,经计算各轴承座倾斜值之后,根据轴的长度再调整。

由于这种方法在轴线调整中不容易操作,在实际调整过程中,一般使用方形水平仪和游标卡尺分别测量出大轴垂直方向倾斜量和大轴水平方向倾斜量,通过千斤顶、楔子板调整使发电机组大轴倾斜偏差符合设计要求。

这种方法的特点是比较直观,操作简单,好学、易懂,工作人员容易掌握。

水电站水轮发电机组轴线检查及调整

水电站水轮发电机组轴线检查及调整
题:
表 1+ X方 向 盘 车记 录
表 2+ Y方 向盘车记录
铡 点 上导 1 1 2 3 4 5 2 6 2 7 8 1 0 0 O - 5 1
百分袅 读数 法‘ a 当采用盘查检查方法来对机组轴线进行调整时 , 操作人员应该讲 兰h 2 0 l 5 — 4 0 — 3 1 5 1 9 机组的转动部分调整至中心, 还要确保大轴是垂直的状态 。b . 一般 『 青 况 相 对点 1 - 5 2 _ 6 3 , - 7 4 - 8 下, 当使用高压高压油顶起装置盘车时 , 要在盘车前 , 工作人员必须对 上导 “ 一1 — 2 一 O . 5 1 垒攥 度 其进行认真仔细的清理, 并且 , 在使用完毕以后 , 要在推力瓦面涂抹一 溘兰 “ 2 3 1 4 — 9 -1 9 些润滑剂 , 从而确保高压油顶起装置系统不会生锈。c . 推力轴承刚性盘 净 撰度 法兰 一 上导 2 4 l 6 — 8 . 5 — 2 0 车是 目 前常见轴线调整方法 , 在使用推力轴承刚性盘车时, 要对每—个 瓦受力进行调试 , 确保其真正符合使 用标准。当机组轴线 的调整工作完 a 在进行实际的修刮绝缘垫施工时, 施工人员要充分掌握修刮的力 度, 按照一定的修刮规律 , 使其表面能够均匀受 到修刮 , 比较常见 的是 成以后 , 推力瓦面的误差应该保持在允许的范围内。 2轴线检查和调整情况 人工修刮方式。b 刊削量是机组轴线调整过程中非常关键的环节之一 , 推力轴承安装调整合格后, 对发电机轴轴线进行盘车检查 , 盘车数 施工人员必须要对绝缘垫进行认真仔细的测量 ,记录下每个区域的厚 据 如表 1 和表 2 所示。 度, 在 心 理有 一个 大概 的了解 , 这 样 才 能在 实 际操 作 过 程 中 , 对刮 削 量 2 . 1 发电机轴盘车数据的分析及判定由表 1 和表 2 ,用全摆度 的最 进 行严 格 的控制 。 大值与允许值相比较 : + x记录上导 a 各对称点都符合标准 。法兰计 3 动态 法进行 轴线 检测 及处 理 动态轴 线检 测法 的方式 一般 根据 机 组 的具体 形式 由设备 厂 家 直接 算值 : 法 兰 b ( 1 — 5 ) = 0 | 2 3 mm > b ; 法 兰 b ( 2 — 6 ) = 0 . 1 3 m m> 4 ) b ; 法 设计确定。 官地水电站机组轴线检测是在推力轴承完成受力调整 、 高压 油顶起装置安装调试完成后进行 。 主要是通过投入高压油顶起装置 , 再 兰 b ( 3 — 7 ) = 一 0 . 0 6 mm < b . 法 兰 b ( 4 — 8 ) = 一 0 . 2 0 m m> b ; 由1 0 个人均匀推动转子, 并对各测量部位 的数据进行测量采集的方式 + Y记录上导 a 各对称点都符合标准。法兰计算值 : 法兰 b ( 1 - 5 ) = 0 . 2 3 mm> b ; 法 兰 b ( 2 — 6 ) = 0 . 1 4 m m> b ; 法 进行 。 丑 首先确定沿轴线摆度最大值方向为纵轴 , 其垂直平分线为横轴 , 兰 b ( 3 — 7 ) = 一 0 . 0 9 m m <4 ) b ; 法 兰 b ( 4 — 8 ) = 一 0 . 2 0 m m> b 。 2 . 2 处理 的方 位及 处理 量 。如果 机 组轴线 出现倾 斜现 象 时 , 我们 可 横轴右侧为摆度偏差最大值方向, 左侧则为反方 向。b . 先将横轴上 的两 使水 、 发大轴及转轮的重量全部 由该两颗螺栓剩 以采用修刮绝缘垫厚度方法对发生1 顷 斜的轴线进行调整 ,当修刮量确 颗螺栓松开部分拉力 , 认其准确 的位置时, 可以通过盘车所绘制的水平图 , 形成一定的修刮形 余部位拉力承担, 再将其它螺栓全部松开不受力 。 c . 架设百分表 , 将大轴 推力头摆度最大值反方向向偏差最大值方 向推 0 . 0 6 m m。d . 沿 状, 一般都是按照台阶形式进行修改的, 这时的加点厚度必须与修刮量 沿转子、 保持一致 , 但是 , 这两者的方 向却是截然不同的。 摆度偏差最大值方向的对称方 向开始 , 沿纵轴分左右对称, 逐步拉 紧连 轴螺栓。 其中横轴左侧螺栓拉紧力取允许正偏差值 , 右侧拉紧力取允许 绝缘垫最大刮削量的计算公式为 : △= D / 2 L ( 1 ) 负偏差值 。 式中: △为绝缘 垫 的最大 刮削量 , a r m; 为法 兰或 水导 的最大 净摆 结 束语 综上所述 , 可 以得知 , 水轮发电机组轴线质量对于整个机组系统的 度值 , mm; D为推力头底面( 或镜板外径 ) 的直径 , m m; L为上导到法兰 或水导 间 的距离 , mm 。 正常运行起到了至关重要的作用 ,对于我国水电站工程建设有着重要 要高度重视水轮发 电机组轴线质量问题 , 加大对水轮发 绝缘垫的最大刮削方位与最大摆度点的方位相同。由于 + x和 + Y 的影响。因此 , 的盘车表数据基本一致 , 仅由—个表计算处理量。如按 + x 表计算 , 由 电机组轴线安装过程的监管力度 ,充分做好水轮发电机组轴线的检查  ̄ A= Dd o b a / 2 L 1 得到 以下刮削量 : 和调整工作, 定期对水轮发电机组轴线进行维修更新 , 一旦发现水轮发 中Ⅻ 0 . 2 4 mmA= 0 . 8 8 X 0 . 2 4 ( / 2 X 4 . 2 5 ) 一0 . 0 2 mm沿 1 — 5方 向 , 1 电机组轴线发生偏移 , 就要及 时采取调整措施 , 确保水轮发 电机组的正 点约修刮 0 . 0 2 m m, 5点不修刮。 常运行, 从而加快我国水电站工程 的建设步伐。 中h Q 0 . 1 5 m mA= 0 . 8 8 X 0 . 1 5( / 2 X 4 . 9 2 5 )  ̄0 . 0 1 3 mm沿 2 — 6方 参考文献 『 1 ] 林亚一. 水轮 发 电机 组 的安 装 与检 修 . 北京 : 中 国水利 水 电 出版 社 , 向, 2 点约修刮 0 . 0 1 3 mm, 6点不修刮。

两阶段轴线调整技术在水轮发电机组轴线调整中的应用

两阶段轴线调整技术在水轮发电机组轴线调整中的应用

两阶段轴线调整技术在水轮发电机组轴线调整中的应用摘要:科技日益发展,经济日渐蓬勃,水轮发电机组制造技术也不断提高,其单机装机容量日渐提升,大型水轮发电机组数量也将日益增多。

于大型水力发电机组而言,维持稳定运行,是实现工程经济效应的首要保障。

因此,为了维持水轮发电机组的正常运行,首要方式在于调整该水轮发电机组轴线,由此,本文特针对两阶段轴线调整技术在水轮发电机组轴线调整中的应用进行了系统分析。

关键词:水轮发电机组;轴线调整;两阶段轴线调整技术;水轮发电机组在正常运行过程中,其摆度幅值同振动大小都是该机组质量的重要衡量标准之一,同时也是反应该机组的设计质量、安装水平、制造工艺的性能指标。

发电机组产生振动原因很多,例如电磁力不均衡、转轮重量不均衡等等,因此,不仅需要通过有效设计来把控制造阶段因素以外,也需严格控制安装施工阶段工艺控制,通过科学检查方法、调整手段,将水轮发电机组轴线特性更趋于平稳优良,从而科学控制该导轴承摆度满足规范标准水平,以此显著控制机组出现不良情况。

一.水轮发电机组轴线特性及其摆度原因的系列分析(一)机组轴系主要构成水轮发电机的轴系一般均是由分段轴系的上端轴、转子、发电机主轴、水轮机主轴、转轮这五部分所构成,各个部分依托法兰连接方式,组建而成该水电机组的轴系。

机组理论中心线则是该机组转动部分用作为旋转运动过程的理论轨迹中心。

鉴于机组类型差异性特点,其上端轴结构都有所不同。

双调结构的水轮发电机组在其轴系端部均设有受油器,受油器及其操作油管也作为轴系转动部件[1].(二)水轮发电机组摆度产生原因鉴于水轮发电机组体型较大,深受其运输条件、加工制造等因素所限制,其水轮发电机的上端轴、主轴、水轮机主轴一般均为独立部件供货,依托法兰连接方式,在施工现场予以轴系连接。

理论上而言,如若联轴后主轴线同该发电机组理论旋转中心线完全重合,则该机组转动部分实际运动情况最为稳定,为此该状态即可视为机组摆度为零。

浅谈水轮发电机组的轴线调整

浅谈水轮发电机组的轴线调整

浅谈水轮发电机组的轴线调整一、前言水轮发电机组轴线调整通常一般意义叫做盘车,是发电机组轴线调整质量的好与否,直接影响发电机组大修的质量,同时对发电机组的正常运行造成严重的影响,所以立轴式水轮发电机组轴线调整显得尤为重要。

二、立轴式水轮发电机组轴线盘车的应用条件1、弹性盘车必须在弹性油箱受力调整合格后进行,否则会造成盘车摆度假象。

为避免主轴倾斜弹性盘车应布置二部瓦。

因上导及下导距离较近(3.6米),顶落转子时,容易导致转动部件倾斜,故采用上导瓦和水导瓦(间距7.69米)间隙调整在0.03~0.05mm的方法,使转动部件处于强迫垂直状态。

2、检查各固定部件与转动部件的间隙,保证内部无杂物遗留。

发电机定转子间隙用白布带拉一圈。

水轮机转轮四周用塞尺检查。

三、立轴式水轮发电机组轴线盘车的应用过程1、固定部件同心度测量用球心器、内径千分尺、加长杆、钢琴线、重锤、油桶、透平油等测量固定部件同心度。

测量结果符合《水轮发电机组安装技术规范GB8564-2003》和ALSTOM相关标准。

2、上机架水平度测量调整(一)测量数据《水轮发电机组安装技术规范GB8564-2003》规定“对于不可调式无支柱螺钉支撑的弹性油箱推力轴承和多弹簧支撑结构的推力轴承的机架的水平偏差不应大于0.02mm/m。

(二)弹性油箱支撑件水平度测量调整推力瓦厚度测量调整,允许误差范围0.02~0.05mm。

推力瓦支柱高度测量调整,允许误差范围0.02~0.05mm。

推力瓦支柱相对高度测量(推力瓦装前),允许范围0.02~0.05mm。

镜板预装,测量镜板水平,允许误差范围0.02~0.05mm。

卡环厚度测量,允许误差范围0.02~0.05mm。

回装上导瓦架、上导瓦、水导瓦,上导推力充油至上导瓦架高度。

(三)转动部件推中心启动推力循环油泵和注油泵,将转动部件尽可能推至机组中心处位置,使空气间隙均匀。

在转动部件推中心过程中,因弹性油箱变形(详见弹性油箱结构图)导致在上导处推动转动部件时,转动部件未能整体移动,而是上导的推动量转换成弹性油箱的变形量。

应用投影分析法进行水轮发电机组轴线调整

应用投影分析法进行水轮发电机组轴线调整

应用投影分析法进行水轮发电机组轴线调整发布时间:2023-02-28T02:24:56.011Z 来源:《中国电业与能源》2022年10月19期作者:唐文利[导读] 机组轴向调节的实践中,把发电机轴、发电机下轴的竖直度、法兰水平值分别投射到同一平面上,唐文利安徽响水涧抽水蓄能有限公司安徽芜湖 241082摘要:机组轴向调节的实践中,把发电机轴、发电机下轴的竖直度、法兰水平值分别投射到同一平面上,利用投影法进行分析和计算,找出最好的轴方向,使下轴与水泵轴的法兰处折线最小,保证了该装置的最佳轴线。

本文以作者多年的工作经验为基础,运用投影分析方法,对机组轴向调整问题进行了简要的分析。

关键词:投影分析法;水轮发电机组;轴线调整引言:目前,水电站发电机组为垂直轴、半伞形,下部机座装有推力轴承,将水轮吊入井底调节中心,然后将下端轴与水机轴相连,然后将转子提升到下端。

在此,我们要分析和讨论的问题是,怎样确定水轮机轴与下转轴的最佳联轴角,为了确保运动控制的准确性,实现了各个轴线的协调。

通过减小法兰处折线和减小凸缘错齿,使机组的最佳轴线得到了保证。

在轴向上,也就是沿着水轮发电机的大轴方向,承载着整个水轮发电机组的所有重量,通过推力头传送到推进器上的水轮机的重量,以确保推进器(镜板)与水轮发电机的轴的垂直性,在推进器和透镜之间装有一个塑料隔离垫圈,由上、下导、水导轴承、水导轴承径向受力,以承受水轮发电机组转动时的径向摇摆力,由联轴法兰将发电机轴与水轮机轴连接。

1水轮发电机组轴线调整概述及重要性1.1水轮发电机组轴线调整概述机组轴向调节是机组大修的一个重要指标。

若某一组机组的轴线不理想,在运行时会产生较大的振荡。

旋转构件所受的磁力不均衡和水力失衡将增大,机组的振动增大,并导致各轴承的运转陷入一个恶性循环。

所谓“轴差”,是单位的轴与旋转中心线不相符合。

机架轴系指旋转大轴的几何中心轴线,它包括:上轴(激励轴)、发电机轴、水轮轴等;该装置的转动中心,即穿过镜片的中心线。

机组轴线调整及导轴承的间隙分配

机组轴线调整及导轴承的间隙分配
C1 C3 C5 C1
下导轴承: δB1 = δC1 + (ФCA1/2- LBФBA1/2L1 )-( δC′- δB′) =0.25+(0/2-3.8×0/2 × 5.4)-(0.20-0.20) =0.25(mm) δB5 = 2δB′- δB1 =2×0.20-0.25=0.15 (mm) δB3 = δC3 + (ФCA3/2- LBФBA3/2L1 )-( δC′- δB′) =0.10+(0.10/2-3.8×0.08/2 × 5.4)-(0.20-0.20) =0.12(mm) δB7 = 2δB′- δB3 =2×0.20-0.12=0.28(mm) 轴瓦各对应点间隙,如下表:
下导轴承瓦调整间隙计算公式: δB0 = δC + (ФCA/2- ФBA′/2 )-( δC′- δB′) 或 δB0 = δC + (ФCA/2- LBФBA/2L1 )-( δC′- δB′) δB180 = 2δB′- δB0 式中 δC ---水导轴承瓦调整间隙,mm ФCA ---水导轴承出净摆度,mm δC′---水导轴承瓦设计间隙,mm 2.伞式机组导轴承瓦间隙计算 (1)水导轴承间隙已按摆度调整在正确位置时。 上导轴承瓦单侧间隙则按设计间隙调整,计算公式为: δA0 = δA′- ФAB/2 δA180 = 2δA′- δA0 式中 ФAB ---上导轴承处净摆度,mm 下导轴承瓦调整间隙取设计间隙,计算公式为: δB0 =δB180 =δB′ (2)当水导轴承与之止漏环同心,而主轴在轴瓦内任一位置时。
轴 轴瓦名称 上导轴瓦δ 下导轴瓦δ 水导轴瓦δ
A
瓦 3 0.10 0.15 0.10
编 5 0.10 0.12 0.15
号 7 0.20 0.28 0.10

水轮发电机组轴线调整技术探讨

水轮发电机组轴线调整技术探讨

水轮发电机组轴线调整技术探讨摘要:水轮发电机组推力轴承支撑着整个机组的轴向负荷,通过润滑油膜使得随轴系转动的镜板和固定静止部件推力轴瓦分离,它是保证机组安全可靠并长期稳定运行的最关键部件之一。

产生机组振动的原因较多,如水力不平衡、转轮重量不平衡、转子重量不平衡、电磁力不均衡以及机组轴线偏差等因素,除了通过设计、制造阶段控制部分因素外,安装施工阶段的工艺控制保障也尤为重要,其中通过科学的检查方法以及调整手段,使机组轴线特性趋于优良,进而控制各导轴承摆度达到规范优良水平,可有效降低机组轴摆动幅度,减少机组振动。

基于此,本篇文章对水轮发电机组轴线调整技术进行研究,以供参考。

关键词:水轮发电机组;轴线;调整技术引言水轮发电机组经过一段长周期正常运行后,突发振动,是水电站经常会遇到的一种机组非正常运行现象。

对机组突发振动的分析,一般要结合机组上次检修以来,机组运行工况的变化,从水力、电气、机械等多方面进行综合分析,从而确定处理方向,找准故障原因,针对性开展检修,缩小检修范围,以便及时恢复。

基于此,本文探究水轮发电机组轴线调整技术的应用。

1概念误区机组轴线:①机组旋转大轴的几何中心线;②由顶轴(或励磁机轴)、发电机主轴(或转子支架中心体加中间轴)及水轮机主轴等各轴几何中心连线组成的;③由顶轴(或励磁机轴)、发电机主轴及水轮机主轴等组成,一条贯穿机组主轴的中心线叫机组轴线。

3种说法是一致的,第三种表达更详细一点。

机组旋转中心线:①贯穿于镜板镜面中心的垂线;②一条贯串推力轴承镜板镜面中心的垂线。

两种说法也是普遍一致的。

轴线为转动部分静态时几何中心线,旋转中心线为转动部分做旋转运动时,受到推力轴承的承托和导轴承的限制所形成的运动轨迹线,它是一条拟的线:①坚轴水轮发电机组的固定部件有上部机架、定子、下部机架、水轮顶盖、上下固定止漏环、转轮室,这些固定部件几何中心的连线称为机组中心线;②通过机组安装基准件中心的铅垂线是机组中心线;③套于水轮机和发电机转动部分外面的主要固定部件的中心的连线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水轮发电机组轴线调整
水轮发电机组轴线调整
adjustment shaft of hydro turbine and generator
shullunfod旧nJ一zu zhouxlont一oozheng 水轮发电机组轴线调整(adjustment shaft of hydro turbine and generator)减小轴线误差,减轻机组运行中转动部件不平衡力,是机组安装、检修中的一项重要工作。

机组各连接部件存在着制造和安装上的误差,使得机组主轴线(即主轴中心线)与其旋转中心线不相重合而存在着不同程度的倾斜或曲折.悬式机组常采用发电机轴和水轮机轴直接连接的结构。

伞式机组目前常采用顶轴、转子中心体和水轮机轴连接的结构.当推力轴承镜板的镜面与轴线不垂直时,则会出现轴线倾斜;当法兰结合面与轴线不垂直时,则会出现轴线曲折。

轴线存在较大的倾斜和曲折,在机组运行中将出现较大的摆度,对推力轴承和导轴承产生周期性的机械整劲力,也可能引起较大的磁力和水力不平衡力,致使机组运行处于不稳定状态。

轴线的测量轴线测量的方法,一般是以上导限位作支点,通过吊车牵引推力头或转子转动的机械盘车或通过电动盘车设备,在定、转子绕组中通以直流电,并对定子分相通电控制转子转动的电动盘车方法,在机组主轴转动的一周中按等分8点停留,同时用安设在上导、下导、法兰、水导等处的百分表,测量其摆度值。

从而可求得轴线对推力镜面的不垂直度与法兰处的曲折,为进行轴线处理提供依据。

对盘车测量数据的整理,以绘制各部摆度曲线为好,按比例绘制轴线的水平投影,可直观显示各部最大摆度方位和数值,方便于轴线处理计算。

采用刚性支柱式推力轴承的水电机组,其轴线应满足《水轮发电机组安装技术规范》(GB8564一88)中表23的规定,超过规定允许值为不合格轴线,应进行处理。

采用液压支柱式推力轴承的水电机组,由于其推力瓦有自动调整受力的能力,故对机组轴线的要求有所放宽。

但对液压支柱式推力轴承的安装要求是很严格的。

通过调整推力支架或底座,要求镜板镜面的水平度应不大于0.02 mm/m,并要求最终在机组转动部件处于机组中心时,通过顶落转子各弹性油箱的压缩量,其最大偏差应不大于0.20 mm为合格。

其采用的是所谓“弹性盘车”,要求在弹性油箱受力调整合格的条件下,将机组转动部分移至机组中心。

然后用上导、下导或水导将轴抱上,间隙调整至0.05 mm左右进行盘车。

要求镜板边缘处到得的轴向摆度应不超过GB8564 一88规范表24的规定。

轴线的处理若发电机轴线对镜面的不垂直度和法兰曲折均超过了GB8564一88表23规定的允许值,且机组大修具备分解法兰进行曲折处理的条件,则轴线的处理工作应分别在推力头和法兰两处进行。

若只处理推力头,而不处理轴线曲折,则在进行推力头处理方位和数值计算中,应兼顾水导摆度的减小。

在水电机组安装中,也可采取分别进行盘车和处理的方法。

先对发电机进行单独盘车,将发电机轴线处理合格后.再与水轮机轴相连进行整体盘车,再处理法兰结合面,使水导处摆度调整至合格范围内。

推力头的处理,一般采用修刮方法可获得较长时间轴线不变的效果。

修刮工作可直接修刮推力底面(无垫时)或修刮其结合面间的绝缘垫板。

运行实践表明前者处理效果好于后者。

法兰曲折的处理.可采用在法兰结合面问加垫或修刮法兰结合面的方法.只要处理工艺正确,处理后一般不再变化。

修刮量及其方位的确定.可根据由盘车成果所绘制的轴线水平投影求得,修刮面应呈楔形.实际修刮按台阶形进行。

加垫厚度应与修刮量相等,但其方向1卜好相反。

轴线的调整是指机组轴线合格的转动部分中心的调整。

经过调整,一方面应使发电机转子旋转中心与定子中心同心.水轮机转轮旋转中心与固定止漏环同心;另一方面要使推力轴承的各瓦受力均衡,各导轴承的中心同心,使机组转动部分在机组中心运行。

精确的调整可明显减小发电机的磁力不平衡力和水轮机的水力不平衡力以及轴承对
轴机械整劲力使机组运行中的振动、摆度幅值均处于优良的标准范围内。

轴线的调整有两种情况.一种是既要进行移轴调整轴线的位置.又要进行推力轴承各瓦的受力调整。

这时.由于在进行推力瓦受力调整时,同时可调整主轴旋转中心线的倾角,故可获得较好的调整质量。

调性时,先应将主轴平移,使发电机转子中心移到定子中心,然后用上导轴承将主轴上部固定。

再通过调整推力各瓦的高度,使水轮机转轮的旋转中心移到固定止漏环中心,与此同时将推力各瓦的受力调整均匀。

最后再进行各导轴承间隙的计算与调整。

另一种是不进行推力轴承各瓦的受力调整.只进行移轴调整轴线。

这种情况只有在机组中心(指定子中心和水轮机固定止漏环中心的连线)和主轴旋转中心线倾角相差不大,才能满足轴线调整的要求。

这时应以水轮机固定止漏环中心为基准,通过移轴将水轮机转轮旋转中心移至与固定止漏环基本同心即可。

轴线调整的质量,最终应以测量的发电机空气间隙和水轮止漏环间隙是否在规定的范围内来衡量。

相关文档
最新文档