苏锡常镇高三一模数学

合集下载

【数学】江苏省苏锡常镇四市2020届高三第一次教学情况调研试题(解析版)

【数学】江苏省苏锡常镇四市2020届高三第一次教学情况调研试题(解析版)
【答案】
【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为 ;两个半球的半径都为1,则两个半球的体积为 ;则所求几何体的体积为
.
12.在△ABC中,( )⊥ ( >1),若角A的最大值为 ,则实数 的值是_______.
【答案】3
【解析】
,解得 =3.
故答案为:3.
13.若函数 (a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.
【答案】(1, )
【解析】由题意知: 与 的图像在(1, )上恰有两个交点
考查临界情形: 与 切于 ,

故答案为: .
14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB= OC,则△ABC面积的最大值为_______.
(1)求A;
(2)已知a=2 ,B= ,求△ABC的面积.
解:(1)∵bcosA﹣ asinB=0.
∴由正弦定理可得:sinBcosA﹣ sinAsinB=0,
∵sinB>0,
∴cosA= sinA,
∴tanA= ,
∵A∈(0,π),
∴A= ;
(2)∵a=2 ,B= ,A= ,
∴C= ,根据正弦定理得到
【解析】由题意A B中有且只有一个元素,所以 ,即 .
故答案为: .
3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.
【答案】0.08
【解析】首先求得 ,
.ቤተ መጻሕፍቲ ባይዱ
故答案为:0.08.
4.在平面直角坐标系xOy中,已知双曲线 (a>0)的一条渐近线方程为 ,则a=_______.

2021-2022学年度苏锡常镇四市高三教学调研(一)数学试题含答案

2021-2022学年度苏锡常镇四市高三教学调研(一)数学试题含答案

高三数学 第1页(共6页)2021~2022学年度苏锡常镇四市高三教学情况调研(一)数学(参考答案) 2022.03一、选择题:1.C 2.B 3.D 4.B 5.A 6.D 7.C 8.D二、选择题:9.BCD10.AD 11.BC 12.AB三、填空题: 13.2 14.1(0]2, 15.[22]− ,,52 162 三、解答题:本题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(10分)解:①5sin sin sin 3B C A +==,由正弦定理sin sin sin A B C a a c ==, 可得553b c a +==.以下如③所示. ②因为10cos cos 9B C +=,由余弦定理得22222210229a cb a bc ac ab +−+−+=, 所以22222220()()9b ac b c a b c abc +−++−=, 所以22220()(2)9b c a b c bc abc +−−+=,其中2222cos a b c bc A −−=−, 所以10()(1cos )9b c A a +−=. …………………………………………………… 4分 若A为锐角,则1cos 3A ===,则5b c +=. 由余弦定理22222()8cos 1122b c a b c a A bc bc bc+−+−==−=−, 所以6bc =,又5b c +=,解得23b c = =,或32b c = =,. 所以△ABC的面积为11sin 622bc A =⨯=. ………………… 8分高三数学 第2页(共6页)若A为钝角,则1cos 3A ===−,则532b c a +=<=,舍去. 综上可得,△ABC的面积为 ……………………………………………… 10分③因为5b c +=,由余弦定理22222()8cos 1122b c a b c a A bc bc bc+−+−==−=−. … 3分 若A为锐角,则1cos 3A ===,则8113bc −=, 所以6bc =,又5b c +=,解得23b c = =,或32b c = =,. 所以△ABC的面积为11sin 622bc A =⨯=. …………………… 7分 若A为钝角,则1cos 3A ===−,则8113bc −=−, 所以12bc =,又5b c +=,无解,舍去. ………………………………… 9分 综上可得,△ABC的面积为 ……………………………………………… 10分 18.(12分)解:(1)该同学在每个项目中得优、良、中互为互斥事件, 由题意得,11623p p + + =,解得1p =. 所以甲在每个项目中通过的概率都为12623p +=. ……………………………… 2分 设事件A 为甲能进入到数学建模社团, 因为甲在每个项目中通过的概率都为23,且在每个项目中的成绩均相互独立, 所以()222833327p A =⨯⨯=. 答:甲能进入到数学建模社团的概率为827. …………………………………… 5分 (3)X 的可能取值为0,1,2,3. ……………………………………………… 6分 ()103P X ==;()2121339P X ==⨯=; ()2214233327P X ==⨯⨯=;()2228333327P X ==⨯⨯=.高三数学 第3页(共6页)所以X 的概率分布为……………… 10分所以X 的数学期望E (X )=124838012339272727⨯+⨯+⨯+⨯=. ……………… 12分 19. (12分)解:(1)1111(1)1n n a a n n n n +−=−=−++. ……………………………………… 1分 当2n ≥时,211121a a −=−,321132a a −=−,……,1111n n a a n n −−=−−, 相加得1111n a a n −=−,所以1n a n=. ……………………………………… 3分 当1n =时,11a =也符合上式,所以数列{}n a 的通项公式1n a n =. …………… 5分 (2)由(1)得221n a n =, 所以2221111111111()()42222n a n n n n n n =<==−−−+−+.…………………………… 8分 所以222111111111111112222222211112n S n n n +=+−+−+−−−+−++<++, 4111122112n n n =−=−++. 所以421n n S n <+. ……………………………………………… 12分 20.(12分)解:(1)当12t =时,11112C E BD t BC C B ===,即点D ,E 分别为BC ,11B C 的中点, 在直三棱柱111ABC A B C −中,11AA BB ,11AA BB =,平面11BB C C 为平行四边形, 连接DE ,则1DE BB ,1DE BB =,所以1DE AA ,1DE AA =,所以四边形1DEAA 是平行四边形,所以1ADA E .……………………………… 3分高三数学 第4页(共6页)又因为AD ⊄平面1A EB ,1A E ⊂平面1A EB ,所以AD 平面1A EB . ……………………………………………… 5分 (2)方法一:在平面ABC 内,过点C 作AD 的垂线,垂足为H ,连结1C H ,则1C HC ∠为二面角1C AD C −−的平面角,即1π3C HC ∠=, 在直角三角形1C HC 中,13C C =,所以CH =.在直角三角形CHA中,CH =,3AC =,所以sin CH CAH AC ∠==<,又因为CAH ∠为锐角,所以cos CAH ∠=且π04CAH <∠<, 所以点H 在线段AD 的延长线上. ……………………………………………… 9分CDA △中,πsin sin()4CDH CAH ∠=+∠,6sin CH CD CDH ==−∠所以2BD t BC ===−.………………………………………… 12分 方法二:1AA ⊥平面ABC ,又90BAC ∠=,以1{}AB AC AA ,,为正交基底建立如图所示的空间直角坐标系A xyz −,则点(000)A ,,,(300)B ,,,(030)D ,,,1(033)C ,, 从而1(033)AC =,,,(330)BC =− ,,,(30)BD tBC t t ==− 3,,,所以(3330)AD t t =− ,,.设平面1AC D 的一个法向量为1()n x y z = ,,,由11100n n AC AD ⎧⎪⎨⎪⋅= ⋅= ⎩,,有030(1)333t x ty y z −+⎧⎨+⎩= = ,, 取1(11)n t t t = − −,,,又平面ADC 的一个法向量为2(001)n = ,,,因为二面角1C AD C −−的大小为π3,所以1212π1cos 32n n n n ⋅==. …………… 9分 12=,得2420t t −+=, 又因为01t <<,所以2t =. ……………………………………………… 12分H D C A B高三数学 第5页(共6页)21.(12分)解:(1)因为椭圆C的离心率为2,且其右焦点F所以c a =2a c c −=a =c =. …………………… 2分 所以2223b a c =−=,所以椭圆C 的标准方程为22163x y +=. ………………… 4分 (2)设直线MN 的方程为y x m =+,点11()M x y ,,22()N x y ,,00()A x y ,, 直线MN 的方程与椭圆方程联立得22163x y y x m ⎧+= ⎪⎨⎪=+ ⎩,, 则2234260x mx m ++−=,所以1221222432631612(26)0x x m m x x m m ⎧+=− ⎪⎪−⎪=⎨⎪∆=−−> ⎪⎪⎩,,, 由102010200y y y y x x x x −−+=−−,得120012002()()2()0x x m x y x x x m y +−−+−−=. 所以200002642()()2()033m m x y m x m y −+−−−−−=,整理得, 00002(2)2403y x m x y −+−=,所以000020240y x x y −= ⎧⎨−= ⎩,,……………………………… 10分 因为点A 在第一象限,所以0021x y = ⎧⎨= ⎩,,所以点A 的坐标为(21)A ,. ……………………………………………… 12分高三数学 第6页(共6页)22.(12分)解:(1)当e a =时,2()eln (e)f x x x x =−+−, 则2e 2(12e)e (21)(e)()12(e)=x x x x f x x x x x+−−+−'=−+−=,(0x >) 令()0f x '>,得e x >;令()0f x '<,得e x <;所以,函数()y g x =的单调增区间为(e,)+∞,单调减区间为(0,e). ………… 3分(2)22(ln 2e)()ln 2(e)a x a x a f x a x x x+−−'=−+−=, 令2()2(ln 2e)0t x x a x a =+−−=,因为2(ln 2e)80a a ∆=−+>,所以方程22(ln 2e)0x a x a +−−=,有两个不相等的实根12x x ,(12x x <), 又因为1202a x x =−<,所以120x x <<,令02x x =,列表如下所以()f x 存在极值点0x . ……………………………………………… 7分 因为2002(ln 2e)0x a x a +−−=,所以200022e ln x x a x a −=−,记0()ln u t t x t =−,0()1x u t t'=−, 当00t x <<时,()0u t '<,()u t 单调递减;当0t x >时,()0u t '>,()u t 单调递增. 所以当0t x =时,0()ln u t t x t =−的最小值为0000()ln u x x x x =−.所以200000022e ln ln x x a x a x x x −=−−≥,即200002(2e 1)ln 0x x x x −++≥, ……………………………………………… 10分 因为00x >,所以002ln (2e 1)0x x +−+≥,因为()2ln (2e 1)v t t t =+−+在(0) +∞,上单调递增,且0()(e)0v x v =≥, 所以0e x ≥,则0x 的最小值是e . ……………………………………………… 12分。

苏锡常镇四市2021~2022学年度高三一模数学试题(含答案)

苏锡常镇四市2021~2022学年度高三一模数学试题(含答案)

2021~2022学年度苏锡常镇四市高三教学情况调研(一)数 学 2022.03一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U =R ,集合A ={x ||x -2|≤1},B ={x |2x -4≥0},则集合A ∩(∁U B )=A .(1,2)B .(1,2]C .[1,2)D .[1,2] 2.在(x -1x)4的二项展开式中,第二项的系数为A .4B .-4C .6D .-6 3.i 是虚数单位,设复数z 满足i z =|-32+i 2|+i ,则z 的共轭复数z -= A .-1-i B .-1+i C .1-i D .1+i 4x 0 1 2 3 4 y1015203035经计算知,y 对x 的线性回归方程是ŷ=6.5x +ˆ,预测当x =6时,y = 附:在线性回归方程ŷ=aˆ+b ˆx 中,b ˆ=()∑∑==--ni ini iix n xyx n yx 1221,a ˆ=y --b ˆx -,其中x -,y -为样本平均值.A .47.5B .48C .49D .49.5 5.平面内三个单位向量a ,b ,c 满足a +2b +3c =0,则A .a ,b 方向相同B .a ,c 方向相同C .b ,c 方向相同D .a ,b ,c 两两互不共线6.若双曲线C 1:y 2-3x 2=λ(λ≠0)的右焦点与抛物线C 2:y 2=8x 的焦点重合,则实数λ= A .±3 B .- 3 C .3 D .-37.有5个相同的球,其中3个红色、2个蓝色,从中一次性随机取2个球,则下列说法正确的是A .“恰好取到1个红球”与“至少取到1个蓝球”是互斥事件B .“恰好取到1个红球”与“至多取到1个蓝球”是互斥事件C .“至少取到1个红球”的概率大于“至少取到1个蓝球”的概率D .“至多取到1个红球”的概率大于“至多取到1个蓝球”的概率8.正四面体ABCD 的棱长为a ,O 是棱AB 的中点,以点O 为球心的球在△BCD 上截得的曲线与CD 相切,则球O 的体积是A .16πa 3B .26πa 3C .36πa 3D .23πa 3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.记S n 为等差数列{a n }的前n 项和,则A .S 6=2S 4-S 2B .S 6=3(S 4-S 2)C .S 2n ,S 4n -S 2n ,S 6n -S 4n 成等差数列D .S 22,S 44,S 66成等差数列10.某校体育活动社团对全校学生体能情况进行检测,以鼓励学生积极参加体育锻炼.学生的体能检测结果X 服从正态分布N (75,81),其中60为体能达标线,90为体能优秀线,下列说法正确的有附:随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544,P (μ-3σ<ξ<μ+3σ)=0.9974. A .该校学生的体能检测结果的期望为75B .该校学生的体能检测结果的标准差为81C .该校学生的体能达标率超过0.98D .该校学生的体能不达标的人数和优秀的人数大致相等 11.下列函数中,最大值是1的函数有A .y =|sin x |+|cos x |B .y =sin 2x -cos 2xC .y =4sin 2x cos 2xD .y =tan x tan2xtan2x -tan x12.已知函数f (x )=a e xx -x +ln x (a ∈R ),若对于定义域内的任意实数s ,总存在实数t 使得f (t )<f (s ),则满足条件的实数a 的可能值有A .-1B .0C .1eD .1三、填空题:本题共4小题,每小题5分,共20分.13.已知圆柱和圆锥的底面重合,且母线长相等,设圆柱和圆锥的表面积分别为S 1,S 2,则S 1S 2= ▲ . 14.已知圆C :(x -2)2+(y +4)2=2,点A 是x 轴上的一个动点,直线AP ,AQ 分别与圆C 相切于P ,Q 两点,则圆心C 到直线PQ 的距离的取值范围是 ▲ .15.已知函数f (x )=3sin(ωx +φ)(ω>0,|φ|<π2)在一个周期内的图象如图所示,其中点P ,Q 分别是图象的最高点和最低点,点M 是图象与x 轴的交点,且MP ⊥MQ .若f (12)=32,则tan φ= ▲ .(第15题图)16.已知f (x )是定义在R 上的奇函数,且f (|x |+1)=2f (|x |-1).若当x ∈(0,1)时,f (x )=1-|2x -1|,则f (x )在区间(-1,3)上的值域为 ▲ ,g (x )=f (x )-45x 在区间(-1,3)内的所有零点之和为 ▲ .(本小题第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在①sin B +sin C =1029,②cos B +cos C =109,③b +c =5这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =3,sin A =223, ,求△ABC的面积.18.(12分)某大学数学建模社团在大一新生中招募成员,由于报名人数过多,需要进行选拔.为此,社团依次进行笔试、机试、面试三个项目的选拔,每个项目设置“优”、“良”、“中”三个成绩等第;当参选同学在某个项目中获得“优”或“良”时,该同学通过此项目的选拔,并进入下一个项目,否则该同学在此项目中不通过,且不能参加后续的项目.通过了全部三个项目的同学进入到数学建模社团.现有甲同学参加数学建模社团选拔,已知该同学在每个项目中得“优”、“良”、“中”的概率都分别为16,p 2,p3,且甲在每个项目中的成绩均相互独立.(1)求甲能进入到数学建模社团的概率;(2)设甲在本次数学建模社团选拔中恰好通过X 个项目,求X 的概率分布及数学期望.19.(12分)已知数列{a n }中,a 1=1,a n +1=a n -1n (n +1),n ∈N *.(1)求数列{a n }的通项公式;(2)记数列{a n 2}的前n 项和为S n ,求证:S n <4n2n +1.如图,在直三棱柱ABC -A 1B 1C 1中,△ABC 是以BC 为斜边的等腰直角三角形,AA 1=AB ,点D ,E 分别为棱BC ,B 1C 1上的点,且BD BC =C 1EC 1B 1=t (0<t <1).(1)若t =12,求证:AD ∥平面A 1EB ;(2)若二面角C 1-AD -C 的大小为π3,求实数t 的值.21. (12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且椭圆C 的右焦点F 到右准线的距离为3.点A 是第一象限内的定点,点M ,N 是椭圆C 上两个不同的动点(均异于点A ),且直线AM ,AN 的倾斜角互补. (1)求椭圆C 的标准方程;(2)若直线MN 的斜率k =1,求点A 的坐标.已知实数a>0,函数f(x)=x ln a-a ln x+(x-e)2,e是自然对数的底数.(1)当a=e时,求函数f(x)的单调区间;(2)求证:f(x)存在极值点x0,并求x0的最小值.2021~2022学年度苏锡常镇四市高三教学情况调研(一)数学2022.03注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏锡常镇2024届高三下学期教学情况调研(一模)数学试卷及答案

江苏省苏锡常镇2024届高三下学期教学情况调研(一模)数学试卷及答案

2023~2024学年度苏锡常镇四市高三教学情况调研(一)数学2024.3注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2320A xx x =++>∣,集合{}04B x x =∣ ,则()A.A B ⋂=∅ B.A B ⋃=R C.A B ⊆ D.B A⊆2.设5250125(12)x a a x a x a x +=++++ ,则125a a a +++= ()A.-2 B.-1 C.242 D.2433.已知平面向量,,a b c 满足0,||||1,||3a b c a b c ++====,则a 与b 的夹角为()A.π4 B.π3 C.2π3 D.3π44.青少年的身高一直是家长和社会关注的重点,它不仅关乎个体成长,也是社会健康素养发展水平的体现.某市教育部门为了解本市高三学生的身高状况,从本市全体高三学生中随机抽查了1200人,经统计后发现样本的身高(单位:cm )近似服从正态分布()2172,N σ,且身高在168cm 到176cm 之间的人数占样本量的75%,则样本中身高不低于176cm 的约有()A.150人 B.300人 C.600人 D.900人5.函数()πsin 23f x x ⎛⎫=+⎪⎝⎭在区间()0,2π内的零点个数为()A.2 B.3 C.4 D.56.在平面直角坐标系xOy 中,已知A 为双曲线2222:1(0,0)x y C a b a b-=>>的右顶点,以OA 为直径的圆与C 的一条渐近线交于另一点M ,若12AM b =,则C 的离心率为()2 B.2 C.2 D.47.莱莫恩(Lemoine )定理指出:过ABC 的三个顶点,,A B C 作它的外接圆的切线,分别和,,BC CA AB 所在直线交于点,,P Q R ,则,,P Q R 三点在同一条直线上,这条直线被称为三角形的Lemoine 线.在平面直角坐标系xOy 中,若三角形的三个顶点坐标分别为()()()0,1,2,0,0,4-,则该三角形的Lemoine 线的方程为()A.2320x y --= B.2380x y +-=C.32220x y +-= D.23320x y --=8.已知正项数列{}n a 满足()*1223111121n n n n a a a a a a n ++++=∈+N ,若5627a a -=,则1a =()A.13 B.1 C.32D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12z z = B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z = D.若1212z z z z -=+,则120z z =10.已知函数()sin 2cos2x f x x=-,则()A.()f x 的最小正周期为πB.()f x 的图象关于点()π,0对称C.不等式()f x x >无解D.()f x 的最大值为2411.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1AA 的中点,点F 满足()11101A F A B λλ= ,则()A.当0λ=时,1AC ⊥平面BDFB.任意[]0,1λ∈,三棱锥F BDE -的体积是定值C.存在[]0,1λ∈,使得AC 与平面BDF 所成的角为π3D.当23λ=时,平面BDF 截该正方体的外接球所得截面的面积为56π19三、填空题:本题共3小题,每小题5分,共15分.12.已知变量,x y 的统计数据如下表,对表中数据作分析,发现y 与x 之间具有线性相关关系,利用最小二乘法,计算得到经验回归直线方程为8ˆˆ0.yx a =+,据此模型预测当10x =时ˆy 的值为__________.x56789ˆy 3.5456 6.513.已知()(),0,11,,4log log 4a b a b b a ∞∈⋃++=,则2ln a b b+的最小值为__________.14.在平面直角坐标系xOy 中,已知点()1,1P -和抛物线2:4C y x =,过C 的焦点F 且斜率为(0)k k >的直线与C 交于,A B 两点.记线段AB 的中点为M ,若线段MP 的中点在C 上,则k 的值为__________;AF BF ⋅的值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos 1c B a +=.(1)证明:2B A =;(2)若2sin ,144A b ==,求ABC 的周长.16.(15分)如图,在四棱锥E ABCD -中,EC ⊥平面,,ABCD DC BC AB ⊥∥,22DC DC AB ==,CB CE =,点F 在棱BE 上,且12BF FE =.(1)证明:DE ∥平面AFC ;(2)当二面角F AC D --为135 时,求CE .17.(15分)我国无人机发展迅猛,在全球具有领先优势,已经成为“中国制造”一张靓丽的新名片,并广泛用于森林消防、抢险救灾、环境监测等领域.某森林消防支队在一次消防演练中利用无人机进行投弹灭火试验,消防员甲操控无人机对同一目标起火点进行了三次投弹试验,已知无人机每次投弹时击中目标的概率都为45,每次投弹是否击中目标相互独立.无人机击中目标一次起火点被扑灭的概率为12,击中目标两次起火点被扑灭的概率为23,击中目标三次起火点必定被扑灭.(1)求起火点被无人机击中次数的分布列及数学期望;(2)求起火点被无人机击中且被扑灭的概率.18.(17分)在平面直角坐标系xOy 中,已知点50,3P ⎛⎫- ⎪⎝⎭,过椭圆222:1(1)x C y a a+=>的上项点A 作两条动直线()112212:1,:10l y k x l y k x k k =+=+<<分别与C 交于另外两点,M N .当1k 22=时,AM PM =.(1)求a 的值;(2)若1291,8MN k k NP ==,求1k 和2k 的值.19.(17分)已知函数()24e 2(0)x f x x x x-=->,函数()()2233g x x ax a a a =-+--∈R .(1)若过点()0,0O 的直线l 与曲线()y f x =相切于点P ,与曲线()y g x =相切于点Q .①求a 的值;②当,P Q 两点不重合时,求线段PQ 的长;(2)若01x ∃>,使得不等式()()00f x g x 成立,求a 的最小值.2023~2024学年度苏锡常镇四市高三教学情况调研(一)数学参考答案1.【答案】D【解析】{2A x x =<-∣或{}1},04x B xx >-=≤≤∣,则B A ⊆,选D.2.【答案】C【解析】0x =时,55000123451,1;1,3,a a x a a a a a a =∴===+++++51234531242a a a a a ∴++++=-=,选C.3.【答案】B【解析】a b c +=- ,所以22()a b c += ,所以2223a a b b +⋅+= ,所以12a b ⋅= ,1πcos ,,,23a b a b a b a b ⋅==∴= ,选B.4.【答案】A【解析】()2172,,(168176)0.75,(172176)0.375X N P X P X σ~<<=∴<<=,(176)0.50.3750.125,0.1251200150P X ∴>=-=⨯=,选A.5.【答案】C 【解析】π2π3x k +=,则πππ5,.1,2,π6236k x k k x k x =-+∈====Z ;()4113,π;4,π,36k x k x f x ====在()0,2π选C.6.【答案】B 【解析】tan b AOM a ∠=,则112sin ,22b b AM a AOM ec OA a c ∠===∴==,选故答案选B.7.【答案】B【解析】ABC 的外接圆设为22100,4201640E F x y Dx Ey F D F E F ++=⎧⎪++++=∴++=⎨⎪-+=⎩,034D E F =⎧⎪=⎨⎪=-⎩∴外接圆:22340x y y ++-=,即2232524x y ⎛⎫++= ⎪⎝⎭,在A 处切线:31,:1,,1,C,D 242x y y BC P ⎛⎫=+=∴ ⎪-⎝⎭排除.在C 处切线()4,:1,10,42x y AB y R =-+=∴-,选B.8.【答案】D【解析】1n =时,1211;23n a a =≥时,21111212141n n n n a a n n n +-=-=+--()5666654545611117,99,2799,,18,63,9922a a a a a a a a a a a =∴=∴+=∴===∴=,343232121335,10,15,,3,22a a a a a a a a a =∴==∴==∴= ,选D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】AC 【解析】1122z z z z ⋅=,则221212,z z z z =∴=,A 对.2212z z =,则12i,i z z ==-满足条件,10z ≠,B 错.()12131231,0,0z z z z z z z z =∴-=∴=或230,z z C -=对.令()221212i,i,i ()()z a b z c d z z a c b d a c b d =+=+-=-+-=-+-,()22121212i ()(),z z a c b d a c b d z z z z +=+++=+++-=+,则220ac bd +=,()()()12i i i z z a b c d ac bd ad bc =++=-++不一定为0,D 错,选AC .10.【答案】BD【解析】()()()()sin πsin π,π2cos2π2cos2x x f x f x x x+-+==≠∴-+-不是()f x 的周期,A 错.()()()()()sin 2πsin 2π,2cos22π2cos2x x f x f x f x x x---===-∴---关于()π,0对称,B 对.()()π0π,f f x x -=>-∴>有解,C 错,选B D.()()22sin sin 2sin 1212sin x x f x x x ==+--,求()f x 的最小值.令()112sin 0,12222sin sin x f x x x >=≤=+,当且仅当12sin sin x x =,即2sin 2x =时取"=",D 对,选BD.11.【答案】ACD【解析】0λ=时,F 与1A 重合,平面BDF 为平面11,BDC AC ⊥ 面1BDA ,1AC ∴⊥平面,A BDF 对.11A B 不与平面BDE 平行,F ∴到面BDE 的距离不为定值,∴三棱锥F BDE -的体积不为定值,B 错.当F 在1A 时,AC 与平面BDF 所成角的正弦值为6332<,此时AC 与平面BDF 所成角小于π3,当F 在1B 时,AC 与平面BDF 所成角为ππ,23>∴存在[]0,1λ∈使AC 与平面BDF 所成角为π,C 3正确.如图所示建系,()()()0,0,0,2,2,0,2,2,2D B F λ,设平面BDF 的法向量为()0220,,,,22200n DB x y n x y z x y z n DF λ⎧⋅=+=⎧⎪=∴⎨⎨++=⋅=⎩⎪⎩ 不妨设1x =,则()()1,1,1,1,1,2,2,0y z n AC λλ=-=-=--=- .23λ=,则42,,23F ⎛⎫ ⎪⎝⎭,平面BDF 的法向量11,1,3n ⎛⎫=-- ⎪⎝⎭ ,球心()1,1,1O ,O 到面BDF 的距离19OD n d n ⋅== 44432R ++==,∴截面圆半径2225656,ππ,D 1919r R d S r =-===对,选ACD.三、填空题:本题共3小题,每小题5分,共15分.12.【答案】7.4【解析】7,5,50.87,0.6,0.80.6,ˆ0ˆˆ1x y aa y x x ==∴=⨯+∴=-=-=ˆ7.4.y=13.【答案】ln21+【解析】114log log 4,4log 4,log ,log 2a b a a a b a b b b a b +=∴+=∴=∴=,即22222,ln ln ln a b a b b b b b b b =+=+=+,令()2ln f x x x =+,()221220,2x f x x x x x'-=-===.()f x 在()()()min 0,2,2,,()2ln21,f x f ∞+==+ 此时2,2b a ==14.【答案】2;5【解析】AB 为过焦点的弦,AB 中点为M ,过M 作准线的垂线,垂足为N ,则MN 的中点在抛物线上.PM 的中点在抛物线上,,N P ∴重合.令()()()1122,,,,:1A x y B x y AB y k x =-.()214y k x y x ⎧=-⎨=⎩,消x 可得2121244240,,1,22y y y y y y k k k k +--=+===∴=.()()()22222121212121221111144164y y y y y y y y AF BF x x +-⎛⎫⎛⎫⋅=++=++=++ ⎪⎪⎝⎭⎝⎭164815164+=++=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)证明:()2cos 1sin sin sin cos cos sin B A C A B A B+==+()sin sin cos cos sin sin A B A B A B A ⇒=-=-A B A ∴=-或()πA B A +-=(舍),2B A ∴=.(2)2147sin sin22444B A ==⨯⨯=,21314cos 12sin 12,cos 844B A A =-=-⨯==,()2314710252sin sin 4444168C A B ∴=+=⨯+⨯==,由正弦定理21452752448a c =⎧⇒==⇒⎨=⎩ABC ∴ 的周长为714+16.【解析】(1)设BC m =,如图建系.()()()()21,0,1,0,0,0,0,0,2,0,,0,,,033A m C D E m F m m ⎛⎫∴ ⎪⎝⎭,()()21,0,1,,,0,0,,2,33CA m CF m m DE m ⎛⎫===- ⎪⎝⎭设平面AFC 的:一个法向量为()1,,n x y z = ,()101,2,21033mx z n m mx my +=⎧⎪∴⇒=--⎨+=⎪⎩ 1220,DE n m m DE ∴⋅=-+=∴ ∥平面AFC .(2)平面ACD 的一个法向量()20,1,0n =,122122cos1353,3251n n m CE n n m ⋅∴=-=--==+⋅ 17.【解析】(1)起火点被无人机击中次数X 的所有可能取值为0,1,2,3()()32131141120,1C 512555125P X P X ⎛⎫⎛⎫=====⋅⋅= ⎪ ⎪⎝⎭⎝⎭,()()232341484642C ,3551255125P X P X ⎛⎫⎛⎫==⋅⨯==== ⎪ ⎪⎝⎭⎝⎭.X ∴的分布列如下:X 0123P 1125121254812564125()44123,,3555X B E X ⎛⎫~∴=⨯= ⎪⎝⎭.(2)击中一次被扑灭的概率为121134116C 552125P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭击中两次被火扑灭的概率为222341232C 553125P ⎛⎫=⋅⨯⨯= ⎪⎝⎭击中三次被火扑灭的概率为334645125P ⎛⎫== ⎪⎝⎭∴所求概率63264102125125125125P =++=.18.【解析】(1)22222222112022a y x x a x x a y a ⎧⎛⎫=+⎪⇒++=⎨ ⎪⎝⎭⎪+=⎩()22222225,,0,1,0,223a a M A P a a ⎛⎫--⎛⎫∴- ⎪ ⎪ ⎪++⎝⎭⎝⎭由22222222222221222a a a AM PM a a a ⎛⎫⎛⎫⎛⎫-=⇒+-=+ ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭2222523a a ⎛⎫-+ ⎪+⎝⎭,解得24,2a a =∴=.(2)设()()()1122,,,,0,1M x y N x y A ,则()()121221122121211114153011141y x x y x x x y x y y x x y ⎧⎛⎫--⋅=⎪ ⎪+⎪⎝⎭⇒---=⎨⎛⎫-⎪⋅-⋅= ⎪⎪+⎝⎭⎩.()()211221503x x x y x y ⇒--+-=对比,M N 两点方程知MN 过50,3⎛⎫ ⎪⎝⎭与P 重合.1212178171588x x y y ⎧=⎪⎪⎨⎪=+⎪⎩,解得112121,202x k k y =-⎧⇒==⎨=⎩.19.【解析】(1)①()222e e 42x x x f x x --⋅-=⋅-',设020004e ,2x P x x x -⎛⎫- ⎪⎝⎭()()0022000002004e 2e 1422,x x OPx x x k f x x x x ----∴===⋅-⇒='∴切点()2,2,1P k -=-.l ∴方程:()22y x +=--,即y x=-()2222133033y x x a x a a y x ax a a=-⎧⇒-+++=⎨=-+--⎩()()()22Δ(13)4305110a a a a a =+-+=⇒--=15a ∴=或1②当1a =时,2Q x =,此时()2,2,,Q P Q -重合,舍去.当15a =时,45Q x =,此时44,55Q ⎛⎫- ⎪⎝⎭此时22446222555PQ ⎛⎫⎛⎫=-+-+= ⎪ ⎪⎝⎭⎝⎭.(2)令()()()2224e 233x F x f x g x x x ax a a x-=-=-+-++()()()()22223e 224e 1223,420x x x x x F x x a F x x x --''-+-=-+-'=⋅+>()F x '在()1,∞+上取补集,对1x ∀>,均有()()0f x g x ->成立,即()0F x >恒成立()2222446303201F a a a a a a ∴=-+-++>⇒-+>⇒<或2a >而对1,1x a ∀><经检验均有()0F x >成立,∴原命题中1a ≥而1a =时,()()()224e 1223,x x F x x F x x -'-+-'-= ,注意到()20F '=()F x ∴在()1,2上()()min 2,,()200F x F ∞+∴==≤ 成立,符合.综上:a 的最小值为1.。

江苏省苏锡常镇四市高考数学一模试卷

江苏省苏锡常镇四市高考数学一模试卷

江苏省苏锡常镇四市高考数学一模试卷一、解答题详细信息1.难度:中等已知集合A={1,2,3},集合B={3,4},则A∩B=.详细信息2.难度:中等已知复数z=1-2i(i为虚数单位),则z2= .详细信息3.难度:中等已知命题p:直线a,b相交,命题q:直线a,b异面,则¬p是q的条件.详细信息4.难度:中等某公司为了改善职工的出行条件,随机抽取100名职工,调查了他们的居住地与公司间的距离d(单位:千米).由其数据绘制的频率分布直方图如图所示,则样本中职工居住地与公司间的距离不超过4千米的人数为.详细信息5.难度:中等如图,给出一个算法的伪代码,已知输出值为3,则输入值x= .详细信息6.难度:中等已知角α(0≤α<2π)的终边过点,则α=.详细信息7.难度:中等写出一个满足f(xy)=f(x)+f(y)-1(x,y>0)的函数f(x)= .详细信息8.难度:中等已知点M与双曲线的左,右焦点的距离之比为2:3,则点M的轨迹方程为.详细信息9.难度:中等投掷两颗骰子,得到其向上的点数分别为m,n,设,则满足的概率为.详细信息10.难度:中等等差数列{an }中,已知a8≥15,a9≤13,则a12的取值范围是.详细信息11.难度:中等已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f (x)在[-1,0]上的最小值为.详细信息12.难度:中等如图,已知二次函数y=ax2+bx+c(a,b,c为实数,a≠0)的图象过点C(t,2),且与x轴交于A,B两点,若AC⊥BC,则a的值为.详细信息13.难度:中等}的前2012项和设u(n)表示正整数n的个位数,,则数列{an等于.详细信息14.难度:中等将函数(x∈[0,2])的图象绕坐标原点逆时针旋转θ(θ为锐角),若所得曲线仍是一个函数的图象,则θ的最大值为.详细信息15.难度:中等在△ABC中,角A,B,C的对边分别为a,b,c,向量,,且.(1)求角C的大小;(2)若a2=2b2+c2,求tanA的值.详细信息16.难度:中等如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG 的体积.17.难度:中等如图,两个圆形飞轮通过皮带传动,大飞轮O1的半径为2r(r为常数),小飞轮O2的半径为r,O1O2=4r.在大飞轮的边缘上有两个点A,B,满足,在小飞轮的边缘上有点C.设大飞轮逆时针旋转一圈,传动开始时,点B,C在水平直线O1O2上.(1)求点A到达最高点时A,C间的距离;(2)求点B,C在传动过程中高度差的最大值.详细信息18.难度:中等如图,已知椭圆的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧),点P在椭圆E上.(1)若点P的坐标为(6,4),求四边形ABCP的面积;(2)若四边形ABCP为梯形,求点P的坐标;(3)若(m,n为实数),求m+n的最大值.详细信息19.难度:中等数列{an }中,a1=1,a2=2.数列{bn}满足,n∈N+.(1)若数列{an }是等差数列,求数列{bn}的前6项和S6;(2)若数列{bn }是公差为2的等差数列,求数列{an}的通项公式;(3)若b2n -b2n-1=0,,n∈N+,求数列{an}的前2n项的和T2n.20.难度:中等若斜率为k的两条平行直线l,m经过曲线C的端点或与曲线C相切,且曲线C 上的所有点都在l,m之间(也可在直线l,m上),则把l,m间的距离称为曲线C在“k方向上的宽度”,记为d(k).(1)若曲线C:y=2x2-1(-1≤x≤2),求d(-1);(2)已知k>2,若曲线C:y=x3-x(-1≤x≤2),求关于k的函数关系式d (k).详细信息21.难度:中等(选做题)如图,正△ABC外接圆的半径为1,点M,N分别是边AB,AC的中点,延长MN与△ABC的外接圆交于点P,求线段NP的长.详细信息22.难度:中等(选做题)二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求直线l的方程.详细信息23.难度:中等已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:与曲线C2:(t∈R)交于A、B两点.求证:OA⊥OB.详细信息24.难度:中等(选做题)设实数x,y,z满足x+2y-3z=7,求x2+y2+z2的最小值.详细信息25.难度:中等某地区通过先初试再复试选拔篮球运动员,初试依次进行四项测试,若选手通过其中两项测试,则可直接进入复试,不再进行剩余项测试;若选手前三项测试均不通过,则不进行第四项测试.假设选手甲在初试中通过每项测试的概率都是,且每项测试是否通过互相独立.(1)求选手甲前两项测试均不通过的概率;(2)设选手甲参加初试测试的次数为X(X≥2),求X的分布列及X的数学期望.详细信息26.难度:中等从函数角度看,组合数可看成是以r为自变量的函数f(r),其定义域是{r|r∈N,r≤n}.(1)证明:;(2)利用(1)的结论,证明:当n为偶数时,(a+b)n的展开式中最中间一项的二项式系数最大.。

江苏省苏、锡、常、镇2025届高三第一次模拟考试数学试卷含解析

江苏省苏、锡、常、镇2025届高三第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .2.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π3.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( ) A .10B .11C .12D .134.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424πB .()85824πC .()854216πD .()858216π5.若复数z 满足(1)12i z i +=+,则||z =( )A .22B .32C 10D .126.已知集合1|2A x x ⎧⎫=<-⎨⎬⎩⎭,{|10}B x x =-<<则AB =( )A .{|0}x x <B .1|2x xC .1|12x x ⎧⎫-<<-⎨⎬⎩⎭D .{|1}x x >-7.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年8.执行如图所示的程序框图,若输出的结果为3,则可输入的实数x 值的个数为( )A .1B .2C .3D .49.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若6PA =,2AB =,则球O 的表面积为( )A .163πB .94π C .6πD .9π10.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅的值为( ) A .4B .8C .6D .1211.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是( )A .10,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 12.过圆224x y +=外一点(4,1)M -引圆的两条切线,则经过两切点的直线方程是( ). A .440x y --=B .440x y +-=C .440x y ++=D .440x y -+=二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏锡常镇四市2021-2022学年高考数学一模试卷含解析

2021-2022高考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设m ,n 为非零向量,则“存在正数λ,使得λ=m n ”是“0m n ⋅>”的( )A .既不充分也不必要条件B .必要不充分条件C .充分必要条件D .充分不必要条件2.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知复数21z i =+ ,其中i 为虚数单位,则z =( )A B C .2 D4.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( )A .12⎛ ⎝B .12⎡⎢⎣C .12⎛ ⎝⎦D .12⎛ ⎝⎭5.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( )A B .34+ C D .36+ 6.5()(2)x y x y +-的展开式中33x y 的系数为( )A .-30B .-40C .40D .507.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S =15(单位:升),则输入的k 的值为( )A .45B .60C .75D .100 8.由曲线3,y x y x == )A .512B .13C .14D .129.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为3(21)-,则b c +=( )A .5B .22C .4D .1610.若样本1231,1,1,,1n x x x x ++++的平均数是10,方差为2,则对于样本12322,22,22,,22n x x x x ++++,下列结论正确的是( )A .平均数为20,方差为4B .平均数为11,方差为4C .平均数为21,方差为8D .平均数为20,方差为8 11.已知直线22y x a =-是曲线ln y x a =-的切线,则a =( )A .2-或1B .1-或2C .1-或12D .12-或1 12.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( )A .1B .1或12C 3D .3 二、填空题:本题共4小题,每小题5分,共20分。

【数学】2020苏锡常镇一模数学卷

2019年~2020学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题1.已知i 为虚数单位,复数11z i=+,则z =#2.已知集合{}{}01,13A x x B x a x =≤≤=-≤≤,若A B ⋂中有且只有一个元素,则实数a 的值为#3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是#4.在平面直角坐标系xOy 中,已知双曲线2221(0)4x y a a -=>的一条渐近线方程为23y x =,则a =#5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是#6.右图是一个算法的流程图,则输出的x 的值为#7.“直线1:10l ax y ++=与直线2:430l x ay ++=平行”是“2a =”的#条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n a =#9.已知点M 是曲线22ln 3y x x x =+-上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为#10.已知3cos 24sin(),(,)44ππαααπ=-∈,则sin 2α=#11.如图在矩形ABCD 中,E 为边AD 的中点,.2,1==BC AB 分别以D A ,为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为#12.在ABC ∆中,()(1)AB AC BC λλ-⊥> ,若角A 的最大值为6π,则实数λ的值是#一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上。

13.若函数()(01)xf x a a a =>≠且在定义域[,]m n 上的值域是22[,](1)m n m n <<,则a 的取值范围是#14.如图,在ABC ∆中,4,AB D =是AB 的中点,E 在边AC 上,2,AE EC CD =与BE 交于点O ,若2,OB OC =则ABC ∆面积的最大值为#二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷一、填空题 (共14题;共14分)1.(1分)已知i 为虚数单位,复数 z =11+i,则 |z| = . 2.(1分)已知集合A = {x|0≤x ≤1} ,B = {x|a −1≤x ≤3} ,若A ∩B 中有且只有一个元素,则实数a 的值为 .3.(1分)已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是 .4.(1分)在平面直角坐标系xOy 中,已知双曲线 x 2a2−y 24=1 (a >0)的一条渐近线方程为 y =23x ,则a = . 5.(1分)甲、乙两人下棋,两人下成和棋的概率是 12 ,乙获胜的概率是 13,则乙不输的概率是 .6.(1分)下图是一个算法的流程图,则输出的x 的值为 .7.(1分)“直线l 1: ax +y +1=0 与直线l 2: 4x +ay +3=0 平行”是“a =2”的条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.(1分)已知等差数列 {a n } 的前n 项和为 S n , a 1=9 , S99−S 55=−4 ,则 a n= .9.(1分)已知点M 是曲线y =2lnx +x 2﹣3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为 .10.(1分)已知 3cos2α=4sin(π4−α) , α∈ ( π4 , π ),则 sin2α = .11.(1分)如图,在矩形ABCD 中,E 为边AD 的中点, AB =1 , BC =2 ,分别以 A 、 D 为圆心, 1 为半径作圆弧 EB 、 EC ( 在线段 AD 上).由两圆弧 EB 、 EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为 .12.(1分)在△ABC 中,( AB ⃗⃗⃗⃗⃗⃗ −λAC ⃗⃗⃗⃗⃗ )⊥ BC ⃗⃗⃗⃗⃗ ( λ >1),若角A 的最大值为 π6 ,则实数 λ 的值是 .13.(1分)若函数 f(x)=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是 .14.(1分)如图,在△ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB = √2OC ,则△ABC 面积的最大值为 .二、解答题 (共11题;共100分)15.(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosA ﹣ √3 asinB =0.(1)(5分)求A ;(2)(5分)已知a =2 √3 ,B = π3 ,求△ABC 的面积.16.(10分)如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,BD ⊥DC ,△PCD 为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)(5分)证明:AP∥平面EBD;(2)(5分)证明:BE⊥PC.17.(10分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1 (百米),且F恰在B的正对岸(即BF⊥l3).(1)(5分)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)(5分)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.(10分)如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为1 2.且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)(5分)求椭圆C的标准方程;(2)(5分)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.(10分)已知函数f(x)=23x3−mx2+m2x(m∈R)的导函数为f′(x).(1)(5分)若函数g(x)=f(x)−f′(x)存在极值,求m的取值范围;(2)(5分)设函数ℎ(x)=f′(e x)+f′(lnx)(其中e为自然对数的底数),对任意m∈R,若关于x的不等式ℎ(x)≥m2+k2在(0,+∞)上恒成立,求正整数k的取值集合.20.(10分)已知数列{a n},{b n},数列{c n}满足c n={a n,n为奇数b n,n为偶数,n∈N∗.(1)(5分)若a n=n,b n=2n,求数列{c n}的前2n项和T2n;(2)(5分)若数列{a n}为等差数列,且对任意n∈N∗,c n+1>c n恒成立.①当数列{b n}为等差数列时,求证:数列{a n},{b n}的公差相等;②数列{b n}能否为等比数列?若能,请写出所有满足条件的数列{b n};若不能,请说明理由.21.(5分)已知矩阵A=[1321],B=[−2311],且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.(10分)在平面直角坐标系xOy中,曲线l的参数方程为{x=2+cosθy=√3+2√3cos2θ2(θ为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinθ.(1)(5分)求曲线C的普通方程;(2)(5分)求曲线l和曲线C的公共点的极坐标.23.(5分)已知正数x,y,z满足x+y+z=t(t为常数),且x24+y29+z2的最小值为87,求实数t的值.24.(10分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)(5分)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)(5分)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.(10分)已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k≠0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)(5分)求点G的轨迹方程;(2)(5分)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.答案解析部分1.【答案】√22【解析】【解答】z=11+i =12−12i⇒|z|=√22.故答案为:√22.【分析】先把复数进行化简,然后利用求模公式可得结果.2.【答案】2【解析】【解答】由题意A∩B中有且只有一个元素,所以a−1=1,即a=2. 故答案为:2.【分析】利用A∩B中有且只有一个元素,可得a−1=1,可求实数a的值. 3.【答案】0.08【解析】【解答】首先求得x̅=15(1.6+1.8+2+2.2+2.4)=2,S2=15[(1.6−2)2+(1.8−2)2+(2−2)2+(2.2−2)2+(2.4−2)2]=0.08.故答案为:0.08.【分析】先求解这组数据的平均数,然后利用方差的公式可得结果.4.【答案】3【解析】【解答】因为双曲线x 2a2−y24=1(a>0)的渐近线为y=±2ax,且一条渐近线方程为y=23x,所以a=3.故答案为:3.【分析】双曲线的焦点在x轴上,渐近线为y=±2a x,结合渐近线方程为y=23x可求a .5.【答案】56【解析】【解答】乙不输的概率为12+13=56,故答案为:56.【分析】利用互斥事件概率加法公式列式,即可求出乙不输的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)当
(2)当 观赏亭处的观赏效果最佳时,角 的正弦值.
19.已知函数
(1)若
(2)若
求实数 的值;

20.已知

14.若二次函数 的取值范围为_______________.
15.已知向量
(1)若
(2)若
16.立体几何
17.已知椭圆
(1)求椭圆C的标准方程;
(2)过点A且互相垂直的两直线 已知OE=OF,求直线 的斜率.
18.某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB,在OC上有一座观赏亭Q,其中∠AQC=
苏锡常镇高三一模
1.已知集合 _____________________.
2.已知复数
3.双曲线 的渐近线方程为_________________________.
4.某中学共有1800人,其中高二年级的人数为600,现用分层抽样的方法在全校抽取n人,其中高二年级被抽取的人数为21,则n=______________________.
9.已知 _________________________.
10.设三角形ABC的内角A,B,C的对边分别为 ______________.
11.已知函数 实数 的取值范围为________________.
12.在△ABC中,点P是边AB的中点,已知 则 __________________.
13.已知直线 上有且仅有一个点B满足AB⊥BP,则点P的横坐标的取值集合为____________________.
5.将一颗质地均匀的正四面体骰子(每个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和为6的概率为____________________.
6.流程图
7.若正四棱锥的底面边长为2cm,侧面积为8cm²,则它的体积为_________________.
8.设
相关文档
最新文档