4 第三章-1 杀虫剂作用机理
第三章 杀虫剂及杀虫剂毒理

第三章 杀虫剂及杀虫剂毒理本章内容主要讲解杀虫剂毒杀机理及各种常用杀虫剂的性质特点,作用方式,在生物体内(昆虫、植物)代谢,防治对象及使用方法。
杀虫剂毒理(Insect Toxicology ),主要研究各种杀虫剂对昆虫的毒杀机制和昆虫对杀虫剂反应的学科。
它包括药剂对昆虫的穿透与分布,生物转化与排除,对靶标部位的作用,以及选择毒性与抗药性的关系等内容。
第一节 杀虫剂的穿透与在昆虫体内的分布一.杀虫剂进入昆虫体内的途径:杀虫剂进入昆虫体内的途径,也就是杀虫剂的作用方式(Mode of action of insecticide):指杀虫剂侵入昆虫体内的方式及达到作用部位的途径和方法。
杀虫剂的杀虫作用,除本身毒剂外,首先必须以一定的方式侵入虫体,进入虫体内到达作用部位,然后才能在靶标部位(Target )起作用。
因此了解杀虫剂的作用方式对科学使用农药,提高防治效果与经济效益,减少农药对环境的污染都有重要的理论意义和实用价值。
杀虫剂作用方式就是指杀虫剂进入虫体内途径,主要有:1.通过昆虫体壁进入:药剂与昆虫表皮或跗节接触后,能够穿透体壁进入体内而达到作用部位,使昆虫中毒死亡。
这种作用方式,称为触杀作用(Action of contact poisoning )。
具有触杀作用的药剂,称为触杀剂。
如常用的辛硫磷、对硫磷、溴氰菊酯、甲氰菊酯(灭扫利)。
影响触杀作用的因素主要是昆虫表皮的构造与触杀剂的理化性质:(1)昆虫的体壁构造:我们学习过普通昆虫学,可知,昆虫体壁由表皮层、真表皮和底膜。
表皮层来源于皮细胞分泌的非细胞质物质,硬化以后成为昆虫的外骨骼,这是节肢动物的重要特征,因而表皮层又可分为三层:(由外向内)(昆虫体壁构造图示)由此可见,昆虫上表皮中所含蜡质、类脂及鞣化蛋白质都是非极性化合物(疏水性物质)与水,没有亲和性。
脂溶性强,水溶性弱,不易被水所湿润。
外表皮内表皮 护蜡层:主要成分类脂和鞣化蛋白 蜡层:含C 25—C 34个碳原子的碳氢化合物(蜡质) 角质精层:类脂、鞣化蛋白几丁质和蛋白质 几丁质和蛋白质任何一种杀虫剂在穿透昆虫体壁时,首先必须在昆虫体壁上湿润展布。
杀虫剂作用机制

类型代表种类特点作用机制备注有机氯类DDT以苯为合成原料(六六六也是)在环境中的高残留性及在生物体内具有富集性作用于神经系统轴突部位的钠离子通道,使钠离子通道关闭延迟,引起动作电位的重复后放,导致神经过度兴奋,信号传递中断,最终死亡。
1874年合成,1939年发现其杀虫活性,1948诺贝尔奖,1973年禁止使用。
六六六、环戊二烯类(毒杀芬、狄氏剂、艾氏剂、七氯、灭蚁灵、硫丹)不以苯为原料。
化学性质稳定,水中溶解度低,脂溶性强,易被动植物吸附,可在生物体内富集,在环境中残留时间长,不易分解(硫丹除外)。
作用于GABA受体上的苦毒宁位点,促使GABA门控的Cl-通道开放,使大量Cl-涌入膜内,造成神经膜电位超极化,形成抑制性突触后电位,致使虫体对兴奋性的信号传递反应不敏感,影响其正常的神经活动,最终死亡。
有机磷类(OPs)磷酸酯(速灭磷)、硫逐磷酸酯(对硫磷、辛硫磷、内吸磷、毒死蜱)、二硫代磷酸酯(乐果、灭蚜松、甲拌磷、特丁硫磷)、硫赶磷酸酯(氧乐果、丙溴磷)、磷酰胺酸衍生物(乙酰甲胺磷)、磷酸酯(敌百虫)磷酸氟衍生物、焦磷酸衍生物、次膦酸酯类高效、广谱具有触杀、胃毒、熏蒸等多种作用方式在植物体内可代谢降解,有些残效期短、低毒,如马拉硫磷;有些残效期较长,如甲拌磷有些品种具有内吸作用;有的具有很强的渗透作用,施于叶面对叶背害虫也有效抑制神经突触传递中的递质水解酶—乙酰胆碱酯酶,使释放到突触间隙的乙酰胆碱大量积累,从而阻断神经系统的信号传递,导致昆虫死亡。
有机磷酸酯与AChE酯动部位丝氨酸的羟基共价结合后,由于磷酰化酶的解离速度非常缓慢,使AChE无法恢复而抑制其活性。
多为油状液体,少数为固体,颜色深,有大蒜臭味沸点一般很高,在常温下蒸气压很低。
但敌敌畏蒸气压高。
大多数不溶于水或微溶于水,而溶于一般有机溶剂,但有的在水中有较大的溶解度,如敌百虫、乐果、甲胺磷、磷胺等。
碱性条件易分解失效对土壤害虫有效的品种:甲拌磷、二嗪磷、毒死蜱、特丁硫磷、辛硫磷(施用时浸种/拌种、配成毒土)内吸性有机磷杀虫剂:乐果,氧乐果,甲拌磷,乙拌磷,异丙磷,灭蚜松2007年1月1日起我国全面禁用列入“PIC”名单的5种高毒农药:甲胺磷、甲基对硫磷、对硫磷、久效磷、磷胺氨基甲酸酯类(CAs)N,N-二甲基氨基甲酸酯类(抗蚜威、抗蝇威、敌蝇威、异索威、吡唑威、嘧啶威、地麦威)、N-甲基氨基甲酸芳香酯(甲萘威、仲丁威、灭害威、残杀威、除害威、速灭威、害扑威、叶蝉散、克百威)、N-甲基氨基甲酸肟酯(涕灭威、灭多威、棉果威、杀线威、抗虫威)、N-酰基(或羟硫基)N-甲基氨基甲酸酯(棉铃威)大部分氨基甲酸酯类比有机磷杀虫剂毒性低,对鱼类比较安全,但对蜜蜂具有较高毒性;对人畜的毒性都比较小。
杀虫剂作用机制和基本原理

(一)轴突传导
2、动作电位的产生
当神经膜受到刺激产生兴奋时,神经膜的 极化状态遭到暂时破坏,称为去极化作用。在 刺激部位,膜的通透性起了变化,Na+由膜外 渗入膜内,使膜内电位上升变得比原来更正些, 形成一个短暂稳定的电位差。在兴奋产生时, 膜内外形成的电位差就是动作电位,这个过程 叫去极化。当神经冲动过去K+被离子泵吸入膜 内, Na+被离子泵喷出膜外,神经膜恢复到极 化状态,对Na+保持不渗透性。
定,很快就水解,酶复活,抑制作用解除。因此,要有强大
的抑制作用,就要K2足够大, k3足够小,要求(1)分子中
有吸电子基团,才能造成磷原子的局部正电荷,磷原子的正
电荷越大,磷酰化反应就越迅速;(2)生成的磷酰化酶比 较稳定,被抑制的AchE不易恢复;(3)在到达作用靶标前, 杀虫剂本身足够稳定,不易水解。
当一个冲动到达前膜时,改变了膜的离子 通透性,导致细胞外液中的Ca2+向内流动, Ca2+的内流增加了突触小泡的随机运动,并与 突触前膜发生撞击,小泡中的神经递质释放, 神经递质扩散通过突触间隙,与突触后膜上的 受体结合,引起后膜去极化,形成突触后动作 电位。在新的动作电位产生后,神经递质被酶 灭活,递质对受体的作用终止。这样神经冲动 的突触传导就完成了。
小结
神经递质在完成突触传导后,必须马上 被相应的分解酶系所水解,脱离受体。 如果神经递质的分解酶被杀虫剂所抑制, 就会造成神经递质在突触部位的大量积 累,不断刺激受体,从而影响正常的神 经传导。
二、神经毒剂的作用机制
(一)有机磷酸酯类杀虫剂
有机磷杀虫剂的作用机制就在于其抑 制了AchE的活性,使乙酰胆碱不能及时 分解而积累,不断和受体结合,造成后 膜上的钠离子通道长时间开放,突触后 膜长期兴奋,从而影响了神经冲动的正 常传导。中毒昆虫最初出现高度兴奋。 痉挛,最后瘫痪、死亡。
杀虫剂作用机制和基本原理

杀虫剂作用机制(mechanism of insecticide)
杀虫剂引起昆虫中毒或死亡的原因称为作用机 制,或称作用机理。 杀虫剂对昆虫的毒杀作用主要是化学作用,就 是杀虫剂与昆虫的酶系、受体及其他物质的反应, 这些反应引起昆虫生理上的改变,最终造成昆虫 死亡。也有物理作用:堵塞气管(机油乳剂);摩 擦表皮( 硅藻土)
(一)轴突传导
传递神经冲动的生物电流是怎样产生和传导的? 1、静息电位
一个神经元就是一个细胞,也有个半透性膜。在 轴状突上,当神经膜处于静止状态时,受膜内外 离子(主要是钾、钠和氯离子)的影响,膜的外 表面带正电,膜内带负电,这时膜两侧的电位就 是静息电位,膜处于极化状态。
(一)轴突传导
膜电位是指膜内、外两个表面上的电位 差。膜在没有刺激时,在外表面或内表面 任何两点都是等电位的,无电位差,也就 没有电流产生。
(一)轴突传导
2、动作电位的产生
当神经膜受到刺激产生兴奋时,神经膜的 极化状态遭到暂时破坏,称为去极化作用。在 刺激部位,膜的通透性起了变化,Na+由膜外 渗入膜内,使膜内电位上升变得比原来更正些, 形成一个短暂稳定的电位差。在兴奋产生时, 膜内外形成的电位差就是动作电位,这个过程 叫去极化。当神经冲动过去K+被离子泵吸入膜 内, Na+被离子泵喷出膜外,神经膜恢复到极 化状态,对Na+保持不渗透性。
(三)神经毒剂的作用靶标
目前杀虫剂的作用靶标主要为:轴突膜上的离子通道 (电压门控离子通道)、突触后膜上的神经递质受体 (配位体离子通道)和神经递质水解酶。神经递质合 成酶也是一个潜在的靶标。
1、离子通道
神经膜上都有由通道蛋白组成的小孔,称为离子通道。 按受控机制可分为电压门控离子通道和配位体门控离子通道 (1)电压门控离子通道
杀虫剂原理

杀虫剂原理
杀虫剂的原理可以归结为以下几个方面:
1. 神经毒性作用:许多杀虫剂通过干扰昆虫的神经系统来达到杀虫的效果。
它们可以影响昆虫神经细胞的正常功能,如阻断神经传递物质、干扰神经信号传递等,导致昆虫瘫痪、麻痹或死亡。
2. 窒息作用:某些杀虫剂能够阻碍昆虫呼吸系统的正常功能。
它们通过干扰昆虫的气孔或呼吸器官,阻止氧气的供应或二氧化碳的排出,使昆虫无法正常呼吸而死亡。
3. 胃毒作用:某些杀虫剂具有胃毒性,即昆虫摄入杀虫剂后会导致中毒而死亡。
这些杀虫剂可以通过昆虫的食物或触碰叶面而被摄入体内,然后对昆虫的内部组织或器官产生毒性作用,最终导致昆虫死亡。
4. 生长调节作用:有些杀虫剂是模拟昆虫内部激素的结构或功能,干扰昆虫的生长和发育过程。
它们可以阻止昆虫完成正常的蜕皮、成虫化、繁殖等关键阶段,从而抑制昆虫的繁殖能力,减少种群数量。
需要注意的是,不同的杀虫剂可能采用不同的作用机制或组合多种机制,以增加杀虫效果并降低抗性的产生。
此外,杀虫剂的选择和使用
应遵循相关法规和安全准则,以确保对非目标生物和环境的影响最小化。
常见杀虫剂作用机理

常见杀虫剂作用机理常见的杀虫剂作用机理分为以下几种:1.神经毒剂作用机理:神经毒剂作用于昆虫的神经系统,干扰其神经递质的传递,导致神经元受损或死亡。
常见的神经毒剂有有机磷类杀虫剂和氨基甲酸酯类杀虫剂。
有机磷类杀虫剂通过抑制乙酰胆碱酯酶的活性,导致乙酰胆碱在神经突触中积累,干扰神经传递。
氨基甲酸酯类杀虫剂通过抑制神经突触前膜上的胆碱酯酶的活性,使神经递质乙酰胆碱在突触中积累,从而破坏神经传递。
2.窒息剂作用机理:窒息剂通常是通过阻碍昆虫的气呼吸系统,造成虫体缺氧而达到杀灭昆虫的目的。
窒息剂有机磷类杀虫剂和氨基甲酸酯类杀虫剂。
这些化合物能够阻止昆虫对氧气的吸收和利用,导致虫体中氧气水平降低并且二氧化碳水平升高,最终导致昆虫窒息而死亡。
3.生长调节剂作用机理:生长调节剂通过与昆虫的内分泌系统相互作用,干扰昆虫的生长和发育过程。
生长调节剂可以分为昆虫激素模拟剂和昆虫激素拮抗剂两类。
昆虫激素模拟剂作用于昆虫的生长和发育激素受体,模拟自然的激素信号,引起生长和发育的异常而导致昆虫死亡。
昆虫激素拮抗剂则是干扰昆虫内源性激素的合成和释放,抑制昆虫的生长和发育。
4.刺激剂作用机理:刺激剂能够直接刺激昆虫的神经系统,导致神经元活跃性增加,引起神经失调或神经毒性反应。
常见的刺激剂有咪饮胺类杀虫剂和拟除虫菊酯类杀虫剂。
这些化合物通过刺激昆虫神经细胞的放电,干扰神经传递,最终导致昆虫神经系统受损。
5.疟疾杀虫剂作用机理:疟疾杀虫剂通过对疟原虫或蚊子的特殊靶点进行作用,杀死疟原虫或蚊子。
中常用的疟疾杀虫剂有灭蚊胺和氰菊酯等。
灭蚊胺作用于疟原虫的线粒体呼吸链酶,阻断其能量代谢。
而氰菊酯则作用于蚊子神经系统的特定靶点,干扰神经传递,导致蚊子死亡。
总的来说,不同的杀虫剂通过不同的作用机理,干扰昆虫的生理功能,从而达到杀虫的效果。
这些杀虫剂通过农业和卫生领域的应用,可以有效地控制各种昆虫害虫的数量和传播,保护农作物的生长和人类的健康。
杀虫剂杀虫原理

杀虫剂杀虫原理
杀虫剂的作用机理是通过化学药剂对害虫进行毒杀。
其主要成分能够干扰害虫的生理活动和代谢过程,从而导致害虫死亡。
杀虫剂通常分为接触性和内服性两类。
接触性杀虫剂涂覆在害虫体表,通过直接接触而使害虫中毒和死亡。
内服性杀虫剂则通过害虫摄食含药物的饵料或植物组织,进入害虫体内,从而达到毒杀效果。
杀虫剂的主要成分包括有机磷化合物、氨基甲酸酯、咪唑类、大环内酯等。
这些化学物质在进入害虫体内后,通过与害虫的神经系统、酶系统或其他生理过程发生作用,影响害虫的正常生理活动。
例如,有机磷杀虫剂能够抑制酯酶的活性,从而使神经递质乙酰胆碱在神经突触中积累,导致神经冲动传递异常,最终引发麻痹和死亡。
氨基甲酸酯杀虫剂则能够抑制神经递质乙酰胆碱酯酶的活性,使乙酰胆碱在突触间隙停留时间增加,产生神经传递紊乱和抑制作用。
除了直接对害虫产生毒杀效果外,杀虫剂的选择和使用也要考虑对非目标生物的影响,以及环境的安全性。
合理使用和控制剂量,遵循使用说明,能够最大程度减少对环境和生态系统的负面影响。
杀虫剂作用机理

杀虫剂是一种用于杀死、控制或预防各种昆虫的药剂。
它们是由化学合成或从天然物质中提取的化合物组成的,其作用机理大致分为六类:神经酶抑制剂、神经递质模拟剂、神经递质释放促进剂、呼吸抑制剂、顺式调节剂和生长调节剂。
一、神经酶抑制剂神经酶抑制剂是一种通过抑制昆虫或其他无脊椎动物体内神经酶的有效作用成分。
神经酶是传递神经脉冲的化合物,它们能够从一个神经元中传递到另一个神经元中,并且通过神经酶将神经信息作为化学信号传递。
有些昆虫,如蚂蚁、蜜蜂和蜘蛛,同时具有乙酰胆碱酶和胆碱酰转移酶,这些昆虫可以通过阻止神经递质的正常破坏而被杀死。
杀虫剂中的神经酶抑制剂会阻止神经酶的生物催化作用,从而导致神经递质聚积,昆虫的正常神经传递将被干扰,最终导致中毒死亡。
二、神经递质模拟剂神经递质模拟剂是化合物的一类,它们模拟或激活某种神经递质的作用。
神经递质是一种关键的化学物质,它可以调节神经冲动和昆虫行为,例如飞行、搜索和交配。
许多杀虫剂中的化合物可以模拟或增加昆虫体内的特定神经递质,例如多巴胺、谷氨酸、五羟色胺和胆碱等,从而破坏昆虫正常的神经递质信号传递,导致昆虫死亡。
三、神经递质释放促进剂神经递质释放促进剂是一类通过促进神经递质的释放来杀死昆虫或控制昆虫数量的化合物。
这些化合物可以模拟昆虫体内的一些近似神经递质,并激活神经元,导致神经递质大量释放。
大量释放的神经递质可能会打断神经元传输和接受信息,干扰内脏、肌肉或神经系统的正常功能,导致死亡。
四、呼吸抑制剂昆虫的呼吸依赖于扩张和收缩的气管,将氧气吸入体内。
杀虫剂中的呼吸抑制剂可以通过干扰气管的扩张和收缩来抑制昆虫的呼吸。
呼吸抑制剂可分为两类:儿茶酚类和有机磷酸酯类(OP)。
OP是目前最常用的呼吸抑制剂。
它们可以直接抑制气管收缩,导致氧气无法进入昆虫体内,因此昆虫就会死亡。
五、顺式调节剂顺式调节剂包括在昆虫体内调节顺式脱水素的物质,本质上是一种激素。
它们能够影响昆虫的生长和发育,因此可以被用作杀虫剂来防止虫害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② γ-氨基丁酸受体
昆虫运动神经元的末梢和肌纤维形成的突触有两种
类型。
兴奋性突触:递质是谷氨酸盐
抑制性突触:递质是γ-氨基丁酸
改变钾离子、氯离子通透性,使膜电位变得更负。
结果是使突触后膜更不易因其他因素的作用而去
极化,即不易兴奋。
③章鱼胺受体
昆虫体内苯胺、章鱼胺为神经递质。
(四)递质分解酶系
1 乙酰胆碱酯酶(AChE) 生物学 功能: AChE----AC+Ch 种类:2 a AChE:真胆碱酯酶(专一性胆碱酯酶) 红血球胆碱酯酶
A 表皮结构 水相 一定的水溶性
昆虫体壁结构示意图
皮细胞腺孔 刚 毛
上表 皮 外表 皮 内表 皮
表 皮 层
体 壁
皮细胞 层 底 膜
腺 体
膜原细胞
毛原细胞
1)上表皮具有不透水的蜡层,如用惰性粉或砂磨去表皮蜡 质后可引起水分迅速丧失。
2)昆虫上表皮代表油相,原表皮代表水相。
3)昆虫接触到药剂后,药剂溶解于上表皮的蜡层,再按照 药剂中油/水分配系数进入原表皮(外表皮+内表皮)。
进入神经系统。
B Gerolt(1983), 侧向传导理论:狄氏剂及一些化合 物从表皮进入昆虫体内,完全是从侧面沿表皮的蜡层进 入气管系统,由微气管到达神经系统
2 杀虫剂穿透昆虫的消化道—胃毒作用
前后肠来源于外胚层----表皮类似 消化道 中肠来源于内胚层---消化、吸收的主要场所 杀虫剂穿透昆虫中肠肠壁细胞受到细胞质膜选择透性的影响。 质膜:双分子类脂层,厚30-50nm。表面有细小、充满水 的空洞,直径4nm。
冲动 撞击时,小泡中神经递 质释放,扩散至间隙
新的动作电位
乙酰胆碱酯酶
乙酸+胆碱
(三)离子通道-生物细胞膜上都有通道蛋白组
成的跨膜充水小孔。
1.离子通道的类型
电压门控离子通道:因膜电位变化而打开或关闭。
如钠离子、钾离子通道。 配体门(化学门)控通道:因配体与膜受体结合后 打开的通道。如乙酰胆碱受体通道、GABA通道。
三、杀虫剂对昆虫的作用机制
(二)昆虫神经系统传导神经冲动的机制
1 昆虫神经系统的信息传递类型
轴突传导
一个神经元内。树突 细胞体 轴突 端丛 神经元之间或神经元与肌肉(腺体)
突触传导
一神经元端丛
另一神经元树突
(二)昆虫神经系统传导神经冲动的机制
1 (轴突传 导)
刺激
生物 电反应
神经膜电 位改变
神经元轴突末端膨大为突触体,与下一神经元的细胞体或树 突中间存在一间隙。间隙之前和之后的膜,分别成为突触前 膜、突触后膜。
前膜:突触小泡,小泡中含有神经递质。
间隙:宽10-50nm,有电子密度高的物质(糖基物质)把前、 后膜连接起来。 后膜:有专门的神经递质受体部位及有关的酶系。
②突触传递的特点:
Na+
CL-
K+
A-
离子状态:外负内正
Na+
产 生 动 作 电 位 恢复 极化状态 Na+
CL-
K+
A-
CL-
K+
A-
离子泵
产 生 复极化 超极化 去极化 动 作 电 位
钠离子通透性增加是膜电位上升的主要原因
动 作 电 位 传 导
a
动作电位的传导
++++++++++++++++ - - - - - - - - - - - - - - -
作用机制复杂,很多还不清楚。Cammon(1981)
等人按分子中有无α-CN基将除虫菊酯分为2类:
第一类:天然除虫菊酯、胺菊酯、丙烯菊酯、二
氯苯醚菊酯等,它们与DDT相似,主要作用于神
经膜,改变膜的通透性,延迟钠离子通道的关
闭,负后电位延长并加强,导致产生重复后放, 中毒症状表现为高度兴奋及不协调运动。
第三章 杀虫剂和杀螨剂
第一节 杀虫剂毒理学基础 第二节 杀虫剂常见品种介绍 第三节 杀螨剂
第一节 杀虫剂毒理学基础
一、杀虫剂的穿透与在昆虫体内的分布
(一)杀虫剂进入昆虫体内的途径 1 途径:口腔、体壁、气门 2 影响进入的途径
药剂因素 口腔 昆虫感化器 触角 下唇须
下颚须
口器 内壁
药剂性质
体壁进入 表皮性质
(三)杀虫剂在昆虫体内的分布
1 药剂在各种酶系作用下代谢成小分子、水溶性轭合物,被 马氏管吸收通过后肠,到达直肠,排除体外。
2 昆虫体内的脂肪体有类似哺乳动物肝的功能,它能贮存脂
肪、蛋白质及碳水化合物等营养物质,也能贮存代谢外来 化合物。 3 昆虫血腔中的围心细胞有肾细胞之称,具有代谢废物和组 织碎片的功能。
分布 脊椎动物的神经-肌肉接头部位及植物神 经节内,在中枢神经系统内,在小脑和 脊髓的Renshaw细胞中发现。
在昆虫中,全部在中枢神经系统内。
烟碱样受体(N型)
特点
被占领的反应为骨骼肌收缩,植物神经节兴奋。
激动剂:烟碱(小剂量)、碳酰胆碱
拮抗剂:α-环蛇毒素、简箭毒素、五羟季胺等
速率因药剂种类不同而不同。
穿透速率受油/水分配系数的影响,亲脂性强的
化合物易被肠壁吸收。
由肠组织进入血浆时,需要一定的水溶性才能较
快扩散至血浆中。
3 胶质细胞附 近区域)
4 昆虫体内排泄杀虫剂的过程 马氏管 后肠 脂肪体 围心细胞
蕈毒碱样受体(M型)
分布
哺乳动物的平滑肌和各种腺体内,在中 枢神经系统主要存在于打扰皮质和纹状 体内。
蕈毒碱样受体(M型)
特点:
被占领后表现出来的反应是血管舒张、肠胃收缩、
瞳孔缩小、汗腺兴奋。
激动剂:蕈毒碱、毛果芸香碱。
拮抗剂:阿托品、东莨菪碱。
蕈毒酮样受体
特点: 蕈毒酮与该受体有很强的亲和性。
d 氨基甲酸酯类农药中毒治疗:
阿托品
3 DDT的作用机制 a 作用于昆虫神经系统的轴突部位,影响钠离子 通道而使昆虫正常的神经传导受到干扰或破坏。 b钙离子-ATP酶学说?该酶位于神经膜外表。以 ATP分解产生能量调节外部钙离子浓度。DDT抑 制该酶活性,导致钙离子浓度降低。
4 拟除虫菊酯类杀虫剂的作用机制
2 乙酰胆碱酯酶水解过程 E+AX E.AX EA 表酶, AX代表底物)
Kd=k-1/k+1 k2 k3
E(E代
第一步:形成酶与底物的复合体(米氏络合
物)。络合物的稳定性可以用解离常数(kd)
表示,kd=k-1/k+1,kd越小,说明E和Ax的
亲和力越大,络合物越稳定。
第二步:乙酰化反应生成乙酰化酶。用K2表示
- + ++++++++++++ + + - - - - - - - - - - - - - - + - +++++++++++++ - + - - - - - - - - - - - - -
b
c
2 突触的传导
联系神经元
突触的传导
突触
运动神经元
①突触的结构
突触的分类:依结构和功能不同,可分为电 突触和化学突触。
开放,突出后膜长期兴奋,从而影响了神经兴
奋的正常传导。
E+PX==PX.E
b作用步骤
PE
X
P+E
1 形成可逆性复合体
2 酰化反应
3 酶的复活
4 酶的老化:磷酰化酶在恢复过程中转化为另
外一种结构,羟胺类药物不能使酶恢复活性。
C磷酰化反应的两个特点
利用磷原子的亲电性(局部带正电荷)攻击酶活
性中心的丝氨酸羟基。--可增加磷原子正电荷
够稳定,不易水解。
d治疗药物(有机磷中毒)
阿托品:抵抗过量乙酰胆碱 解磷定:恢复酶的功能 2-PAM-I
氯磷定:恢复酶的功能
2-PAM-CL
2 氨基甲酸酯杀虫剂作用机理
a 一般认为是由于氨基甲酸酯类杀虫剂抑制了虫体
内乙酰胆碱酯酶。对这种抑制作用倾向于认为氨基
甲酸酯对AchE的抑制,既是因为复合物的形成也是
的因素都可使磷酰化反应加速;
亲电反应与X集团的离去是同时进行的。P-X键极
性越强,键就越容易断裂。
对AchE的抑制实质是生成磷酰化酶。
K2 、K3是决定抑制速率的2个常数。要想有强大的毒
力,就要K2足够大,K3足够小。 分子中有吸电子集团造成磷原子的局部正电荷。 生成的磷酰化酶比较稳定,被抑制的AchE难恢复。 进入虫体的有机磷杀虫剂在到达作用部位以前也要足
单向传递;
有突触延搁---所需时间较轴突上长,这个延搁为0.5-2ms;
最易受环境影响,最易疲劳;
需要化学介质(乙酰胆碱、去甲肾上腺素、多巴胺、γ-氨基 丁酸、谷氨酸盐。)
③ 突触的兴奋传递过程
冲动到达前膜时,改变了
膜上离子的通透性,导致 细胞外液的钙离子向内流
乙酰胆碱 受体 乙酰 胆碱
动,与突触前膜撞击。
特点
乙酰胆碱是最好底物。 有过量底物时才产生抑制作用 10-2.5mol/L。
受抑制达到一定程度会引起动物死亡。
b 丁酰胆碱酯酶(假/非专一性胆碱酯酶) 血浆胆碱酯酶 特点: