向量与三角
三角函数与向量的应用

三角函数与向量的应用在数学中,三角函数和向量是两个重要的概念。
它们在各个领域中都有广泛的应用。
本文将探讨三角函数和向量的应用,并分别列举一些实际场景中的例子来说明它们的作用。
一、三角函数的应用1. 几何学中的角度测量:三角函数广泛应用于几何学中的角度测量。
我们可以使用正弦、余弦和正切函数来计算三角形中的角度。
2. 物理学中的振动和波动:三角函数在物理学中的振动和波动研究中起着重要的作用。
例如,傅里叶级数可以表示任意周期函数,而傅里叶变换可以将信号从时域转换为频域。
3. 工程学中的三维计算:在工程学中,三角函数可以用来计算转动和旋转的角度。
它们在现代计算机图形学中的应用尤为突出,可以实现逼真的三维模型和动画效果。
4. 统计学中的回归分析:在统计学中,三角函数被广泛应用于回归分析。
通过拟合三角函数的曲线,可以对观测数据进行趋势分析和预测。
二、向量的应用1. 物理学中的力学和静力学:向量在物理学中的力学和静力学研究中扮演着重要的角色。
例如,力可以表示为一个有方向和大小的向量,通过向量的合成和分解可以计算力的合成和平衡条件。
2. 计算机图形学中的矢量图形:在计算机图形学中,矢量图形使用向量的形式来描述和存储图像。
向量的性质使得图像可以无损地缩放和旋转。
3. 统计学中的因子分析:在统计学中,向量用于因子分析。
通过将多个变量表示为向量,可以将复杂的数据关系简化为向量空间中的几何关系。
4. 经济学中的资源分配:向量在经济学中的资源分配模型中得到应用。
通过定义资源向量和约束条件,可以求解最优的资源配置方案。
总结:三角函数和向量在数学、物理学、工程学、统计学等领域中都具有广泛的应用。
在几何学中,三角函数用于角度测量和三角形计算;在物理学中,三角函数用于振动和波动的分析;在工程学中,三角函数用于计算旋转角度和创建三维模型;同时,向量在力学、计算机图形学、统计学和经济学等领域发挥着重要作用。
它们的应用促进了各个领域的发展和研究,为我们理解和解决实际问题提供了有力的工具和方法。
向量与三角函数专题

向量与三角函数一、解三角形例5.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C = ,得13BC AC = , 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--== ,所以60C = .例6. 如图,在ABC ∆中,2AC =,1BC =,43cos =C .(1)求AB 的值;(2)求()C A +2sin 的值. 解答过程:(Ⅰ) 由余弦定理,得2222..cos AB AC BC AC BC C =+- 341221 2.4=+-⨯⨯⨯=那么,AB(Ⅱ)由3cos 4C =,且0,C π<<得sin C 由正弦定理,得,sin sin AB BC C A=解得sin sin BC C A AB==所以,cos A .由倍角公式sin 2sin 2cos A A A =⋅=, 且29cos 212sin 16A A =-=,故()sin 2sin 2cos cos 2sin A C A C A C +=+例7.在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若AB,求BC 边的长.解:(Ⅰ)π()C A B =-+ ,1345tan tan()113145C A B +∴=-+=-=-- .又0πC << ,3π4C ∴=.(Ⅱ)由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =,sin sin A BC AB C ∴== 二.求三角函数的定义域、值域或最值 典型例题例8.已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( )A.[]1,1-B.⎡⎤⎢⎥⎣⎦C.⎡-⎢⎣⎦D.1,⎡-⎢⎣⎦)),,444, 1.,,,24f x x x x f x x f x A C D x f x πππππ+-∴==--=-=解法1:(当时(故选C.11解法2:当时()=知不可能.又由时(知选C.22例9. 设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且. (Ⅰ)求实数m 的值;(Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =. (Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x的最小值为1例10.已知函数1)4()cos x f x xπ-=, (Ⅰ)求()f x 的定义域;(Ⅱ)设α是第四象限的角,且4tan 3α=-,求()f α的值.解答过程:(Ⅰ) 由cos 0x≠得()2x k k Z ππ≠+∈.故()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, (Ⅱ) 因为43tan ,cos ,55αα=-=且第四象限的角, 所以43sin ,cos ,55αα=-=故()()21)4cos 122)22cos 1sin 2cos 2cos 2cos 2sin cos cos 2cos sin 14.5f πααααααααααααααα-==-+=-==-=例11设)0(cos sin )(>+=ωωωx b x a x f 的周期π=T ,最大值4)12(=πf , (1)求ω、a 、b 的值;(2)的值终边不共线,求、、的两根,为方程、、若)tan(0)(βαβαβα+=x f .解答过程:(1))x sin(b a )x (f 22ϕ+ω+=, π=∴T , 2=ω∴, 又 )x (f 的最大值4)12(f =π , 22b a 4+=∴ ① , 且 122cos b 122sin a 4π+π= ②, 由 ①、②解出 a=2 , b=3.(2) )3x 2sin(4x 2cos 32x 2sin 2)x (f π+=+=, 0)(f )(f =β=α∴,)32sin(4)32sin(4π+β=π+α∴,32k 232π+β+π=π+α∴, 或)32(k 232π+β-π+π=π+α, 即 β+π=αk (βα、 共线,故舍去) , 或 6k π+π=β+α,33)6k tan()tan(=π+π=β+α∴ )Z k (∈.例12.设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈),且()f x 的图象在y 轴右侧的第一个最高点的横坐标为6π.(I )求ω的值;(II )如果()f x 在区间5,36ππ⎡⎤-⎢⎥⎣⎦a 的值.解答过程:(Ⅰ)1()2sin 22f x x x a ωω=+sin(2)3x a πω=+, 依题意得 2632πππω⋅+=, 解得 12ω=.(Ⅱ)由(Ⅰ)知,()sin()3f x x a π=+,又当5,36x ππ⎡⎤∈-⎢⎥⎣⎦时,70,36x ππ⎡⎤+∈⎢⎥⎣⎦,故11sin()123x -≤+≤,从而()f x 在5[,]36ππ-上取得最小值12a -.因此,由题设知12a -故a =例13.已知函数R x x x x f ∈++=),2sin(sin )(π(Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 的最大值和最小值; (Ⅲ)若43)(=αf ,求α2sin 的值.命题目的:本题考查利用三角函数的性质, 诱导公式、同角三角函数的关系式、两角和的公式,倍角公式等基本知识,考查运算和推理能力. 解答过程:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f(Ⅰ))(x f 的最小正周期为ππ212==T ;(Ⅱ))(x f 的最大值为2和最小值2-;(Ⅲ)因为43)(=αf ,即37sin cos 2sin cos .416αααα+=⇒=-即 1672sin -=α. 三.三角函数的图象和性质 典型例题 例14.已知函数22()sin 2sin cos 3cos ,f x x x x x x R =++∈.求:(Ⅰ)求函数()f x 的最大值及取得最大值的自变量x 的集合; (Ⅱ)函数()f x 的单调增区间. 解答过程:(I )解法一: ()1cos 23(1cos 2)sin 222x f x x θ-+=++2sin 2cos 2x x =++2)4x π=+. ∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 解法二:222()(sin cos )sin 22cos f x x x x x =+++ 1sin 21cos 2x x =+++2)4x π=+.∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.(Ⅱ)解: ()2)4f x x π=+由题意得222()242k x k k Z πππππ-≤+≤+∈,即3()88k x k k Z ππππ-≤≤+∈.因此, ()f x 的单调增区间是()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.例15.(本小题满分12分) 已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间. 解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin 12644g x =+=+=. (II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2sin 2262222x x x x ⎫⎡⎤⎛⎫=+++=++⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎝⎭1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数, 故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ) 例16.已知函数22()sin cos 2cos ,.f x x x x x x R =+∈ (I )求函数()f x 的最小正周期和单调增区间;(II )函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?解答过程:(I)1cos 2()2(1cos 2)22x f x x x -=+++132cos 2223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(II )方法一:先把s i n 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3s i n (2)62y x π=++的图象.方法二: 把sin 2y x =图象上所有的点按向量3(,)122a π=- 平移,就得到3sin(2)62y x π=++的图象.例17.已知函数2())2sin ()().612f x x x x R ππ=-+-∈(I )求函数()f x 的最小正周期;(II )求使函数()f x 取得最大值的x 集合.解答过程:(Ⅰ) f(x)=3sin(2x -π6)+1-cos2(x -π12) = 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1 = 2sin(2x -π3) +1 .∴ T=2π2 =π.(Ⅱ)当f(x)取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2 , 即x=k π+ 5π12 (k ∈Z) ∴所求x 的集合为{x ∈R|x= k π+ 5π12 , k ∈Z}. 四.平面向量、三角函数的图象和性质 典型例题例18.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-解答过程:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,因此选C.例19.已知向量(sin ,1),(1,cos ),.22a b ππθθθ==-<<(Ⅰ)若a b ⊥,求θ;(Ⅱ)求a b +的最大值.解:(Ⅰ),sin cos 0a b θθ⊥若则+=,由此得 tan 1ππθθ=- (-<<),22所以 ;4πθ=-(Ⅱ) 由(sin ,1),(1,cos )(sin 1,1cos ),a b b b θθθθ== α+=++ α+= = =得当sin()1,,, 1.44a b a b ππθθ+=+=+时取得最大值即当时例20.已知,,A B C 是三角形ABC ∆三内角,向量((),cos ,sin m n A A =-=,且1m n ⋅=(Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin BB B+=--,求tan B .解答过程:(Ⅰ)∵1m n ⋅=,∴(()cos ,sin 1A A -⋅= ,cos 1A A -=.12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭. ∵50,666A A ππππ<<-<-<, ∴66A ππ-= . ∴3A π=.(Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --=∴cos 0B ≠ ∴2tan tan 20B B --=. ∴tan 2B =或tan 1B =-.而tan 1B =-使22cos sin 0B B -=,舍去. ∴tan 2B =.∴()tan tan C A B π=-+⎡⎤⎣⎦()tan A B =-+tan tan 1tan tan A B A B+=--=。
向量与三角形

向量与三角形内心、外心、重心、垂心知识得交汇一、四心得概念介绍(1)重心——中线得交点:重心将中线长度分成2:1;(2)垂心-—高线得交点:高线与对应边垂直;(3)内心—-角平分线得交点(内切圆得圆心):角平分线上得任意点到角两边得距离相等;(4)外心——中垂线得交点(外接圆得圆心):外心到三角形各顶点得距离相等。
二、四心与向量得结合(1)就是得重心、证法1:设就是得重心。
证法2:如图三点共线,且分为2:1就是得重心(2)为得垂心。
证明:如图所示O 就是三角形ABC 得垂心,BE 垂直AC,A D垂直B C, D 、E 就是垂足.同理, 为得垂心 (3)设,,就是三角形得三条边长,O 就是ABC 得内心为得内心.证明:分别为方向上得单位向量, 平分,),令()化简得(4)为得外心。
典型例题:例1:就是平面上一定点,就是平面上不共线得三个点,动点满足, ,则点得轨迹一定通过得( )A 。
外心B 、内心 C.重心 D 。
垂心分析:如图所示,分别为边得中点、//点得轨迹一定通过得重心,即选、例2:(03全国理4)就是平面上一定点,就是平面上不共线得三个点,动点满足, ,则点得轨迹一定通过得( B )B D BC DA.外心 B 。
内心 C 、重心 D.垂心分析:分别为方向上得单位向量,平分,点得轨迹一定通过得内心,即选、例3:就是平面上一定点,就是平面上不共线得三个点,动点满足, ,则点得轨迹一定通过得( )A 、外心 B.内心 C 。
重心 D 、垂心分析:如图所示AD 垂直BC,BE 垂直AC, D 、E 就是垂足.= ==+=0点得轨迹一定通过得垂心,即选、练习: 1.已知三个顶点及平面内一点,满足,若实数满足:,则得值为( )A、2 B 、 C.3 D。
62.若得外接圆得圆心为O,半径为1,,则( )A 、 B.0 C 。
1 D 、3.点在内部且满足,则面积与凹四边形面积之比就是( )A 、0 B. C。
三角与向量的主要知识点

三角与向量的主要知识点2.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1)周期性 ①函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T② 函数)tan(ϕω+=x A y 的周期是ωπ=T (2)单调性.函数sin()y A x ωϕ=+(0,0)A ω>>的单调区间的确定,基本思路是把x ωϕ+看作一个整体,运用复合函数的单调规律得解;(3)奇偶性①)sin(ϕω+=x A y 为奇函数)(Z k k ∈=⇔πϕ)sin(ϕω+=x A y 为偶函数)(2Z k k ∈+=⇔ππϕ②)cos(ϕω+=x A y 为奇函数)(2Z k k ∈+=⇔ππϕ)cos(ϕω+=x A y 为偶函数)(Z k k ∈=⇔πϕ(4)对称性把x ωϕ+看作一个整体,由x y sin =的对称性得)sin(ϕω+=x A y 的对称性 由x y cos =的对称性得)cos(ϕω+=x A y 的对称性,由x y tan =的对称性得)tan(ϕω+=x A y 的对称性(5))sin(ϕω+=x A y 图像的画法①五点法作)sin(ϕω+=x A y 的简图:设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。
②变换法画图:可以先平移再伸缩,也可以先伸缩再平移,但需要注意的是每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
2.函数sin()y A x ωϕ=+(0,0)A ω>>的单调区间的确定,基本思路是把x ωϕ+看作一个整体,运用复合函数的单调规律得解;3.三角函数的最值(几种常见的函数及其最值的求法):①b x a y +=sin (或)cos b x a +型:利用三角函数的值域,须注意对字母的讨论②x b x a y cos sin +=型:引进辅助角化成)sin(22ϕ++=x b a y 再利用有界性③c x b x a y ++=sin sin 2型:配方后求二次函数的最值,应注意1sin ≤x 的约束④dx c bx a y ++=sin sin 型:反解出x sin ,化归为1sin ≤x 解决⑥c x x b x x a y +⋅++=cos sin )cos (sin 型:常用到换元法:x x t cos sin +=,但须注意t 的取值范围:2≤t 。
专题三 向量与三角

专题三、向量与三角知识点: 1、定义:xy r x r y ===αααtan ;cos ;sin (只要题意中给出角α终边上一点),(y x P 则用定义解题)2、平方关系1cos sin 22=+αα(知ααα2sin -1cos sin ±=则取正或负需看角象限)商数关系αααcos sin tan =(可切化弦) 3、诱导公式(1)角(απ+k 2)在一象限 (2)角(απ-)在二象限 (3)角(απ+)在三象限 (4)角(α-)在四象限(以上四个公式函数名不变,符号看象限)(5)角απ-2在一象限 (6)角απ+2在二象限((5)(6)两个公式函数名要变,符号看象限)4、二倍角公式αααααα2sin 21cos sin cos sin 22sin =⇒=ααα22sin cos 2cos -=⇒-=1cos 22α )2cos 1(21cos 2αα+=⇒-=α2sin 21 )2cos 1(21sin 2αα-=ααα2tan 1tan 22tan -=5、和差角公式βαβαβαsin cos cos sin )sin(±=± βαβαβαtan tan 1tan tan )tan( ±=±βαβαβαsin sin cos cos )cos( =±6、熟记函数x y x y x y tan ,cos ,sin ===的图象和性质7、考查函数)sin(ϕω+=x A y (0,0>>ωA ) (1)周期ωπ2=T(2)单调区间增区间:把ϕω+x 带入αsin =y 的增区间,即ππϕωππk x k 2222+≤+≤+-,解出x 即可 减区间:(同理)(3)最值:当1)sin(=+ϕωx 时,得最大值A;当1)sin(-=+ϕωx 时,的最小值-A (4)在选择题中考查对称轴时,则把对称轴带入函数式可得最大或最小值; 考查对称中心时,对称中心满足函数式(带入即可) (5)利用图象求解析式A ——由最值求;ω——由周期T 求(先由x 轴上两点横坐标的差和周期的关系); ϕ——由图上的点带入求8、正、余弦定理 9、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 三角函数(1)热点例析热点一 三角函数的概念例1、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ).A .-45B .-35C .35D .45变式训练1 已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边与单位圆交点的横坐标是-35,若α∈(0,π),则tan α=__________.热点二 三角函数图象及解析式例2、如图,根据函数的图象,求函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的解析式.变式训练2 右图所示的是函数y =A sin(ωx +φ)(A >0,ω>0)图象的一部分,则其函数解析式是( ).A .y =sin ⎝⎛⎭⎫x +π3B .y =sin ⎝⎛⎭⎫x -π3 C .y =sin ⎝⎛⎭⎫2x +π6 D .y =sin ⎝⎛⎭⎫2x -π6热点三 三角函数图象变换例3、已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x ∈R 在一个周期内的图象如图所示,则y =f (x )的图象可由函数y =cos x 的图象(纵坐标不变)( ).A .先把各点的横坐标缩短到原来的12,再向左平移π6个单位B .先把各点的横坐标缩短到原来的12,再向右平移π12个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移π6个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移π12个单位变式训练3 要得到y =cos ⎝⎛⎭⎫2x +π3的图象,只需将y =sin 2x 的图象( ).A .向左平移5π12B .向右平移5π12C .向左平移5π6D .向右平移5π6热点四 三角函数图象与性质综合应用 例4、已知函数f (x )=2sin x cos x +2cos 2x .(1)求函数f (x )的单调递增区间;(2)将函数y =f (x )的图象向右平移π4个单位后,得到函数y =g (x )的图象,求方程g (x )=1的解.变式训练4 已知函数f (x )=4sin ωx sin 2⎝⎛⎭⎫ωx 2+π4+cos 2ωx ,其中ω>0.(1)当ω=1时,求函数f (x )的最小正周期;(2)若函数f (x )在区间⎣⎡⎦⎤-π2,2π3上是增函数, 求ω的取值范围.变式训练5已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象的一部分如图所示. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值专题训练:1.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1]D .⎣⎡⎦⎤-32,322.将函数y =cos ⎝⎛⎭⎫x -π3的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( ). A .x =π9 B .x =π8 C .x =π D .x =π23.若函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且·0OM ON =,则A ·ω=( ).A .76πB .712πC .π6D .73π4.设函数f (x )=sin(ωx +φ)+cos(ωx + φ)⎝⎛⎭⎫x ∈R ,ω>0,|φ|<π2的最小正周期为π,且f (x )-f (-x )=0,则( ).A .f (x )在⎝⎛⎭⎫0,π2上是增函数B .f (x )在⎝⎛⎭⎫0,π2上是减函数C .f (x )在⎝⎛⎭⎫-π4,π4上是增函数D .f (x )在⎝⎛⎭⎫-π4,π4上是减函数 5.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=( ).A .-12B .-1C .-32D .- 36、当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =__________.7.已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m <0)是角α终边上一点,则2sin α+cos α=________.8.已知向量m =(sin x,1),n =⎝⎛⎭⎫3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短原来的12,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.9.设f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域; (2)若f (x )在区间⎣⎢⎡⎦⎥⎤-3π2,π2上为增函数,求ω的最大值.三角函数(2)热点一 三角恒等变换及求值例1、已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值.变式训练1已知函数f (x )=3sin ωx -cos ωx (x ∈R ,ω>0)的最小正周期为6π.(1)求3π2f ⎛⎫⎪⎝⎭的值; (2)设α,β∈⎣⎡⎦⎤-π2,0,f ⎝⎛⎭⎫3α+π2=-1013,f (3β+2π)=65,求cos(α+β)的值.热点二 三角函数、三角形与向量等知识的交汇例2、在锐角三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,m =(2b -c ,cos C ),n =(a ,cos A ),且m ∥n .(1)求角A 的大小;(2)求函数y =2sin 2B +cos ⎝⎛⎭⎫π3-2B 的值域.变式训练2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,cos(B +C )=-1114. (1)求cos C 的值;(2)若a =5,求△ABC 的面积.热点三 正弦定理、余弦定理的实际应用例3、某城市有一条公路,自西向东经过A 点到市中心O 点后转向东北方向OB .现要修建一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段.现要求市中心O 与AB 的距离为10 km ,问把A ,B 分别设在公路上离市中心O 多远处才能使A ,B 之间的距离最短?并求最短距离.(不要求作近似计算)变式训练3 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α,前进m km 后在B 处测得该岛的方位角为北偏东β,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件__________时,该船没有触礁危险.专题训练:1.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ). A .-3 B .-1 C .1 D .32.若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ=( ). A .35 B .45 C .74 D .343.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( ).A .725B .-725C .±725D .24254.已知3cos x -sin x =-65,则sin ⎝⎛⎭⎫π3-x =( ). A .35 B .-35 C .65 D .-655.已知倾斜角为α的直线l 与直线x -2y +2=0平行,则tan 2α的值为( ).A .45B .43C .34D .236.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ). A .-233 B .±233C .-1D .±17.在△ABC 中,已知b cos C +c cos B =3a cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,则cos B 的值为( ).A .13B .-13C .223D .-2238、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.9.已知sin x =5-12,则sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4=______. 10、已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .11.已知函数f (x )=3sin 2x +23sin x cos x +5cos 2x .(1)若f (α)=5,求tan α的值;(2)设△ABC 三内角A ,B ,C 所对边分别为a ,b ,c ,且cos B cos C =b2a -c,求f (x )在(0,B ]上的值域.12.已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π3(A >0,ω>0)在某一个周期内的图象的最高点和最低点的坐标分别为⎝ ⎛⎭⎪⎫5π12,2,⎝ ⎛⎭⎪⎫11π12,-2.(1)求A 和ω的值;(2)已知α∈⎝ ⎛⎭⎪⎫0,π2,且sin α=45,求f (α)的值.。
向量的数量积与三角恒等变换两角和与差的余弦

2023-10-29•向量的数量积•三角恒等变换•两角和与差的余弦•向量的数量积与三角恒等变换的联系•实例分析目录01向量的数量积向量:具有大小和方向的量,用符号表示,如$\vec{a}$、$\vec{b}$。
向量的性质向量具有方向性,其大小和方向均可以影响其运算结果。
向量具有加法交换律和结合律。
即$\vec{a} +\vec{b} = \vec{b} +\vec{a}$向量的零向量性质:$\vec{0} + \vec{a} =\vec{a}$,$\vec{a} +\vec{0} = \vec{a}$。
向量的定义与性质010*******向量的数量积定义:$\vec{a} \cdot\vec{b}$表示向量$\vec{a}$与向量$\vec{b}$的数量积,也称为点积。
向量的数量积运算规则:$\vec{a} \cdot \vec{b}= |\vec{a}| \times|\vec{b}| \times\cos\theta$向量的数量积运算性质$\vec{a} \cdot \vec{b}= \vec{b} \cdot\vec{a}$(数量积具有交换律)。
$(\lambda\vec{a})\cdot \vec{b} =\lambda(\vec{a} \cdot\vec{b})$(数量积具有线性性质)。
向量的数量积运算010*******向量的模定义$|\vec{a}|$表示向量$\vec{a}$的模,也称为向量的长度。
向量的模与夹角向量的模性质$|\lambda\vec{a}| = |\lambda| \times |\vec{a}|$,$|\vec{a} + \vec{b}| \leq |\vec{a}|+ |\vec{b}|$。
两向量的夹角定义当两个向量指向同一方向时,夹角为0度;当两个向量指向相反方向时,夹角为180度。
02三角恒等变换三角函数的定义与性质三角函数的定义三角函数是定义在单位圆上的函数,它们通常表示为y=sinx、y=cosx、y=tanx等。
向量与三角形四心结合(纯干货)

三角形的“四心”与向量的完美结合知识概述:三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一、知识点总结1)O 是ABC ∆的重心=++⇔; 若O 是ABC ∆的重心,则,31ABC AOB AOC BOC S S S S ∆∆∆∆===故;,=++ 1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心OA OC OC OB OB OA ⋅=⋅=⋅⇔; 若O 是ABC ∆(非直角三角形)的垂心,则,tan :tan :tan ::C B A S S S AOB AOC BOC =∆∆∆故tan tan tan =⋅+⋅+⋅C B A3)O 是ABC ∆的外心)222OC OB OA ====⇔或 若O 是ABC ∆的外心,则C B A AOB AOC BOC S S S AOB AOC BOC 2sin :2sin :2sin sin :sin :sin ::=∠∠∠=∆∆∆ 故02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A 4)O 是内心ABC ∆的充要条件是0=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记,,的单位向量为321,,e e e ,则刚才O 是ABC ∆内心的充要条件可以写成0)()()(322131=+⋅=+⋅=+⋅e e OC e e OB e e OAO 是ABC ∆内心的充要条件也可以是0=++OC c OB b OA a若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆ 故sin sin sin =++=++C B A c b a 或;||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);知识点一、将平面向量与三角形内心结合考查【例 1】:O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心 (B )内心 (C )重心 (D )垂心【解答】:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又=-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.练习:在直角坐标系xOy 中,已知点A(0,1)和点B(–3, 4),若点C 在∠AOB 的平分线上,且||2OC =,则OC =_________________.【解答】:点C 在∠AOB 的平线上,则存在(0,)λ∈+∞使()||||OA OBOC OA OB λ=+=34(0,1)(,)55λλ+-=39(,)55λλ-,而||2OC=,可得3λ=,∴()55OC =-.【例2】:三个不共线的向量,,OA OB OC 满足()||||AB CA OA AB CA ⋅+=(||BA OB BA ⋅+||CB CB ) =()||||BC CA OC BC CA ⋅+= 0,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心解:||||AB CA AB CA +表示与△ABC 中∠A 的外角平分线共线的向量,由()||||AB CAOA AB CA ⋅+= 0知OA 垂直∠A 的外角平分线,因而OA 是∠A 的平分线,同理,OB 和OC 分别是∠B 和∠C 的平分线,故选C .【例3】:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++= ,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心 解:∵OB OA AB =+,OC OA AC=+,则()a b c OA bAB cAC++++= 0,得()||||bc AB ACAO a b c AB AC =+++. 因为||AB AB 与||AC AC 分别为AB 和AC 方向上的单位向量,设||||AB ACAP AB AC =+,则AP 平分∠BAC. 又AO 、AP 共线,知AO 平分∠BAC.同理可证BO 平分∠ABC ,CO 平分∠ACB ,所以O 点是△ABC 的内心.【方法总结】:这道题给人的印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。
向量与三角函数相乘

向量与三角函数相乘
向量与三角函数相乘是指将一个向量与一个三角函数进行数乘的操作。
数乘的结果是将向量的每个分量与三角函数的对应值相乘,得到一个新的向量。
例如,设定一个向量V=(3, 4),可以将它与三角函数 sin(x) 进行相乘。
此时,sin(x) 可以看作一个标量,即一个常数。
将向量的每个分量与 sin(x) 相乘,得到的结果向量是 V'=(3*sin(x),
4*sin(x))。
相乘后的向量 V' 的每个分量都在原来的向量 V 的基础上,根据 sin(x) 的取值进行缩放。
也就是说,它的大小和方向都会发生改变。
这种将向量与三角函数相乘的操作,在物理学、工程学和数学等领域中被广泛应用。
它可以用来描述物体在不同角度、不同位置下的受力情况,或者用来求解一些特定的数学问题。
需要注意的是,在进行向量与三角函数的数乘时,必须保证单位的一致性。
例如,向量的分量通常是长度,而三角函数的对应值是一个无单位的纯数。
因此,在相乘时,需要确保两者的单位是一致的,以避免产生错误的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.(2009 全国卷Ⅰ)设非零向量 a 、 b 、 c 满足| a || b || c |,a b c ,则 a,b
24(. 2009 重庆卷文)已知向量 a (1,1), b (2, x), 若 a + b 与 4b 2a 平行,则实数 x 的值是( )
A.-2 二、填空题
B.0
x) cos
x,0
x
2
,则
f
(x)
的最大值为
__________________________________________________________________________________________________________________________________________________________________________________________________________
(A)
12
12
[k , k ], k Z
(C)
3
6
[k 5 , k 11 ], k Z
(B)
12
12
[k , k 2 ], k Z
(D)
6
3
14.(2009 安徽卷)设函数 的取值范围是
,其中
,则导数
A.
B.
C.
D.
16.(2009 江西卷)若函数 f (x) (1
3
tan
做高考、看高考、备战高考
高三一轮复习第二阶段
高考题专项训练(三)----平面向量、三角部分
说明:注明文科的题目只文科做,注明理科的题目只理科做,不注明的文理都做
一、选择题
1.(2009 年广东卷)已知平面向量 a=(x,1),b=(-x, x2), 则向量 a b
A 平行于 x 轴 C.平行于 y 轴
+
,
其中 , R ,则 + = _________。 .
5.(2009 江西卷文)已知向量 a (3,1) ,b (1, 3) , c (k, 2) ,若 (a c) b 则 k =
.
22.(2009 福建卷)设 a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足 a 与 b 不
A. 6
B. 2
C. 2 5
D. 2 7
3.(2009 浙江卷理)设向量 a , b 满足:| a | 3 ,| b | 4 , a b 0 .以 a , b , a b 的模为边
长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) .
A. 3
B. 4
C. 5
D. 6
4.(2009 浙江卷)已知向量 a (1, 2) ,b (2, 3) .若向量 c 满足 (c a) / /b ,c (a b) ,则 c
高考题专项训练(三)第1页共 8 页
细心、规范、精益求精
做高考、看高考、备战高考
16.(2009 湖南卷)D,E,F 分别是 ABC 的边
AB,BC,CA 的中点,则【 】
A. AD BE CF 0
B. BD CF DF 0
C. AD CE CF 0
D. BD BE FC 0
高考题专项训练(三)第3页共 8 页
细心、规范、精益求精
做高考、看高考、备战高考
A.1
B. 2
Байду номын сангаасC. 3 1
D. 3 2
17.(2009 天津卷)已知函数
f
(x)
sin(wx )(x R, w 0)
4
的最小正周期为
,将 y
f
(x) 的
图像向左平移| | 个单位长度,所得图像关于 y 轴对称,则 的一个值是( )
cos 2 1
8. ( 2009 北 京 理 ) “
6
”是“
2 ”的
() A.充分而不必要条件 C.充分必要条件
B.必要而不充分条件 D.既不充分也不必要条件
9.(2009 山东卷理)将函数 y sin 2x 的图象向左平移 4 个单位, 再向上平移 1 个单位,所得图象的函
数解析式是(
).
A. y cos 2x
()
A. (7 , 7) 93
B. ( 7 , 7) 39
C. (7 , 7) 39
D. ( 7 , 7) 93
5.(2009 北京卷)已知向量 a (1, 0),b (0,1), c ka b(k R), d a b ,如果 c // d ,那么
A. k 1且 c 与 d 同向 C. k 1且 c 与 d 同向
B.四边形区域
()
(A) 2
(B) 2 2
(C) 1
(D)1 2
11.(2009 湖北卷理)已知 P {a | a (1, 0) m(0,1), m R},Q {b | b (1,1) n(1,1), n R} 是
两个向量集合,则 P Q =
A.{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}
B. y 2 cos2 x
y 1 sin(2x )
C.
4
D. y 2sin2 x
13.(2009 安徽卷理)已知函数 f (x) 3 sin x cosx( 0) , y f (x) 的图像与直线 y 2 的两
个相邻交点的距离等于 ,则 f (x) 的单调递增区间是
[k , k 5 ], k Z
15.(2009 湖北卷)若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=
A.3a+b
B. 3a-b
C.-a+3b
D. a+3b
__________________________________________________________________________________________________________________________________________________________________________________________________________
9.(2009 全国卷Ⅱ)已知向量 a = (2,1), a·b = 10,︱a + b ︱= 5 2 ,则︱b ︱=
(A) 5
(B) 10
(C)5
(D)25
10(. 2009 全国卷Ⅰ理)设 a 、b 、c 是单位向量,且 a ·b =0,则 a c •b c 的最小值为 ( )
2.( 2009 广 东 卷 理 ) 一质点受到平面上的三个力 F1, F2 , F3 (单位:牛顿)的作用而处于平衡状 态.已知 F1 , F2 成 600 角,且 F1 , F2 的大小分别为 2 和 4,则 F3 的大小为
12.(2009 全国卷Ⅱ)已知向量 a 2,1, a b 10,| a b | 5 2 ,则| b |
A. 5
B. 10
C. 5
D. 25
13.(2009 辽宁卷)平面向量 a 与 b 的夹角为 600 , a (2, 0) , b 1 则 a 2b
(A) 3
(B) 2 3
(C) 4
(D)12
14. ( 2009 宁 夏 海 南 卷 理 ) 已 知 O , N , P 在 ABC 所 在 平 面 内 , 且 OA OB OC , NA NB NC 0 ,且 PA• PB PB • PC PC • PA ,则点 O,N,P
依次是 ABC 的
(A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂心 (D)外心 重心 内心 (注:三角形的三条高线交于一点,此点为三角型的垂心)
6.(2009 江西卷理)已知向量 a (3,1) ,b (1, 3) ,c (k, 7) ,若 (a c) ∥ b ,则 k =
.
共线, a c ∣ a ∣=∣ c ∣,则∣ b • c ∣的值一定等于
A.以 a , b 为邻边的平行四边形的面积
B. 以 b , c 为两边的三角形面积
7.(2009 湖南卷)如图 2,两块斜边长相等的直角三角板拼在一起,若 AD x AB y AC ,则
x
,y .
C. a , b 为两边的三角形面积
D. 以 b , c 为邻边的平行四边形的面积
23.(2009 重庆卷)已知 a 1, b 6,a (b a) 2,则向量 a 与向量 b 的夹角是( )
A.
B.
C.
D.
6
4
3
2
图2
__________________________________________________________________________________________________________________________________________________________________________________________________________
ab= 。
19.(2009 陕西卷)在 ABC 中,M 是 BC 的中点,AM=1,点 P 在 AM 上且满足 PA 2PM ,则
学
科网
3.(2009 安徽卷理)给定两个长度为 1 的平面向量 OA 和 OB ,它们的夹角为1200
PA (PB PC) 等于
(A) 4 9
(B) 4 3
(C) 4 3
1.(2009 年 广 东 卷 ) 已 知 ABC 中 , A, B, C 的 对 边 分 别 为 a,b, c 若 a c 6 2 且 A 75 ,则 b
A.2
B.4+ 2 3
C.4— 2 3
D. 6 2
y 2 cos2 (x ) 1