eviews统计分析报告报告材料

合集下载

Eviews实验报告

Eviews实验报告

Eviews实验报告
本次实验使用Eviews对数据进行了分析和建模,主要分为以下几个部分:
一、数据预处理
1. 数据清洗:对数据进行了初步的检查和清洗,处理了数据中的缺失值和异常值;
2. 数据变换:对原始数据进行了对数化处理,使其符合正态分布。

二、数据分析
1. 描述性统计:通过统计均值、标准差、相关系数等指标,对数据进行了分析和描述;
2. 单因素分析:使用单因素方差分析对不同自变量与因变量之间的关系进行了检验。

三、建模分析
1. 模型选择:根据变量相关性和变量显著性等因素,最终选择了一组自变量,建立了多元线性回归模型;
2. 模型检验:对建立的模型进行了残差分析,验证了模型的可靠性和稳定性;
3. 预测分析:利用建立的模型对新数据进行了预测,并进行了模型预测精度的评估。

四、实验结论
通过Eviews的分析和建模,得出了以下结论:
1. 数据清洗和变换可以提高数据分析的准确性和可靠性;
2. 描述性统计和单因素分析可以为建模提供有用的参考和决策依据;
3. 多元线性回归模型可以较好地解释自变量与因变量之间的关系,并可进行预测和决策分析。

综上所述,本次实验通过Eviews软件对数据进行了分析和建模,得出了有关数据的一些重要结论,为后续数据分析和决策提供了基础和支持。

Eviews软件实验报告

Eviews软件实验报告

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊分析国内生产总值与最终消费的关系一、研究的目的要求由于消费是所有经济行为有效实现的最终环节,唯有消费需求的不断上升才有经济增长的持久拉动力有经济增长的持久拉动力..而居民的消费水平在很大程度上又受整体经济状况的影响影响..国内生产总值是用于衡量一国总收入的一种整体经济指标,经济扩张时期经济扩张时期,,居民收入稳定居民收入稳定,GDP ,GDP 也高也高,,居民用于消费的支出较多居民用于消费的支出较多,,消费水平较高消费水平较高;;反之反之,,经济收缩时,收入下降收入下降,GDP ,GDP 也低也低,,用于消费的支出较少用于消费的支出较少,,消费水平随之下降消费水平随之下降..改革开放以来改革开放以来,,我国的GDP 不断增长的同时不断增长的同时,,人民的物质生活也在不断提高人民的物质生活也在不断提高..研究国内生产总值与最终消费的数量关系,对于探寻最终消费增长的规律性,预测最终消费的发展趋势有重大意义。

势有重大意义。

二、模型设定为了分析国内生产总值对消费的推动作用,选择中国国民最终消费为被解释变量(用Y 表示),选择中国国内生产总值为解释变量(用X 表示)。

搜集到以下数据。

数据。

中国国民收入与最终消费(单位:亿元)中国国民收入与最终消费(单位:亿元)年份年份 国内国内生产总值(亿元)元) 最终消费 年份年份国内生产国内生产总值(亿元)最终消费最终消费X Y X Y1978 3624.1 2239.1 1995 58478.1 36748.2 1979 4038.2 2633.7 1996 67884.6 43919.5 1980 4517.8 3007.9 1997 74462.6 48140.6 1981 4862.4 3361.5 1998 78345.2 51588.2 1982 5294.7 3714.8 1999 82067.5 55636.9 1983 5934.5 4126.4 2000 89468.1 61516 1984 7171 4846.3 2001 97314.8 66878.3 1985 8964.4 5986.3 2002 104790.6 71691.2 1986 1986 10202.2 10202.2 6821.8 2003 135822.8 77449.5 1987 1987 11962.5 11962.5 7804.62004 159878.3 87032.9 1988 1988 14928.3 14928.3 9839.52005 183217.4 97822.7┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊1989 1989 16909.2 16909.2 16909.2 11164.2 11164.2 2006 211923.5110595.31990 1990 18547.9 18547.9 18547.9 12090.5 12090.52007 249529.9 128444.6 1991 1991 21617.8 21617.8 21617.8 14091.9 14091.9 2008 316228.8 149000 1992 1992 26638.1 26638.1 26638.1 17203.3 17203.3 2009343464.7 176060.31993 1993 34634.4 34634.4 34634.4 21899.9 21899.9 2010 397983 148447.7 1994 1994 46759.4 46759.4 46759.4 29242.2 29242.2 29242.2为了分析居民最终消费(为了分析居民最终消费(Y Y )和国内生产总值()和国内生产总值(X X )的关系,根据上表做如下散点图:点图:从散点图可以看出最终消费和国内生产总值大体呈现为线性关系,为分析中国居民最终消费水平随国民总收入变动的数量规律性,可建立如下简单回归模型:型:三、估计参数利用EViews 做简单线性回归分析的结果如下图所示:做简单线性回归分析的结果如下图所示:┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊ ┊ ┊ ┊ ┊订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊可用规范的形式将参数估计和检验的结果写为可用规范的形式将参数估计和检验的结果写为ttXY454948.007.17662ˆ+=(2377.4702377.470))(0.017318)t= (3.222798) (26.27036) 33317.1690957012.02===nFR。

eviews实验报告总结(范本)

eviews实验报告总结(范本)

eviews实验报告‎总结eviews实‎验报告总结‎篇一:‎Evies‎实验报告实验报告‎一、实验数据:‎1994至2‎01X年天津市城镇居‎民人均全年可支配收入‎数据 1994至20‎1X年天津市城镇居民‎人均全年消费性支出数‎据 1994至201‎X年天津市居民消费价‎格总指数二、‎实验内容:对‎搜集的数据进行回归,‎研究天津市城镇居民人‎均消费和人均可支配收‎入的关系。

三‎、实验步骤:‎1、百度进入“中华人‎民共和国国家统计局”‎中的“统计数据”,找‎到相关数据并输入Ex‎c el,统计结果如下‎表1:表1‎1994年--20‎1X年天津市城镇居民‎消费支出与人均可支配‎收入数据2、‎先定义不变价格(19‎94=1)的人均消费‎性支出(Yt)和人均‎可支配收入(Xt)‎令:Yt=c‎n sum/price‎Xt=ine/pr‎i ce 得出Yt与X‎t的散点图,如图‎1.很明显,Yt和‎X t服从线性相关。

‎图1 Yt和Xt散点‎图3、应用统‎计软件EVies完成‎线性回归解:‎根据经济理论和对实‎际情况的分析也都可以‎知道,城镇居民人均全‎年耐用消费品支出Yt‎依赖于人均全年可支配‎收入Xt的变化,因此‎设定回归模型为 Yt‎=β0+β?Xt﹢μ‎t(1)打开‎E Vies软件,首先‎建立工作文件, Fi‎l e rkfile ‎,然后通过bject‎建立 Y、X系列,并‎得到相应数据。

‎(2)在工作文件窗‎口输入命令:‎l s y c x,按‎E nter键,回归结‎果如表2 :‎表2 回归结果根‎据输出结果,得到如下‎回归方程:‎Y t=977.‎908+0.670X‎t s=(17‎2.3797) (0‎.0122) t=(‎5.673) ‎(54.95‎0) R2=0.99‎5385 Adjus‎t ed R2=0.9‎95055 F-st‎a tistic=30‎19.551 ‎残差平方和Sum s‎q uared res‎i d =125410‎8回归标准差S.E‎.f regress‎i n=299.‎2978(3‎)根据回归方程进行统‎计检验:‎拟合优度检验由上表‎2中的数分别为0.‎995385和0.9‎95055,计算结果‎表明,估计的样本回归‎方程较好地拟合了样本‎观测值。

Eviews实验报告2

Eviews实验报告2

(Error Correction Model)Srba 和Yeo 于模型。

它常常作为协整回归模型的补充模型出现。

两步法建立误差修正模型
p t B Y -++
绘制中国城镇居民月人均生活费支出(y)和可支配收入序列(x)的折线图: 可以看到两者呈现公共的上升趋势。

对X与Y分别取对数:
然后对xt与yt序列进行平稳性检验:
容易发现: XT与YT序列均不是平稳的, 但是其一阶差分都是平稳的, 因此猜测他们具有协整关系。

对YT和XT序列进行回归后发现:
可以看到对应的两个参数的系数的p值都显著小于0.001。

生成一列序列=残差, 对该序列进行ADF检验后可以发现p值小于0.05, 因
此认为不存在单位根, 序列是平稳的。

因此, 尽管国城镇居民月人均生活费支出(y )和可支配收入序列(x )都是非平稳的, 但是由于它们之间具有协整关系, 因此可以建立动态回归模型准确预测其长期互动关系。

模型拟合的预测值DCPIF 的折线图和与dcpi 的对比图如下:
可以看到, 最后的拟合效果非常好。

从而我们得到最后的拟合方程为:
t t t x y ε++=)ln(*934.0328.0)ln(
即:
因此, 城镇居民收入没增加一个百分点, 其消费支出也增加0.934各百分点。

【结论】(结果)
我国城镇居民月人均生活费支出(y )和可支配收入序列(x )的对数化后的XT 与YT 序列均不是平稳的, 但是其一阶差分都是平稳的, 因此猜测他们具有协。

Eviews实验报告4

Eviews实验报告4

【实验目的及要求】● 深刻理解平稳性的要求和arima 建模的思想。

● 学会如何通过观察自相关系数和偏相关系数,确定并建立模型。

● 学会如何利用模型进行预测。

● 熟练掌握EVIEWS 的结果,看懂eviews 的输出结果。

【实验原理】ARIMA(p, q )过程的平稳域和可逆域对于非平稳序列的时变均值函数,最简单的处理方法就是考虑均值函数可以由一个时间的确定性函数来描述,这时,可以用回归模型来描述。

假如均值函数服从于线性趋势我们可以利用确定性的线性趋势模型如果均值函数服从二次函数则我们可以用假如均值函数服从k 次多项式我们可以使用下列模型建模()22012,~0,t t t X t t WN αααεεσ=+++()201,~0,k t k t t X t t WN αααεεσ=++++【实验方案设计】4.2数据和指标的选取我们的模型估计选取了我国1990年1月到2008年12月的CPI月度数据附表(1))作为研究的对象。

度量通货膨胀的指标通常有CPI(消费者价格指生产者物价指数(PPI)、批发物价指数(wholesale price index)、GDP平减指数(deflator)等。

消费者物价指数(CPI)(consumer price index)是用来度量一期内居民所支付消费商品和劳务价格变化程度的相对数指标,它是反映通货水平的重要指标。

CPI指数作为生活成本指数,不仅能够及时和明确地反映子商品和服务价格的变化,而且是定期公布,广为人知,易于获取和明了,被公众理解。

选取CPI作为通货膨胀的指标有利于合理引导公众和市场对经预期,有利于政府综合运用价格和其他经济手段,实现宏观经济调控目标。

为了研究这些问题,笔者搜集了1985-2007年的年度中国消费者物价指数的相关数据,利用EVIEWS软件,将这几个指标数据进行了相关分析。

对于ARIMA(p q)模型,可以利用其样本的自相关函数和样本的偏自相关函数的截尾性判定模型的阶数,若平稳时间序列的偏相而自相关函数是截尾的则可断定此序列适合MA 模型; 若平稳时间序列的偏相关函数和自相关函数均是拖尾的则此序列适合模型。

计量经济学eviews报告

计量经济学eviews报告

计量经济学eviews报告在经济学研究中,计量经济学是一个重要的分支领域,它利用数理统计和经济理论方法,对经济现象进行定量分析和预测。

而在进行计量经济学研究时,经济学家们通常会使用eviews软件来进行数据处理和分析。

本报告将对eviews软件在计量经济学研究中的应用进行介绍和分析。

首先,eviews软件作为一款专业的计量经济学软件,具有强大的数据处理和分析功能。

它可以对各种类型的经济数据进行处理,包括时间序列数据、截面数据和面板数据等。

同时,eviews还提供了丰富的统计分析工具,如回归分析、时间序列分析、方差分析等,可以帮助经济学家们快速准确地进行数据分析和模型建立。

其次,eviews软件在计量经济学研究中的应用非常广泛。

在实证研究中,经济学家们通常会使用eviews来进行数据的导入和清洗,然后进行相关的计量分析。

例如,他们可以利用eviews进行回归分析,来探讨不同经济变量之间的关系;也可以利用eviews进行时间序列分析,来预测未来的经济走势。

总之,eviews为经济学家们提供了一个强大的工具,帮助他们更好地进行计量经济学研究。

另外,eviews软件还具有友好的用户界面和丰富的图表展示功能,使得经济学家们可以直观地呈现研究结果。

他们可以通过eviews生成各种统计图表,如散点图、折线图、柱状图等,直观地展示数据之间的关系和变化趋势。

这些图表不仅可以帮助经济学家们更好地理解数据,还可以用于学术论文和研究报告的展示。

总之,eviews软件在计量经济学研究中发挥着重要的作用,它为经济学家们提供了强大的数据处理和分析工具,帮助他们更好地进行实证研究。

未来,随着计量经济学研究的深入发展,相信eviews软件将会继续发挥重要作用,为经济学研究提供更多的便利和支持。

eviews实验报告

eviews实验报告

eviews实验报告Eviews 实验报告摘要Eviews 是一个被广泛应用于经济学、金融学等领域的计量经济学软件。

本实验报告通过一个具体案例,介绍了如何运用 Eviews进行数据处理、模型建立和分析。

通过对此案例的完整实施流程,读者能够了解到 Eviews 的基本使用方法以及它在实际经济问题中的应用能力。

引言Eviews(Econometric Views)是一种功能强大的计量经济学软件工具,能够处理和分析经济与金融数据。

它不仅仅是一个数据处理工具,还可用于建立经济模型、估计经济关系、进行预测以及进行模型检验等。

本实验报告将通过一个案例,介绍如何利用Eviews 进行数据处理、模型建立和分析。

数据处理在使用 Eviews 进行数据处理之前,首先需要准备好待分析的数据。

这些数据可以是收集到的实际数据,也可以是从其他来源获取的公开数据。

无论数据来源如何,都需要通过 Eviews 的数据导入功能将其导入到软件中。

在导入数据之后,可以使用 Eviews 的数据处理功能对数据进行清洗和转换。

例如,可以通过计算某个变量的平均值、标准差等统计指标,快速了解数据的基本特征。

此外,还可以使用Eviews 的图表功能绘制各种统计图表,如折线图、散点图等,以便更好地理解数据。

模型建立在数据处理完成后,可以根据研究目的建立相应的经济模型。

Eviews 提供了丰富的模型建立功能,可以根据需要选择不同的模型类型。

例如,可以建立回归模型、时间序列模型等。

对于回归模型,可以通过 Eviews 的回归分析功能进行模型的估计和检验。

此功能可根据输入的自变量和因变量数据,自动估计出回归方程的参数,并计算出各种统计指标。

通过对模型的参数估计和假设检验,可以判断模型的有效性。

分析和预测在模型建立完成后,可以利用 Eviews 的分析功能对模型进行进一步的分析和预测。

Eviews 提供了丰富的统计方法和技术,如方差分析、协整分析等,可以帮助用户深入理解模型关系。

eviews多元线性回归案例分析报告报告材料

eviews多元线性回归案例分析报告报告材料

中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。

为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。

影响中国税收收入增长的因素很多,但据分析主要的因素可能有:〔1〕从宏观经济看,经济整体增长是税收增长的基根源泉。

〔2〕公共财政的需求,税收收入是财政的主体,社会经济的开展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。

〔3〕物价水平。

我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。

〔4〕税收政策因素。

我国自1978年以来经历了两次大的税制改革,一次是1984—%。

但是第二次税制改革对税收的增长速度的影响不是非常大。

因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。

二、模型设定为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收〞〔简称“税收收入〞〕作为被解释变量,以反映国家税收的增长;选择“国内生产总值〔GDP〕〞作为经济整体增长水平的代表;选择中央和地方“财政支出〞作为公共财政需求的代表;选择“商品零售物价指数〞作为物价水平的代表。

由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。

所以解释变量设定为可观测“国内生产总值〔GDP〕〞、“财政支出〞、“商品零售物价指数〞从《中国统计年鉴》收集到以下数据年份财政收入〔亿元〕Y国内生产总值(亿元〕X2财政支出〔亿元〕X3商品零售价格指数〔%)X419781979 102 1980 106 1981198219831984 717119851986 106 1987198819891990199119921993199419951996199719981999 97 200020012002设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三、参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X4的散点图:Dependent Variable: YMethod: Least SquaresDate: 12/01/09 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1463163. Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)模型估计的结果为:Y i=+0.022067X2+X3+X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21四、模型检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计分析报告基于eviews软件的湖北省人均GDP时间序列模型构建与预测姓名:刘金玉学院:经济管理学院学号:20121002942指导教师:李奇明日期:2014年12月14日基于eviews软件的湖北省人均GDP时间序列模型构建与预测1、选题背景改革开放以来,中国的经济得到飞速发展。

1978年至今,中国GDP年均增长超过9%。

中国的经济实力明显增强。

2001年GDP超过1.1万亿美元,排名升到世界第六位。

外汇储备已达2500亿美元。

市场在资源配置中已经明显地发挥基础性作用。

公有、私有、外资等多种所有制经济共同发展的格局基本形成。

宏观调控体系初步建立。

我国社会生产力、综合国力、地区发展、产业升级、所有制结构、商品供求等指标均反映出我国经济运行质量良好,为实现第三步战略。

在全国的经济飞速发展的大环境下,各省GDP的增长也是最能反映其经济发展状况的指标。

而人均 GDP 是最能体现一个省的经济实力、发展水平和生活水准的综合性指标,它不仅考虑了经济总量的大小,而且结合了人口多少的因素,在国际上被广泛用于评价和比较一个地区经济发展水平。

尤其是我们这样的人口大国,用这一指标反映经济增长和发展情况更加准确、深刻和富有现实意义。

深入分析这一指标对于反映我国经济发展历程、探讨增长规律、研究波动状况,制定相应的宏观调控政策有着十分重要的意义。

本文是以湖北省人均GDP作为研究对象。

湖北省人均GDP的增长速度在上世纪90年代增长率有下滑的趋势(见表1)。

进入21世纪,继东部沿海地区先发展起来,并涌现出环渤海、长三角、珠三角等城市群,以及中共中央提出“西部大开发”的战略后,中部地区成了“被遗忘的区域”,中部地区经济发展严重滞后于东部沿海地区,为此,中共中央提出了“中部崛起”的重大战略决策。

自2004年提出“中部崛起”的重要战略构思后,山西、河南、安徽、湖北、湖南、江西六个省都依托自己的资源和地理优势来扩大地区竞争力,湖北省尤为突出。

那么,研究湖北省人均GDP的统计规律性和变动趋势,对于了解湖北省的经济增长规律以及地方政策的制定有特别重要的意义。

因此本文试图以湖北省1978-2013年人均GDP 历史数据为样本,通过ARMA 模型对样本进行统计分析,以揭示湖北省人均GDP变化的内在规律性,建立计量经济模型,并在此基础上进行短期外推预测,作为湖北未来几年经济发展的重要参考依据。

1983 543.27 7.30% 1995 3671.41 22.74% 2007 16386 22.65% 1984 670.97 23.51% 1996 4310.98 17.42% 2008 19858 21.19% 1985 800.69 19.33% 1997 4883.8 13.29% 2009 22677 14.20% 1986 881.61 10.11% 1998 5287.03 8.26% 2010 27906 23.06% 1987 1018.42 15.52% 1999 5452.46 3.13% 2011 34197.27 22.54% 1988 1215.93 19.39% 2000 6293.41 15.42% 2012 38572.33 12.79% 1989 1373.22 12.94% 2001 6866.99 9.11% 2013 42612.7 10.47%2、数据准备首先我们对数据进行预处理,建立工作文件并导入数据如图1:图1图中year代表年份,per GDP代表湖北省的人均GDP。

导入数据后我们根据时间和人均GDP绘制时序图,选择序列然后点Quick,选择 Scatter,或者 XYline ;绘制完成后后可以双击图片对其进行修饰。

绘制图形如图2:图2由图2我们不难看出,根据描点,湖北省的人均GDP基本在时间上呈一种指数增长。

3、平稳性检验我们绘制了人均gdp的散点图,发现人均gdp随着时间的推移在不断增长图3由图3的序列的相关分析结果可以看出:(1)自相关系数波动较大。

从上述样本相关函数图,可以看到湖北省的人均GDP是缓慢的递减趋于零的,并随着时间的推移,在0附近波动并呈发散趋势。

所以,通过湖北省人均GDP的样本相关图,可初步判定该时间序列非平稳。

(2)观察第五列的 Q 统计量和第六列它对应的P值:H0:X的1期,2期……k期的自相关系数均等于 0 ;H1:自相关系数中至少有一个不等于 0 。

图中结果显示,P值在95%的显著性水平下,都小于0.01,所以拒绝原假设, 即序列是非白噪声序列,序列值之间彼此之间有关联, 所以说过去的行为对将来的发展有影响。

为了验证我对这组数据是非平稳的初步猜想,下面我对其进行了单位根(ADF)检验,单位根检验是为了检验序列中是否存在单位根,因为存在单位根过程就不平稳,序列也就是非平稳时间序列,会使回归分析中存在伪回归。

结果如图4由图4可知,ADF的t统计量为4.37,比10%的置信水平下的t值还要大,由此我们可以确定人均gdp的时间序列是非平稳序列。

4、数据平稳化由上面结果可以得出,湖北省自改革开放至今的人均gdp的时间序列是不平稳的,存在波动,结合图2的时间序列散点图,我们不难发现gdp对于时间序列有着指数的趋势,使序列不平稳,下面为了方便分析,我们利用差分法将其变为平稳序列。

一阶差分结果如表二,表二描述了数据进行一阶差分后的结果,图5是我们利用eviews 做出来关于一阶差分的结果序列图,根据图和数据初步猜测序列依旧非平稳。

经过对一阶差分结果再次进行ADF检验,检验结果如图6, ADF的t统计量为1.857,比10%的置信水平下的t值还要大,由此我们可以确定经过一阶差分的人均gdp的时间序列是非平稳序列。

表二一阶差分结果1978 NA 1989 157.2900 2000 840.9500 2011 6291.270 1979 77.32000 1990 167.9500 2001 573.5800 2012 4375.060 1980 18.63000 1991 126.8600 2002 569.5900 2013 4040.370 1981 38.34000 1992 294.4200 2003 941.43001982 40.01000 1993 398.0800 2004 1519.6301983 36.94000 1994 630.8000 2005 1656.3601984 127.7000 1995 680.0800 2006 1806.0001985 129.7200 1996 639.5700 2007 3026.0001986 80.92000 1997 572.8200 2008 3472.0001987 136.8100 1998 403.2300 2009 2819.0001988 197.5100 1999 165.4300 2010 5229.000图5图6上面已经验证经过一阶差分的人均GDP时间序列依旧是非平稳的,我们仍然无法用ARMA 模型来分析与预测,我们接着对人均GDP进行二阶差分,二阶差分输出结果如表三,表三描述了数据进行二阶差分后的结果,图7是我们利用eviews做出来关于二阶差分的结果序列图,根据图和数据初步猜测序列平稳。

经过对二阶差分结果再次进行ADF检验,检验结果如图8, ADF的t统计量为-2.607,比1%的置信水平下的t值要大,但是小于5%下的水平,此时的t统计量相对于一阶差分来说更加显著,在5%的显著水平下我们认为原关于湖北省GDP的时间序列经过二阶差分变换可以成为平稳序列,这种由非平稳序列经过差分变成的平稳序列,则我们称之为差分平稳序列,差分平稳序列我们就可以使用 A ARIM模型进行拟合。

表三二阶差分结果1978 NA 1990 10.66000 2002 -3.990000 1979 NA 1991 -41.09000 2003 371.8400 1980 -58.69000 1992 167.5600 2004 578.2000 1981 19.71000 1993 103.6600 2005 136.7300 1982 1.670000 1994 232.7200 2006 149.6400 1983 -3.070000 1995 49.28000 2007 1220.000 1984 90.76000 1996 -40.51000 2008 446.0000 1985 2.020000 1997 -66.75000 2009 -653.0000 1986 -48.80000 1998 -169.5900 2010 2410.000 1987 55.89000 1999 -237.8000 2011 1062.2701988 60.70000 2000 675.5200 2012 -1916.210 1989 -40.22000 2001 -267.3700 2013 -334.6900图7图85、模型构建ARMA模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得,例如:AR(p)模型自相关函数拖尾,偏自相关函数p步截尾;MA(q)模型自相关函数q步截尾,偏自相关函数拖尾;而ARMA模型的自相关函数与偏自相关函数都具有拖尾性。

图9序列D(GDP,2)的AC与PAC见图9。

由图9可看到ACF与PACF都基本控制在两个标准差范围之内,可认为该序列在零轴附近波动,具有短期相关性,同时根据我们之前所做的分析已证实湖北省人均GDP是平稳随机序列。

样本的自相关函数和偏自相关函数基本上出现逐步衰减态势,二者都呈现一定的拖尾特性。

从图9可大致考虑p=0、q=5,偏自相关拖尾、自相关5步截尾,建立ARIMA (0,2,5)模型。

建立ARIMA (0,2,5)为模型,是因为偏自相关拖尾,所以第一个数值0 ,然后因为序列进行了二阶差分,所以中间数值为2 ,又自相关图5阶截尾,所以最后一个数值为5。

根据计量经济学我们知道AIC的值越小,说明模型进行样本外预测的拟合效果越好。

这一标准也是时间序列模型进行选择的主要标准,这是因为时间序列模型多用来进行预测。

AIC 准则可以对模型的阶数和相应参数同时给出一种最佳估计。

但它仍需要根据平稳序列的自相关和偏自相关函数的特性,初选一些可供参考的阶数,然后计算不同阶数的AIC值,选择使AIC达到最小的一组阶数作为理想阶数。

经AIC值验证模型(0,5)是合适的模型,下面我们根据这个参数模型进行估计。

首先我们知道模型参数估计的方法有矩估计法、极大似然法、非线性最小二乘法等。

矩估计法虽然比较简单但精度较低;极大似然法相对比较精确,但是要求总体分布类型已知。

相关文档
最新文档