2013年全国高考试题分类汇编:集合的概念及运算
2013届高考数学一轮复习讲义 第一章1.1集合的概念及其基本运算

(2)集合相等 若 A⊆B 且 B⊆A,则 A=B.
主页
要点梳理
忆一忆知识要点
3.集合的运算及其性质 (1)集合的并、交、补运算 并集:A∪B={x|x∈A,或 x∈B}; 交集:A∩B= {x|x∈A,且 x∈B}; 补集:∁UA= {x|x∈U,且 x∉A} . U 为全集,∁UA 表示 A 相对于全集 U 的补集. (2)集合的运算性质 并集的性质: A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A. 交集的性质: A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. 补集的性质: A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A.
a≥2或a<0 ,∴ a≥2或a<0
.
又∵a>0,∴a≥2.
综上知,当 A⊆B 时,a<-8 或 a≥2.
主页
(2)当 a=0 时,显然 B⊆A; 当 a<0 时,若 B⊆A,如图,
1 4 a≤-2 则 -1>2 a
-8≤a<0 ,∴ 1 . -2<a<0
1 又∵a<0,∴- <a<0. 2
主页
集合中的新定义问题
例4 在集合{a,b,c,d}上定义两种运算和如下:
那么 d (a c)=________.
按照给出的运算法则,遵循通用的运算法则,先算括号内 的,逐步进行计算.
主页
根据给出的运算规则 a c=c,即 d (a c) =d c,再根据给出的运算规则,d c=a.
6 那么 S 中无“孤立元素”的 4 个元素的子集共有________
{0,1,2,3} 个,其中的一个是____________.
由成对的相邻元素组成的四元子集都没有“孤立元 素”, 如{0,1,2,3}, {0,1,3,4}, {0,1,4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}这样的集合,故共有 6 个.
2013高考数学《集合的基本概念与运算》word考前基础复习

集合与函数概念一、集合的基本概念与运算(一)元素与集合1.集合的定义一般地,我们把研究对象统称为元素。
把一些元素组成的总体叫做集合(简称为集)。
通常用大写字母A,B,C,D,…表示集合,用小写拉丁字母a,b,c,…表示元素。
2.集合中元素的特征(1)确定性:给定的集合,它的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了。
例如,“中国的直辖市”构成一个集合,北京、上海、天津、重庆在这个集合中,杭州、南京、广州……不在这个集合中。
“身材较高的人”不能构成集合;因为组成它的元素是不确定的。
(2)互异性:一个给定集合中的元素是互不相同的(或说是互异的),也就是说,集合中的元素是不重复出现的。
相同元素、重复元素,不论多少,只能算作该集合的一个元素。
(3)无序性:在一个集合中,不考虑元素之间的顺序只要元素完全相同,就认为是同一个集合。
3、集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
4、元素与集合的关系如果a是集合A的元素,就是说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作a A。
5、常见的数集及记法全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集合称为正整数集(在自然数集中排除0的集合),记作N*或N+;全体整数组成的集合称为整数集,记作Z;解①得x=y=1这与集合中元素的互异性相矛盾。
解②得x= -1或1(舍去)这时y=0∴x= -1,y=06、集合的表示方法(1)列举法:把集合中的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。
适用条件:有限集或有规律的无限集形式:{}n a,,,a,a⋯a132(2)描述法:用集合所含元素的共同特征表示集合的方法称为描述法,具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围;再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
2013-2017高考数学(文)真题分类汇编第1章集合与常用逻辑用语.docx

第一章集合与常用逻辑用语第 1 节集合题型 1集合的基本概念——暂无题型 2集合间的基本关系——暂无题型 3集合的运算1.( 2013 山东文 2)已知集合 A , B 均为全集U1,2,3,4的子集,且e A B 4 ,U B1,2 ,则A e U B() .A. 3B. 4C.3,4D.分析利用所给条件计算出A 和 e B,进而求交集.1.U解析:因为 U1,2,3,4,饀A B4,所以A B1,2,3.又因为B1,2,U所以 3A1,2,3 .又饀B 3,4 ,所以A饀B故选A.U U 3 .2.(2013 安徽文 2)已知A x x1>0 ,B2, 101,,,则 C R A B() .A.2,1B.2C.2,01,D.01,2.分析解不等式求出集合 A ,进而得e R A,再由集合交集的定义求解.解析因为集合 A x x >1,所以 e R A x x ≤1,则 e R A B x x ≤1 2, 1,02, 1 .故选A.3.( 2013江西文2)若集合A x R | ax2ax10 其中只有一个元素,则a() .A .4 B. 2 C. 0 D. 0或43.解析当a0时,方程化为 10,无解,集合 A 为空集,不符合题意;当a0时,由a2 4a 0 ,解得a 4.故选A.4.( 2013 广东文1)设集合S x | x22x 0, x R,T x | x22x 0, x R,则 S T().A .0B .0,2C.2,0D.2,0,24.分析先确定两个集合的元素,再进行交集运算.解析集合 S0, 2 ,T0,2,故 S T0 ,故选 A.5(.2013 湖北文 1)已知全集U1,2,3,4,5 ,集合 A1,2 ,B2,3,4 ,则B e U A() .A .2B.3,4C.1,4,5D.2,3,4,55.分析先求e A,再找公共元素.U解析因为 U1,2,3,4,5 , A1,2,所以 e A3,4,5,U所以 B e A2,3,43,4,53,4.故选 B.U6.( 2013四川文1)设集合A1,2,3 ,集合B2,2,则 A B ().A. B.2C.2,2D.21,,2,36.分析直接根据交集的概念求解.解析 A B1,2,32,22,故选 B.7. (2013 福建文3)若集合A=1,2,3 ,B= 1,3,4 ,则 A B 的子集个数为().A .2 B.3C.4 D.167.分析先求出A B ,再列出子集.解析 A B1,3 ,其中子集有, 1 ,3, 1,3 共 4 个.故选C.8. (2013 天津文 1)已知集合A x R x , 2 , B x R x? 1,则 A B ().A.(,2]B. 1,2C.2,2D.2,1分析先化简集合 A ,再借助数轴进行集合的交集运算.8.解析 A x R x ≤ 2x R - 2≤x≤2,所以 A B x R 2 ≤ x ≤ 2x R x ≤ 1x R 2≤x≤1 .故选D.9.( 2013 辽宁文 1)已知集合 A 1,2,3,4 ,B x x<2 ,则 A B().A.0B.01,C.0,2D.01,,29.解析B x x2x 2 x 2, A B0,1 .故选B.10. (2013 陕西文1)设全集为R,函数f ( x)1x 的定义域为M,则 e R M 为().A.,1B.1,C.,1D. 1,10.解析函数f x 的定义域 M,1 ,则 e R M1,.故选 B.11.(2013 浙江文1)设集合S x | x2, T x | 4剟x1,则 S T() .A. 4,B(.2,) C.4,1 D.2,111.分析直接求两个集合的交集即可.解析: S T x x > 2x 4 ≤ x ≤ 1x 2 < x≤ 1.故选 D .12. (2013 重庆文1)已知全集U1,2,3,4 ,集合 A1,2 , B2,3,则 e U A B ().A.13,,4B.3,4C. 3D.412.分析先求出两个集合的并集,再结合补集概念求解.解析因为 A1,2 , B2,3 ,所以 A B1,2,3,所以 e A B4.故选 D.U13.( 2013 江苏 4)集合1,0,1共有个子集13.分析根据计算集合子集个数的公式求出或直接写出.解析由于集合中有 3 个元素,故该集合有23=8(个)子集 .14.已知集合U2,3,6,8, A2,3 , B2,6,8,则 C A B.15(.2014 新课标Ⅰ文1)已知集合 M{ x | 1 x3} ,N{ x |2x1} ,则M N ()A. (2,1)B. (1,1)C. (1,3)D.( 2 ,3)16(.2014 新课标Ⅱ文1)已知集合A2,0,2 ,B x | x2x20 ,则A B ()A. B.2 C. 0 D. 217.( 2014 浙江文1)设集合Sx x厔2 ,T x x 5,则 S T = () .A .,5B .2,+C.2,5 D .2,518.( 2014 江西文2)设全集为R,集合A{ x | x290}, B{ x |1x≤5} ,则A(e R B)() .A. (3,0)B. ( 3,1)C. (3,1]D. ( 3,3)19.( 2014 辽宁文1)已知全集U R ,A{ x | x≤ 0} , B{ x | x≥1} ,则集合e U(A B)()A . { x | x≥0}B . { x | x≤1}C. { x | 0≤ x≤1}D. { x | 0 x 1}20.( 2014 山东文2)设集合A x x 22x0, B x 1剟x4,则 A B() .A.0,2B.1,2C.1,2D.1,421.( 2014陕西文 1)设集合M x | x≥0,x R ,N x | x21,x R ,则M N().A.0,10,1C.0,1D.0,1B.22(. 2014 四川文 1)已知集合A x x1x 2 ,0 ,集合B为整数集,则 A B().A.1,0B.0,1C.2, 1,0,1D.1,0,1,223.( 2014 北京文1)若集合A0,1,2,4, B1,2,3,则 A B ()A.0,1,2,3,4B.0,4C.1,2D.323.解析因为A0,1,2,4, B1,2,3,所以 A B1,2 .故选C.24.( 2014 大纲文1)设集合 M{ 1,2,4,6,8}, N{ 1,2,3,5,6,7} ,则M N 中元素的个数为() .A . 2B. 3C. 5D. 725.( 2014 福建文1)若集合P x 2≤ x 4 , Q x x≥ 3, 则P Q等于()A. x 3≤x 4B. x 3 x 4C. x 2≤x 3D. x 2≤x≤326.( 2014 广东文1)已知集合M2,3,4 , N0,2,3,5 ,则M N() .A.0,22,3C.3,4D.3,5 B.27.( 2014 湖北文1)已知全集U1,2,3,4,5,6,7,集合A1,3,5,6,则U() .e AA .13,,5,6B.2,3,7C.2,4,7D.2,5,728.( 2014 湖南文 2)已知集合 A{ x | x2} , B{ x |1x 3} ,则A B() .A. { x | x2}B. { x | x1}C. { x | 2 x3}D. { x |1x 3}29.( 2014 江苏 1)已知集合A2, 1,3,4,B1,2,3,则 A B.30.( 2014 重庆文 11)已知集合A{3 ,4,512,,13} , B{2 ,3,5,813, },则 A B.31.( 2015重庆文1)已知集合A1,2,3, B1,3 ,则 A B () .A. {2}B.{1,2}C.{1,3}D.{1,2,3}31.解析根据集合的运算法则,交集表示两集合的公共部分,所以 A B1,3.故选 C.32.( 2015广东文1)若集合M1,1 , N2,1,0,则 M N() .A.0, 1B. 0C. 1D.1,132.解析由题意可得 M N 1 .故选 C.33.( 2015 天津文 1)已知全集U1,2,3,4,5,6,集合 A2,3,4,集合 B 1,3,4,6,则集合 A e U B() .A.3B.2,5C.1,4,6D.2,3,533. 解析由题意可得 A 2,3,5,e B ={2,5},则A ()2,5. 故选 B.Ue U B34.(2015 安徽文 2)设全集U1,2,3,4,5,6 , A 1,2,B2,3,4 ,则 A e U B () .A.1,2,5,6B.1C.2D.1,2,3,434.解析因为e B1,5,6,所以A e B 1 .故选B.U U35. ( 2015 全国 I 文 1)已知集合A{ x x 3n2,n N}, B{6,8,10,12,14},则集合A B 中元素的个数为() .A. 5B. 4C. 3D. 235.解析当3n2? 14,得 n? 4 .由x3n 2 ,当 n0 时, x 2 ;当 n 1 时, x 5 ;当 n 2 时, x 8 ;当 n 3 时, x 11 ;当 n 4 时, x 14 .所以A B8,14 ,则集合 A B 中含元素个数为 2 .故选 D .36. ( 2015北京文 1)若集合A x5x2, B x 3 x 3 ,则 A B().A.x 3 x 2B.x 5 x 2C.x 3 x 3D.x 5 x 336.解析依题意,A B x3x2.故选 A.37. ( 2015福建文 2)若集合M x 2 ,x2, N0,1,2,则 M N 等于().A.0B. 1C.0,1,2 D.0,1[来源 :Zxxm] 37.解析由交集的定义得M N0,1.故选 D.评注考查集合的运算.38(. 2015 全国 II 文 1)已知集合A{ x |1x2} ,B x 0x3,则 A B().A.1, 3B.1,0C.0, 2D. 2 ,338.解析因为对于A有A x1x2,对于 B 有 B x 0x3.可得 A B x1x 3 .故选A.39. ( 2015 山东文1)已知集合A x | 2x4, B x | ( x1)( x3)0,则A B () .A.(1,3)B. (1,4)C.(2 ,3)D.(2 ,4)39.解析由题意可得B x 1x3,又 A x 2x4,所以 A B x 2x 3 .故选 C.40. ( 2015陕西文1)设集合M x x2x ,N lg x,0 ,则 M N().A.01,B.70C.01,D.,140.解析M x x2x M0,1 ,N x lg x 剟 0N0x 1 ,所以M N01,.故选A.41.( 2015 四川文1)设集合A x1x 2 ,集合 B x 1x 3 ,则A B ().A.x 1 x 3B.x 1 x 1C.x 1 x 2D.x 2 x 341.解析由题意并集合数轴可得A B x1x 3 .故选A.42.( 2015 浙江文1)已知集合P x x22x ⋯3 ,Q x 2x4,则 P Q ().A.3,4B.2,3C.1,2D.13,42.解析P x x,1或 x⋯3,所以 P Q3,4.故选 A.43. ( 2015湖南文 11)已知集合U1,2,3,4, A1,3, B1,3,4 ,则 A e U B .43.解析因为e U B2,所以A? B1,2,3.U44. ( 2015 江苏 1)已知集合A1,2,3, B2,4,5 ,则集合A B 中元素的个数为.44.解析由并集的运算知识知 A B1,2,3,4,5,故集合 A B中元素的个数为 5 .45(.2016 北京文1)已知集合A x 2x4,B x x3或 x5,则 AI B ().A.x 2 x 5B.x x 4或 x 5C.x 2 x 3D.x x 2或 x 545.C 解析由A I B的含义可得 A I B x 2x 3 .故选C.46. ( 2016全国丙文1)设集合A{0,2,4,6,8,10}, B{4,8} ,则 e A B () .A. 4,8B.0,2,6C.0,2,6,10D.0,2,4,6,8,1046.C 解析依据补集的定义,从集合A{0,2,4,6,8,10} 中去掉集合 B{4,8} ,剩下的四个元素为 0,2,6,10 ,故e A B {0,2,6,10} 故选C..47. ( 2016全国甲文1)已知集合A1,2,3, B x | x29 ,则A I B() .A.2, 1,0,1,2,3B.2,1,0,1,2C.1,2,3D.1,247.D 解析B3,3, A I B1,2 .故选D.48. ( 2016山东文 1)设集合U{1,2,3,4,5,6}, A{13,,5}, B{3,4,5} ,则 e U ( A U B)=() .A. {2,6}B.{3,6}C.{1,3,4,5}D. {1,2,4,6}48.A解析由已知, A U B1,3,5U 3,4,51,3,4,5,所以痧U A UB U 1,3,4,52,6.故选 A.49. ( 2016四川文 2)设集合A x 1 剟 x5, Z 为整数集,则集合 A I Z中元素的个数是().A. 6B.5C.4D.349.B解析由题意, A I Z1,2,3,4,5 ,故其中的元素个数为 5.故选 B.50.( 2016 天津文 1)已知集合A{1,2,3} ,B{ y | y2x 1,x A} ,则A I B =().A. {1,3}B.{1,2}C.{2,3}D. {1,2,3}50.A解析由题意可得 B{1,3,5},则 A I B{1,3} .故选A.51.( 2016全国乙文 1)设集合A1,3,5,7 ,B x 2 剟 x5,则 A I B() .A.1,3B.3,5C.5,7D.1,751.B解析把问题切换成离散集运算,A1,3,5,7, 2,3,4,5 B ,所以 A I B3,5 .故选 B.52. ( 2016浙江文1)已知全集U12,3 ,4,5,6,集合 P13,5, Q12, ,4,则e U P U Q() .A.1B. 3,5C. 1,2,4,6D.1,2,3,4,552.C解析由P13,5,U12,3 ,4,5,6,得e U P 2 , 4,所以, 6e U P U Q2,4,6 U 1,2,41,2,4,6.故选 C.53.( 2016江苏卷1)已知集合A1,2,3,6, B x 2x 3 ,则A I B .53.1,2 解析由交集的运算法则可得 A I B1,2.54.(2016上海文)设x R,则不等式x31的解集为.154. 2,4解析由题意 1 x 3 1 ,即 2 x 4 ,则解集为2,4 .55.( 2017 全国 1 文 1)已知集合A x x 2 , B x 3 2x 0 ,则().A.C.3A B x x B .A B23A B x x D.A B R255.解析由3 2x0 得x 3,所以 A B x x 2x x3x x3222.故选 A.56.(2017 全国 2 文 1)设集合A1,2,3 , B2,3,4 ,则A B= ().A.12,,3,4B.1,2,3C. 2,3,4D.13,,456.解析由题意,A B{1, 2,3, 4} .故选A.57.(2017 全国 3文 1)已知集合A12,,3,4 , B2,4,6,8 ,则A B 中元素的个数为() .A . 1B. 2C. 3D. 457.解析集合A与B的交集为两者共有的元素所构成,即为集合2,4 ,所以该集合的元素个数为 2.故选 B.评注集合的交集运算,属于基础题型,唯一的变化在于常规问题一般要求出交集即可,该题需要先求出集合,再计算元素个数.58.( 2017 北京文1)已知U R,集合A { x | x 2 x 2}U或,则 e A ().A. (2, 2)B. (,2)(2,)C. [2, 2]D. (,2][2,)58.解析由A { x | x 2 或x2}( ,2)(2,) ,所以 e U A[ 2,2].故选 C.59.( 2017 山东文1)设集合M x x1 1 ,N x x 2 ,则M N ().A.1,1B.1,2C.0,2D.1,259.解析由| x 1|10x 2 ,得 M N (0,2).故选 C.60.( 2017 天津文 1)设集合 A 1,2,6,B2,4 , C 1,2,3,4,则 A B C() .A. 2B.1,2,4C. 1,2,4,6D. 1,2,3,4,660.解析因为A{1,2,6}, B{2,4} ,所以 A B {1,2,6}{2,4}{1,2,4,6},所以 (A B) C {1,2,4,6}{1,2,3,4}{1,2,4} .故选B.61.( 2017 浙江 1)已知集合P x 1 x 1 , Q x 0x2,那么 P Q() .A.1,2B. 01,C.1,0D. 1,261.解析P Q 是取 P,Q 集合的所有元素,即 1 x 2 .故选A.62.( 2017 江苏 1)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400 ,300 , 100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行检验,则应从丙种型号的产品中抽取件.62. 解析按照分层抽样的概念应从丙种型号的产品中抽取30060( 件 ) .故填18.181000第 2 节命题及其关系、充分条件与必要条件题型 4四种命题及关系1. ( 2013 山东文 8)给定两个命题p , q ,若p 是 q 的必要而不充分条件,则p 是q 的() .A. 充分而不必要条件B. 必要而不充分条件C.充要条件D.既不充分也不必要条件1.分析借助原命题与逆否命题等价判断.解析:若p 是 q 的必要不充分条件,则q p 但p /q ,其逆否命题为 p q 但q / p ,所以 p 是q 的充分不必要条件.故选 A.2(. 2014 陕西文8)原命题为“若anan 1an,n N+,则a n为递减数列”,关于其逆命题,2否命题,逆否命题真假性的判断依次如下,正确的是().A. 真,假,真B.假,假,真C.真,真,假D. 假,假,假3.( 2014 四川文 15)以A表示值域为R的函数组成的集合, B 表示具有如下性质的函数x 组成的集合:对于函数x ,存在一个正数 M ,使得函数x 的值域包含于区间M,M .例如,当1x x3,2x sinx 时, 1 xA ,2xB .现有如下命题:①设函数 f x的定义域为 D ,则“f x A ”的充要条件是“b R,a D ,f a b ”;②若函数 f x B ,则 f x 有最大值和最小值;③若函数 f x , g x 的定义域相同,且 f x A , g x B ,则 f x g x B ;④若函数f x a ln x2x x2,a R 有最大值,则f x B .x 21其中的真命题有 ____________ (写出所有真命题的序号) .4.( 2015山东文5)设m N ,命题“若m0 ,则方程x2x m0 有实根”的逆否命题是() .A. 若方程x2x m0有实根,则 m0B. 若方程x2x m0有实根,则 m,0C. 若方程x2x m0没有实根,则 m0D. 若方程x2x m0没有实根,则 m,04.解析将原命题的条件和结论调换位置,并分别进行否定,即得原命题的逆否命题.故选 D.5.( 2017 山东文 5)已知命题p :x R ,x2x1⋯0 .命题 q :若 a2b2,则a b .下列命题为真命题的是() .A. p qB. p qC.p qD. p q解析取 x0 ,可知p为真命题;取 a 1,b2,可知 q 为假命题,故 pq为真命题. 5.故选 B.题型 5充分条件、必要条件、充要条件的判断与证明1. (2013 安徽文 4)“2x 1 x0 ”是“x0 ”的().A. 充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件1. 分析先解一元二次方程2x 1 x 0 ,再利用充分条件、必要条件的定义判断.解析当 x0 时,显然 2 x 1 x0;当 2x 1 x0时, x0 或 x1,所以2“ 2x 1 x0 ”是“ x 0 ”的必要不充分条件.故选B.2 (20132P x, y ,“ x2且 y1”P 在直线l : x y 10 上”.福建文)设点则是“点的() .A .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件2.分析利用命题的真假,判断充要条件.解析当 x 2 且 y 1时,满足方程x y 1 0,即点 P2, 1 在直线 l 上.点 P0,1在直线 l 上,但不满足 x 2 且 y1,所以“ x 2 且 y1”是“点 P x, y在直线 l 上”的充分而不必要条件.故选 A.3. (2013 天津文 4)设a,b R ,则“( a b) a20 ”是“a b ”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.分析分别判断由( a b) a20 是否能得出 a b成立和由a b是否能得出( a b) a20成立 .解析由不等式的性质知(a b) a20 成立,则a b 成立;而当 a 0,a b 成立时,( a b) a20不成立,所以(a b) a 20 是a b 的充分而不必要条件.故选 A.4.(2013 湖南文2)“1x2”是“ x 2 ”成立的().A. 充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件4.分析利用集合间的关系转化.解析设A x1x 2 , B x x2,所以 A üB ,即当x0 A 时,有x0 B ,反之不一定成立.因此“1x 2 ”是“x 2 ”成立的充分不必要条件.故选 A.5.( 2014北京文5)设a,b是实数,则“a b ”是“ a 2 b 2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.解析a b 不能推出a2b2,例如a 1 , b 2 ; a2b2也不能推出a b ,例如a 2 ,b 1 .故“a b ”是“a 2b2”的既不充分也不必要条件.6.( 2014 浙江文2)设四边形ABCD的两条对角线AC , BD,则“四边形ABCD为菱形”是“AC BD”的() .A .充分不必要条件B.必要不充分条件C.充要条件 D .既不充分又不必要条件7(. 2014 广东文 7)在△ABC中,角 A, B, C 所对应的边分别为a, b, c 则“a, b”是“sin A, sin B”的() .A. 充分必要条件B. 充分非必要条件C.必要非充分条件D. 非充分非必要条件8(. 2014 新课标Ⅱ文3)函数 f ( x ) 在x x0处导数存在,若p: f (x0)0;q: x x0是f ( x )的极值点,则()A.p 是q的充分必要条件B.p 是q的充分条件,但不是q的必要条件C.p 是q的必要条件,但不是q的充分条件D.p 既不是q的充分条件,也不是q的必要条件9.( 2014 江西文 6)下列叙述中正确的是()A.若 a , b , cax2bx c≥ 0b24ac≤0”;R ,则“”的充分条件是“B.若 a , b , c R ,则“ab2cb 2”的充要条件是“a c”;C.命题“对任意 x R ,有x2≥0”的否定是“存在x R ,有x2≥0”;D.l 是一条直线,, 是两个不同的平面,若l, l,则∥ .10.( 2015 湖南文3)设x R ,则“x 1”是“x21”的().A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10.解析因为由x1可推出 x3 1 ,而由 x31可推出 x 1 ,所以“ x 1 ”是“ x2 1 ”的充要条件.故选C.11.(2015陕西文6)“sin cos”是“ cos20 ”的().A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件11.解析当sin cos时,cos2cos2sin2cos sin cos sin0 ,即 sin cos cos 20 .当 cos2cos sin cos sin0 时,cos sin0 或cossin0,即 cos20 ?sin cos.故选 A.12.( 2015 四川文a b 1log2 a log2 b 0”的() . 4)设a,b为正实数,则“”是“A. 充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件12.解析由函数y log2 x 在定义域 0,上单调递增,且log 2 10 ,可知“ a b 1”是“ log 2 a log2 b0 ”充要条件.故选A.13.( 2015 天津文4)设x R 1 < x < 2”是“| x2| 1 ”的().,则“A. 充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件13.解析由x211x 21 1 x 3 ,可知“1 < x < 2 ”是“2|1”的充分而不必要条件.故选 A.| x14.( 2015 浙江文3)设a,b是实数,则“a b0 ”是“ ab0 ”的().A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件14.解析取 a3, b 2 ,所以 a b0 ?ab0 ;反之取 a 1 , b 2 ,所以 ab 0 ?a b0 故选D..15.( 2015 重庆文2)“x1”是“x22x10 ”的().A. 充要条件B.充分不必要条件C.必要不充分条件D. 既不充分也不必要条件15.解析 由题意知, x22x 1 0 x1. 故选 A .16.( 2015 安徽文 3)设 p : x 3, q : 1 x 3,则 p 是 q 成立的() .A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.解析 因为1,3,3,即 p q ,但是 qq ,所以 p 是 q 的必要不充分条件 .故选 C.评注 充分必要条件的判断 .17.( 2015 北京文6)设 aa b = a b”是 “a // b ”的() ., b 是非零向量, “A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件17.解析 由 ab a b cos a , b ,若 a b a b ,则 cos a ,b1,即 a ,b 0 ,因此 a //b .反之,若 a // b ,并不一定推出 a ba b ,而是 a b a b ,原因在于:若 a //b ,则a ,ba b a b”是 “a //b ”的充分而不必要条件 .故选 A.或 π.所以 “18.( 2015 福建文 12) “对任意 x0, π, k sin x cos x x ”是 “k 1 ”的() .2A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件18.解析 当 k 1 时, k sin x cos xksin 2x ,构造函数 f xksin 2x x ,22则 fx k cos2 x 10 ,故 f x 在 x0, π上单调递减,2故 fxf ππ0 ,则 k sin x cos xx ;2 2当 k1 时,不等式 k sin x cos x x 等价于 1sin 2x x ,1sin 2x 2构造函数 g x x ,则 g x cos2 x 1 0 ,2。
2013年高考数学(文)二轮专题复习:专题一 集合与常用逻辑用语

2013年高考数学(文)复习专题一集合与常用逻辑用语自查网络核心背记一、集合的概念及运算(一)集合的概念1.各种各样的事物或一些抽象的符号,都可以看作把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的(或_________)构成集合的每个对象叫做这个集合的(或_________ ).2.我们把不含任何元素的集合叫____,记作___________.3.集合的元素具有三个特征,分别是_________、_________、_________。
4.集合的分类——含有有限个元素的集合叫做_________;含有无限个元素的集合叫做_________5.常见数集的表示:(1)非负整数全体构成的集合,叫做____,记作__________.(2)在自然数集内排除o的集合叫做____,记作____.(3)整数全体构成的集合,叫做____,记作_________(4)有理数的全体构成的集合,叫做.____,记作______ .(5)实数的全体构成的集合,叫做_________,记作______(6)正实数的全体构成的集合,叫做_________,记作_________6.集合的表示方法,常用的有_________ 和____两种.(二)集合之间的关系1.对于两个集合A与B,如果集合A中的_________ ,都是集合B的元素,那么集合A 叫做集合B的子集,记作A_________B(或B____A),读作______或______2.对于两个集合A与B,如果集合A是集合B的子集,并且____,那么集合A叫做集合B 的真子集,记作A______B(或B____A),读作______或______3.空集是任意一个集合的____,是任意______.集合的真子集.4.-般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A____ 集合B,记作___(三)集合的运算1.一般地,对于两个给定的.集合A,B,由元素构成的集合,叫做A与B的交集,记作读作____________2. -般地,对于两个给定的集合A,B,把它们所有的元素______构成的集合,叫做A与B 的并集,记作______,读作___________。
集合的概念与运算

社会科学
在经济学、社会学、心理学等社会 科学中,经常使用集合的概念来表 示不同的群体或类别。
生物学
在生物学中,基因组、物种分类等 都涉及到集合的概念。
05
集合运算的注意事项
空集的特殊性
空集是任何集合的子集,包括空 集本身。
空集是唯一不含任何元素的集合。
任何集合与空集的交集等于该集 合本身,任何集合与空集的并集
描述法
通过描述集合中元素的共同特征 ,用大括号括起来。
集合的元素
元素是构成集合的基本单位,可以是 任何对象或实体。
元素可以是具体的,如苹果、汽车等 ;也可以是抽象的,如数字、图形等 。
并集
并集是将两个集合中的所有元素合并到一个新的集合中。 并集运算可以用符号“∪”表示。
交集
交集是两个集合中共有的元素组成的集合。
交集运算可以用符号“∩”表示。
差集
差集是一个集合中去除另一个集合中的元素后剩余的元素组成的集合。
差集运算可以用符号“−”表示。
02
集合的运算
并集
并集是指两个或多个集合中所 有元素的集合,即所有属于A 或属于B的元素组成的集合。
并集的表示方法为A∪B,其中 A和B为两个集合。
并集的性质包括交换律、结合 律和分配律。
也等于该集合本身。
子集与超集的关系
子集
一个集合的所有元素都属于另一个集 合,则称该集合为另一个集合的子集。
超集
一个集合包含另一个集合的所有元素, 则称该集合为另一个集合的超集。
集合运算的优先级
并运算优先于交运算
当进行多个集合的运算时,先进行并运算再进行交运算。
交运算优先于差运算
当进行多个集合的运算时,先进行交运算再进行差运算。
2013年高考试题分类汇编(集合)

2013年高考试题分类汇编(集合)考点1 集合的基本概念1.(2013·全国大纲卷·理科)设集合{}1,2,3A =,{}4,5B =,{|,M x x a b ==+ ,}a A b B ∈∈,则M 中元素的个数为A.3B.4C.5D.62.(2013·山东卷·理科)设集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是A. 1B. 3C. 5D.93.(2013·江西卷·文科)若集合{}210A x R ax ax =∈++=中只有一个元素, 则a =A.4B.2C.0D.0或44.(2013·江苏卷)集合}1,0,1{-共有 个子集.考点2 集合的基本关系1.(2013·福建卷·理科)已知集合{}a A ,1=,{}3,2,1=B ,则”“3=a 是”“B A ⊆的 A.充分不必要条件B.必要不充分条件C.充要条件D. 既不充分也不必要条件2.(2013·福建卷·文科)若集合{}=1,2,3A ,{}=1,3,4B ,则A B 的子集个数为A .2B .3C .4D .163.(2013·全国卷Ⅰ·理科)已知集合{}220A x x x =->,{B x x =<<,则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 考点3 集合的基本运算考法1 交集1.(2013·浙江卷·文科)设集合{}2S x x =>-,{}41T x x =-≤≤,则S T =A.[)4,-+∞B.(2,)-+∞C.[]4,1-D.(]2,1-2.(2013·四川卷·文科)设集合{1,2,3}A =,集合{2,2}B =-,则A B =A.∅B.{2}C.{2,2}-D.{2,1,2,3}-3.(2013·四川卷·理科)设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =A.{2}-B.{2}C.{2,2}-D.∅4.(2013·广东卷·文科)设集合{}220,S x x x x R =+=∈,2{20,T x x x =-= }x R ∈则S T = A.{}0 B.{}0,2 C.{}20-, D.{}20,2-,5.(2013·全国卷Ⅱ·文科)已知集合{}31M x x =-<<,{}3,2,1,0,1N =---,则M N =A.{}2,1,0,1--B.{}3,2,1,0---C.{}2,1,0--D.{}3,2,1---6.(2013·辽宁卷·文科)已知集合{}1,2,3,4A =,{}|2B x x =<,则A B =A.{}0B.{}0,1C.{}0,2D.{}0,1,27.(2013·北京卷·文理科)已知集合{}1,0,1A =-,{}11B x x =-≤<,则A B =A.{}0B.{}1,0-C.{}0,1D.{}1,0,1-8.(2013·天津卷·文理科)已知集合{}2A x R x =∈≤, {}1B x R x =∈≤, 则 A B =A.(],2-∞B.[]1,2C.[]2,2-D.[]2,1-9.(2013·全国卷Ⅰ·理科)已知集合{}1,2,3,4A =,{}2,B x x n n A ==∈,则 A B =A.{}1,4B.{}2,3C.{}9,16D.{}1,210.(2013·全国卷Ⅱ·理科)已知集合{}2(1)4M x x x R =-<∈,,{1,0,1,N =- 2,3},则M N =A.{}0,1,2B.{}1,0,1,2-C.{}1,0,2,3-D.{}0,1,2,311.(2013·江西卷·理科)设集合{}1,2,M zi =,i 为虚数单位,{}3,4N =, {}4M N =,则复数z =A.2i -B.2iC.4i -D.4i12.(2013·辽宁卷·理科)已知集合{}4|0log 1A x x =<<,{}|2B x x =≤,则A B =A.()01,B.(]02,C.()1,2D.(]12, 考法2 并集1.(2013·广东卷·理科)设集合{}220,M x x x x R =+=∈,{}220,N x x x x R =-=∈,则M N =A.{}0B.{}0,2C.{}20-,D.{}20,2-, 考法3 补集1.(2013·全国大纲卷·文科)设集合{}1,2,3,4,5U =,集合{}1,2A =,则u A =A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅2.(2013·安徽卷·文科)已知{}10A x x =+>,{}2,1,0,1B =--,则()R C A B =A.{}2,1--B.{}2-C.{}2,0,1-D.{}0,13.(2013·陕西卷·理科)设全集为R , 函数()f x =M , 则 U C M 为 A.[1,1]- B.(1,1)- C.(,1][1,)-∞-+∞ D.(,1)(1.)-∞-+∞4.(2013·陕西卷·文科)设全集为R , 函数()f x =M , 则 U C M 为A.(,1)-∞B.(1,)+∞C.(],1-∞D.[)1,+∞ 考法4 交、并、补集混合运算1.(2013·湖北卷·文科)已知全集{}12345U =,,,,,集合{}12A =,,{}234B =,,,则()U B C A =A .{}2B .{}34,C .{}145,,D .{}2345,,,2.(2013·山东卷·文科)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且 (){4}U A B =,{1,2}B =,则U A B =A.{}3B.{}4C.{}3,4D.∅3.(2013·重庆卷·文理科)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =A.{1,3,4}B.{3,4}C.{3}D.{4}4.(2013·安徽卷·文科)已知{}10A x x =+>,{}2,1,0,1B =--,则()R C A B = A.{}2,1-- B.{}2- C.{}2,0,1- D.{}0,15.(2013·浙江卷·理科)设集合{}2S x x =>-,{}2340T x x x =+-≤,则 ()R C S T = A.[)4,-+∞ B.(2,)-+∞ C.[]4,1- D.(]2,1-6.(2013·湖南卷·文科)已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则 ()C A B = .7.(2013·湖北卷·理科)已知全集为R ,1{()1}2x A x =≤,2{680}B x x x =-+≤, 则()A C B = A.{0}x x ≤ B.{24}x x ≤≤ C.{024}x x x ≤<>或 D.{024}x x x <≤≥或。
1.1 集合的概念及运算-5年3年模拟北京高考
1.1 集合的概念及运算五年高考考点1 集合的含义与表示1.(2013山东.2,5分)已知集合},2,1,0{=A 则集合-=x B {},|A y A x y ∈∈中元素的个数是 ( )1.A 3.B 5.C 9.D2.(2012课标全国,1,5分)已知集合==B A },5,4,3,2,1{},,,|),{(A y x A y A x y x ∈-∈∈则B 中所含元素的个数为 ( )3.A 6.B 8.C 10.D3.(2011广东.2,5分)已知集合y x y x A ,|),{(=为实数,且2x },12=+y |),{(y x B =x ,y 为实数,且},x y =则B A的元素个数为 ( ) 0.A 1.B 2.C 3.D4.(2011福建,1,5分)i 是虚数单位,若集合},1,0,1{-=S 则 ( )S i A ∈. s i B ∈2. S i C ∈3. s iD ∈2. 5.(2010福建.9,5分)对于复数a ,b ,c ,d ,若集合},,,{d c b a S =具有性质“对任意,,S y x ∈必有”,s xy ∈则当⎪⎩⎪⎨⎧=+⋅==b c c b b a 22*,,1,1d +等于 ( )1.A 1.-B 0.C i D .考点2 集合问的基本关系1.(2012江西,1,5分)若集合},2,0{},1,1{=-=B A 则集合,|{y x z z +=},B y A x ∈∈中的元素的个数为 ( )5.A 4.B 3.C 2.D2.(2011北京,1,5分)已知集合}.{},1|{2a M x x P =≤=若,P M P = 则a 的取值范围是 ( )]1,.(--∞A ),1.[+∞B ]1,1[-⋅c ),1[]1,.(+∞--∞ D 3.(2011辽宁.2,5分)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若=∅=N wJM M C NI , ( )M A . N B . I C . ∅.D4.(2010天津.9,5分)设集合|{},,1|||{x B R x a x x A =∈<-=}.,2||R x b x ∈>-若,B A ⊆则实数a 、b 必满足 ( )3||.≤+b a A 3||.≥+b a B 3||.≤-b a C 3||.≥-b a D5.(2013江苏,4,5分)集合}1,0,1{-共有____个子集, 考点3集合的基本运算1.(2013广东.1,5分)设集合=∈=+=N R x x x x M },,02|{2,02{2=-x xix },R x ∈则=N M( ) }0.{A }2,0.{B }0,2.{-C }2,0,2.{-D2.(2013四川.1,5分)设集合},02|{=+=x x A 集合2|{x x B ===-B A则},04 ( ) }2{-⋅A }2.{B }2,2.{-C ∅.D3.(2013浙江.2,5分)设集合-+=->=x x x T x x s 3|{},2|{2},04≤则(=T s C R) ( ) ]1,2.(-A ]4,.(--∞B ]1,.(-∞C ),1.[+∞D4.(2013辽宁.2,5分)已知集合x x B x o x A |{},1.10|{=<<=},2≤则=B A( ) )1,0.(A ]2,0.(B )2,1.(C ]2,1.(D5.(2013天津.1,5分)已知集合∈=≤∈=x B x R x A {},2|{|{},1|≤x R 则=B A( ) ]2,.(-∞A ]2,1.[B ]2,2[-⋅C ]1,2.[-D6.(2013北京.1,5分)已知集合x x B A ≤-=-=1|{},1,0,1{},1<则=B A( ) }0.{A }0,1{-⋅B }1,0.{C }1,0,1.{-D7.(2013课标全国‖.1,5分)已知集合x x x M ,4)1(|{2<-==∈N R },},3,2,1,0,1{-则=N M( )}2,1,0.{A }2,1,0,1.{-B }3,2,0,1.{-C }3,2,1,0.{D8.(2013湖北.2,5分)已知全集为R ,集合},1)21(|{≤=xx A },086|{2≤+-=x x x B 则=B C A R ( )}0|.{≤x x A }42|.{≤≤x x B 20|.{<≤x x C 或}4>x 20|.{≤<x x D 或}4≥x9.(2013重庆.1,5分)已知全集},4,3,2,1{=U 集合,1{=A },3,2{},2=B 则=)(B A C U( ) }4,3,1.{A }4,3.{B }3.{C }4.{D10.(2012山东,2,5分)已知全集},4,3,2,1,0{=U 集合=A },4,2{},3,2,1{=B 则B A C U )为 ( )}4,2,1.{A }4,3,2.{B }4,2,0.{C }4,3,2,0.{D智力背景以“规”“矩 ”度天下之方圆。
2013年高中数学全国各地高考真题分类汇编A单元 集合与常用逻辑用语
A 单元 集合与常用逻辑用语A1 集合及其运算1.A1[2013·新课标全国卷Ⅰ] 已知集合A ={x|x 2-2x >0},B =x }-5<x <5,则( )A .A ∩B = B .A ∪B =RC .B AD .A B1.B [解析] A ={x|x<0或x>2},故A ∪B =R .1.A1[2013·北京卷] 已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1 B ,∴A ∩B ={-1,0},故选B.1.A1[2013·广东卷] 设集合M ={x|x 2+2x =0,x ∈R },N ={x|x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}1.D [解析] ∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2},故选D.2.A1[2013·湖北卷] 已知全集为R ,集合A =x 错误!错误!x ≤1,B ={x|x 2-6x +8≤0},则A ∩(∁R B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁R B ={x|x<2或x>4},可得答案为C.16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)① x ∈(-∞,1),f(x)>0;② x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则 x ∈(1,2),使f(x)=0.16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x ⎣⎡⎦⎤2⎝⎛⎭⎫a c x -1=0,故可知⎝⎛⎭⎫a c x =12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<b c <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c,又a ,b ,c 为三角形三边,则定有a +b>c ,故对 x ∈(-∞,1),⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n +⎝⎛⎭⎫b c n <1,即a n +b n <c n ,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知, x ∈(1,2),使f(x)=0,故③正确.故填①②③.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集.4.8 [解析] 集合{-1,0,1}共有3个元素,故子集的个数为8.1.A1,L4[2013·江西卷] 已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i1.C [解析] zi =4 z =-4i ,故选C.2.A1[2013·辽宁卷] 已知集合A ={}x|0<log 4x<1,B ={}x|x ≤2,则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]2.D [解析] ∵A ={x|1<x<4},B ={x|x ≤2},∴A ∩B ={x|1<x ≤2},故选D.1.A1[2013·全国卷] 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2.A1[2013·山东卷] 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.1.A1[2013·陕西卷] 设全集为R ,函数f(x)=1-x 2的定义域为M ,则∁R M 为( ) A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)1.D [解析] 要使二次根式有意义,则M ={x ︱1-x 2≥0}=[-1,1],故∁R M =(-∞,-1)∪(1,+∞).1.A1[2013·四川卷] 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}.1.A1[2013·天津卷] 已知集合A ={x ∈R ||x|≤2},B ={x ∈R |x ≤1},则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]1.D [解析] A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}.1.A1[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}1.A [解析] 集合M ={x|-1<x<3},则M ∩N ={0,1,2}.2.A1[2013·浙江卷] 设集合S ={x|x>-2},T ={x|x 2+3x -4≤0},则(∁R S)∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)2.C [解析] ∁R S ={x|x ≤-2},T ={x|(x +4)(x -1)≤0}={x|-4≤x ≤1},所以(∁R S)∪T =(-∞,1].故选择C.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m km ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3 A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧m km ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133, B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧m k m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.1.A1[2013·重庆卷] 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}1.D [解析] 因为A ∪B ={1,2,3},所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a<0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a上单调递增,在区间12a ,1a上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.3.A2、C3[2013·北京卷] “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] ∵曲线y =sin(2x +φ)过坐标原点,∴sin φ=0,∴φ=k π,k ∈Z ,故选A.2.A2[2013·福建卷] 已知集合A ={1,a},B ={1,2,3},则“a =3”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当a =3时,A ={1,3},A B ;当A B 时,a =2或a =3,故选A.3.A2[2013·湖北卷] 在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(瘙 綈 q)C.(瘙 綈 p)∧(瘙 綈 q) D.p∨q3.A[解析] “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.7.A2[2013·山东卷] 给定两个命题p,q,若瘙 綈 p是q的必要而不充分条件,则p是瘙 綈 q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.A[解析] ∵瘙 綈 p是q的必要不充分条件,∴q是瘙 綈 p的充分而不必要条件,又“若p,则瘙 綈 q”与“若q,则瘙 綈 p”互为逆否命题,∴p是瘙 綈 q的充分而不必要条件.3.F1,A2[2013·陕西卷] 设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.C[解析] 由已知中|a·b|=|a|·|b|可得,a与b同向或反向,所以a∥b.又因为由a∥b,可得|cos〈a,b〉|=1,故|a·b|=|a|·|b||cos〈a,b〉|=|a|·|b|,故|a·b|=|a|·|b|是a∥b的充分必要条件.4.A2[2013·四川卷] 设x∈Z,集合A是奇数集,集合B是偶数集.若命题p: x∈A,2x∈B,则()A.B.C.D.4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-44.A2[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③4.C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. 4.A2[2013·浙江卷] 已知函数f(x)=Acos(ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f(x)=Acos(ωx +φ)是奇函数的充要条件是f(0)=0,即cos φ=0,φ=k π+π2,k ∈Z ,所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,故选择B.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k ⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3 A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧m km ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧mk m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.A3 基本逻辑联结词及量词16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)① x ∈(-∞,1),f(x)>0;② x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则 x ∈(1,2),使f(x)=0.16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x ⎣⎡⎦⎤2⎝⎛⎭⎫a c x -1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<b c <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x >a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对 x ∈(-∞,1),⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n +⎝⎛⎭⎫b c n <1,即a n +b n <c n ,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知, x ∈(1,2),使f(x)=0,故③正确.故填①②③.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<02.D [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选D.A4 单元综合10.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(1)T ={f(x)|x ∈S};(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x|-1≤x ≤3},B ={x|x =-8或0<x ≤10}C .A ={x|0<x<1},B =RD .A =Z ,B =Q10.D [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x -1,x ∈N ,如图①,则f(x)值域为N ,且为增函数,A 选项正确;构造函数f(x)=⎩⎪⎨⎪⎧-8,x =-1,52(x +1),-1<x ≤3,如图②,满足题设条件,B 选项正确;构造函数f(x)=tanx -错误!π,0<x<1,如图③,满足题设条件,C 选项正确;假设存在函数f(x),f(x)在定义域Z 上是增函数,值域为Q ,则存在a<b 且a 、b ∈Z ,使得f(a)=0,f(b)=1,因为区间(a ,b)内的整数至多有有限个,而区间(0,1)内的有理数有无数多个,所以必存在有理数m ∈(0,1),方程f(x)=m 在区间(a ,b)内无整数解,这与f(x)的值域为Q 矛盾,因此满足题设条件的函数f(x)不存在,D 选项错误,故选D.。
集合的基本概念与运算
集合的基本概念与运算在数学领域中,集合是一种包含对象的集合体。
这些对象可以是数字、字母、符号、单词、人或任何其他事物。
集合的概念和运算是数学中重要的基础,本文将介绍集合的基本概念以及常见的集合运算。
一、集合的基本概念集合是由一组对象组成的,并且这些对象是无序的。
用大写字母表示集合,例如A、B、C等,而用小写字母表示集合中的元素,例如a、b、c等。
如果元素a属于集合A,我们可以表示为a∈A。
如果元素x不属于集合A,我们可以表示为x∉A。
在确定一个集合的时候,我们可以列举其中的元素,也可以使用描述集合中元素的特征或性质。
例如,可以表示“大于0的整数”为集合A,可以表示“A={x|x>0, x∈Z}”。
这样即可定义出集合A。
二、集合的基本运算1. 并集运算当我们希望将两个或多个集合合并成一个新的集合时,我们可以使用并集运算。
用符号∪表示并集。
对于集合A和集合B,A∪B表示包含所有属于集合A或属于集合B的元素的新集合。
例如,如果A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
2. 交集运算交集运算是指将两个集合中共有的元素组成一个新集合。
用符号∩表示交集。
对于集合A和集合B,A∩B表示包含所有既属于集合A又属于集合B的元素的新集合。
例如,如果A={1,2,3},B={3,4,5},则A∩B={3}。
3. 差集运算差集运算是指从一个集合中减去另一个集合中的元素。
用符号\表示差集运算。
对于集合A和集合B,A\B表示包含属于集合A但不属于集合B的元素的新集合。
例如,如果A={1,2,3,4},B={3,4,5},则A\B={1,2}。
4. 补集运算在集合理论中,我们还可以定义补集运算。
对于给定的全集U和集合A,A的补集表示U中所有不属于A的元素。
用符号A'或A表示补集。
例如,如果U为全集,A为集合A。
则A'表示U中所有不属于集合A的元素的集合。
三、集合的扩展运算除了基本的集合运算外,还存在集合的扩展运算。
2013高考数学各省题目分类整理:集合与逻辑用语
2013高考:集合于逻辑用语【2013高考题组】(一)集合运算问题1、(2013北京,文理1)已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B = ( )A 、{0}B 、{1,0}-C 、{0,1}D 、{1,0,1}-2、(2013全国大纲,文1)设全集{1,2,3,4,5}U =,集合{1,2}A =,则U A =ð( )A 、{1,2}B 、{3,4,5}C 、{1,2,3,4,5}D 、∅3、(2013全国课标I ,文1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A 、{1,4}B 、{2,3}C 、{9,16}D 、{1,2}4、(2013全国课标I ,理1)已知集合2{|20}A x x x =->,{|B x x =<<,则( )A 、AB =∅ B 、A B R =C 、B A ⊆D 、A B ⊆5、(2013全国课标II ,文1)已知集合{|31}M x x =-<<,{|3,2,1,0,1}N x =---,则M N = ( )A 、{2,1,0,1}--B 、{3,2,1,0}---C 、{2,1,0}--D 、{3,2,1}---6、(2013全国课标II ,理1)已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则M N = ( ) A 、{0,1,2} B 、{1,0,1,2}- C 、{1,0,2,3}- D 、{0,1,2,3}7、(2013山东,文2)已知集合A 、B 均为全集{1,2,3,4}U =的子集,且(){4}U A B = ð,{1,2}B = 则U A B = ð( )A 、{3}B 、{4}C 、{3,4}D 、∅8、(2013安徽,文2)已知{|10}A x x =+>,{2,1,0,1}B =--,则()R A B = ð( )A 、{2,1}--B 、{2}-C 、{1,0,1}-D 、{0,1}9、(2013浙江,文1)设集合{|2}S x x =>-,{|41}T x x =-≤≤,则S T = ( )A 、[4,)-+∞B 、(2,)-+∞C 、[4,1]-D 、(2,1]-10、(2013浙江,理2)设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则()R S T = ð( )A 、(2,1]-B 、(,4]-∞-C 、(,1]-∞D 、[1,)+∞11、(2013天津,文理1)已知集合{|2}A x R x =∈≤,{|1}B x R x =∈≤,则A B = ( )A 、(,2]-∞B 、[1,2]C 、[2,2]-D 、[2,1]-12、(2013辽宁,文1)已知集合{0,1,2,3,4}A =,{|2}B x x =<,则A B = ( )A 、{0}B 、{0,1}C 、{0,2}D 、{0,1,2}13、(2013辽宁,理2)已知集合4{|0log 1}A x x =<<,{|2}B x x =≤,则A B = ( )A 、(0,1)B 、(0,2]C 、(1,2)D 、(1,2]14、(2013陕西,文1)设全集为R ,函数()f x =M ,则R M ð为( )A 、(,1)-∞B 、(1,)+∞C 、(,1]-∞D 、[1,)+∞15、(2013陕西,理1)设全集为R ,函数()f x =M ,则R M ð为( )A 、[1,1]-B 、(1,1)-C 、(,1][1,)-∞-+∞D 、(,1)(1,)-∞-+∞16、(2013湖南,文10)已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则()U A B = ð 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与常用逻辑用语
1.1集合的概念及运算
考点一集合的含义与表示
1.(2013课标全国Ⅰ,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()
A.{1,4}
B.{2,3}
C.{9,16}
D.{1,2}
答案 A
2.(2013江西,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )
A.4
B.2
C.0
D.0或4
答案 A
考点二集合间的基本关系
3.(2013福建,3,5分)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( )
A.2
B.3
C.4
D.16
答案 C
考点三集合间的基本运算
4.(2013课标全国Ⅱ,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()
A.{-2,-1,0,1}
B.{-3,-2,-1,0}
C.{-2,-1,0}
D.{-3,-2,-1}
答案 C
5.(2013北京,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()
A.{0}
B.{-1,0}
C.{0,1}
D.{-1,0,1}
答案 B
6.(2013广东,1,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()
A.{0}
B.{0,2}
C.{-2,0}
D.{-2,0,2}
答案 A
7.(2013浙江,1,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()
A.[-4,+∞)
B.(-2,+∞)
C.[-4,1]
D.(-2,1]
答案 D
8.(2013安徽,2,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()
A.{-2,-1}
B.{-2}
C.{-1,0,1}
D.{0,1}
答案 A
9.(2013四川,1,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()
A.⌀
B.{2}
C.{-2,2}
D.{-2,1,2,3}
答案 B
10.(2013湖北,1,5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A=( )
A.{2}
B.{3,4}
C.{1,4,5}
D.{2,3,4,5}
答案 B
11.(2013天津,1,5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()
A.(-∞,2]
B.[1,2]
C.[-2,2]
D.[-2,1]
答案 D
12.(2013陕西,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为( )
A.(-∞,1)
B.(1,+∞)
C.(-∞,1]
D.[1,+∞)
答案 B
13.(2013重庆,1,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()
A.{1,3,4}
B.{3,4}
C.{3}
D.{4}
答案 D
14.(2013山东,2,5分)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=( )
A.{3}
B.{4}
C.{3,4}
D.∅
答案 A
15.(2013辽宁,1,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()
A.{0}
B.{0,1}
C.{0,2}
D.{0,1,2}
答案 B
16.(2013湖南,10,5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=.
答案{6,8}。